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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

15,4 (1974)

ON EXTENSIONS OF FULL EMBEDDINGS AND BINDING CATEGORIES

Ji¥{ ROSICKY, Brno

Abstract: There are investigated extensions of full
embeddings from a full subcategory of a given category to
full embeddings of the whole category. Some results ensur-
ing the existence of such an extension are stated. As an
application, the following result is given: For any regular
infinite cardinal w4 there is a three-object category .M,,,,,

such that an equational class of algebras with less thana -
ary operations is binding if and only if M, can be fully

embedded into it.

Key-words: Category, full embedding, Kan extension,
binding category, equational class.

AMS: 18B15 Ref. Z.: 2.726.3 Y

Our basic situation is the following: A and C are
categories, M is a full subcategory of C, X+ M—C an
inclusion functor and T: M—> A is a full embedding.

In the first part, the construction of a functor Ly : C —
~—> A  extending T is recalled. The goal of this construc-
tion is the following result: If M is dense in C and co-
generates C, L, exists and for any 2 € A  there is a
proper class of objects of A isomorphic with it, then I,
is a full embedding whenever a full embedding S: C—> A

extending T exists (see [9]). Further, this part completes
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some techniques from [9] which make it possible to show that
in the result just quoted, the existence of S can be repla-
ced by the codensity of M , The second part considers the
basic situation for concrete categories A and C , There is
introduced a new functor L : C—» A extending T and
properties of T and L, are dealt with. This enables us
“to state results concerning extensions of full embeddings in
the concrete setting, which is done in the third part. The
most powerful of them, Theorems 3.5 and 3.7, are in a close
connection with Theorem 1 from [10] and, like this Theorem,
they are originated from some considerations of [11]. The
last part is devoted to applications to binding categories.
A category A is binding if the category of graphs can be
fully embedded into it (see [2]). In[11], a three-object cate-
gory was found, full embeddability of which into an equatio-
nal class A of unary algebras mekes A to be binding and
the problem was put there concerning the existence of such a
small testing category for equational classes of (finitary)
algebras. An affirmative soclution for finitary algebras was
given in [10]. In this paper we show that for any infinite
regular cardinal 4 there is a three-object category M,
testing any equational class of algebras ‘with less than -
ary operations. Finally, we show that under the set axiom
mon (M) there is a monadic category which cannot be tes-
ted by a small category.
Concerning conéepts of the category theory see [61.
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§ 1. The functor L*

We sketch the construction of functors Lo, L,,...,L,,
eep Ly from C to A extending T and natural transfor-
mations A"°: Ly— L, for B< < and A%:L,— L,
inducing the identity on X presented in [91. L, = LmK T
is a pointwise left Kan extension of T along X , which
means that Lac is equal to a colimit of the functor TP ’
where P: (X {ce)—> M is the projection of the comma catego-
ry. For an isolated o, Lxc is a colimit of a diagram ha-
ving as morphisms all morphisms of A with the domain in
TM and the codomain L, _,¢ . Morphisms £, g Tm—»lk_,,c
have the same domain in this digram if and only if
Lo (RIE=L, ,(h)g for a.y morphism h:ec—>m and
any me M., .’/\.‘é""” is the component of the colimiting cone
with the domain L, , ¢ . For a limit o, Lye is a colimit
of a diagram having objects Lﬁe. and morphisms 71.'3_’5”
for 3 <o . In both cases if L,¢ is isomorphic to ar L,,c
for 3 < e , then we choose L c= L,c . If for eny c € C
there is 4 with L,xc..—. 'L%dc = L,c , then L, appears.
All A are pointwise epi and commute together. Of course,
any of constructed functors is given up to a natural isomor-
phism. Denote by ¢, or ¢, the class of all colimits
used in the construction of L, or L* ,respectively. Put
D= €y -ﬁL‘Jw € for « > 0, L, exists whenever A
has all colimits from ‘6," and if A has all colimits from
‘C* and is co-well-powered , then L* exists.

In (9], a left M-full functor F: C—>A was defi-

ned as a functor full with respect to morphisms of A do-
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maining in PM .

1.1, Lemma. Let L,8: C— A be functors extend-
ing T and 6€: L — S a pointwise mono natural transforma-
tion inducing the identity on X (i.e. 6K=4d ). If S
is left M -full, then 1L is left M -full, too.

For the proof it suffices to begin as in the proof of
Proposition 4 from (9] and use the fact that & is pointwi=-

Se mono.

1.2, Lemma. Let M generate and cogenerate C and
F: C— A be a functor such that YX is faithful. Then
P is faithful.

Proof: For any g%¢': e—>c’ of C one can find m,
m eM, £:m —c and Jsc’—> m’ with hgf & hg'f .
Since FX  is faithful, P must be faithful.

1.3. Definition. Let F: C~—» A be a functor, X a sub-

category of C ., We say that X left JF -generates C if for
a morphism f£:Fec—» Fe¢’ of A, £=PF(£’) holde for a
morphism £’: ¢—> ¢’ of C whenever for any x € X and
any morphism % : x —> ¢ of C there exists a morphism 4’
s x—> ¢/ of C such that F(&') = £F(h) .

This definition generalizes the concept of an inductive-
ly generating subcategory X of a concrete category (C,F)
(it means that F: C—> Ems is a faithful functor). Dual-

ly, right T -generation extends projective generation.

1.4. Lemma. If X left F -generates C and P’ is na-
turally isomorphic to F , then X left F’-generates C ,

Proof is evident.
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1.5. Lemma. Let F: C—> A, G:A—>B be functors and
X a subcategory of C, If X left GTF -generates ( and
G is faithful, then X left T -generates € .

Proof is evident.

1.6, Lemma. Let L :C— A be a left M -full func-
tor. Then L is full iff M 1left L -generates C .

Proof is evident.

1.7. Proposition: Let L. : C—> A be a functor extend-
ing T and M 1left 1, - generate C . Then I, is right M -
full.

Proof: If c € C,meM and £:c—» m is a morph-
ism of C , then the fulness of T implies that £L(%) =L (&)

for anym € M and %: m-—>c ,Therefore £ = L (£)

.

A femily {£,} of morphisms of A with the same codo-
main @ is called jointly epi whenever £ = g  for any pa-
rallel pair of morphisms of A with the domain a, such that

££, =gf; for eny 4 .

1.8. Proposition: Let X be dense in C, I:X—>C
the inclusion, F: C—> A a faithful functor and {F(h)/ 4 :
im—>c,meM?3 a jointly epi family in the full subcate-
gory of A determined by FC for any ¢ € C . Then X 1left
F -generates C .

Proof: Following the first part of the proof of Propo-
sition 3 from [9] it suffices to take for £ from 1.3 the
natural transformation 7 : C(I-,e¢)—> C(I-,c’) defined
by Ple, () = £€F (&), to use the density of X for find-
ing £t ¢ —» ¢’ in € with F(£A)=£€P(h) for any
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.
him—->c,meM and to realize that F(£f’) = £ for

{P(#)3 is jointly epi.

1.9. Corollary. Let M be dense in € and L: C—A
a faithful functor extending T such that the unique natu-
ral transformation 6: Ly~—> L inducing the identity on
X is pointwise epi. Then M 1left L -generates C .

Proof: 1In the same way as in the last six lines of the
proof of Proposition 3 from [9] it can be proved that
{LRV/ s m—c,m eM? is a jointly epi family in A
for any c e C . Hence M left I -generates C by 1.8.

Since 1.2 holds and A%%, A* are pointwise epi, func-
tors Lo,-..,L,c,..., L* fulfil suppositions of 1.9 whenever

M  cogenerates C .

1.10. Corollary. Let M be dense in C,F: C—>A . a
faithful and right M -full functor and FM  cogenerate the
full subcategory of A determined by FC . Then M left L -
generates C .

Proof: Let f£4 g1Fe—> Fe’ such that £F () =g F (k)
for any im —>c,meM . There is m e M and %:Fe'—
—» Pm’  with S%f 4 &g . Since F is right M -full,kfs=
= P(k,) and %9 =F(%k,), There isme M and h:m-—>c
with J,/n $ Kok  because M  generates C . Hence
hfP(h):P(hq h)*}"(hzh)=kq,P(h),which is a contradiction.

1.11. Theorem. Let M be dense and codense in C, Ly
exist and let any o € A have a proper class of objects of
A isomorphic with it. Then L, is a full embedding.

Proof: L, is faithful by 1.2 and right M -full by 1.9
and 1.7. Further, {L (h)/h:ec— m m e M} is jointly
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mono by the construction of L, e for any ¢ € C . The dual
of 1.8 ensures that M right L, -generates C . Now, L*
is full by the dual of 1.6, Since A has enough isomorphic
copies of each of its object, L, can be chosen to be an em-

bedding (the big axiom of choice is used here).

§ 2. Concrete setting

We add to our basic situation that (C,U) and (A,Y)
are concrete categories. We shall define a functor L  which
turns out to be useful.

Let c € C and ~ be the equivalence on VLjc defi-
ned as follows: X~y for x,n € Vige iff VL, (h)(x) =
= V9L, (&)(y) for any h:c—> m in C and any me M .
Let Ac: Lec —> Te be a morphism of A with the following
property: V(A ) (x) = V(ZA,)(g) for any x, 4 € VLoc  with
X~ n and if £:L,¢6 —> a is a morphism of A with
V£ (x)=V(£)(y) for any such x, sy , then there is a unique
#:Te—> a in A such that kA, = £. Let g:c—>d be
a morphism of C and x,4 € VL,e such that x~ 4 . Then
VLo(g)(x) ~» VL, (g)(4) and let L(g) be a unique morp-
hism of A such that i«pi" =2A43L,(¢) . TenT:C—A
is a functor and A:L,—> T & natural transformation. More-
over, T is an extension of T and A induces the identity
on X because X,y € VL,m ,meM  and x~ 4 implies that
*x = Vhp(ddym ) (x) = VL (id,, () = ¢4 . Again, L, is defined
up to a natural isomorphism.

2.1. Definition. LetD: S—> A, F:A—> X be func-

tors and a € A a colimit of D with the colimiting cone
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% :;D—> a . We say that F compresses the colimit @
if {I‘('cb) /HeSy is jointly epi.

Of course, if ¥ preserves colimits, then it compress-
es them.

2.2. Lemma. Let D, F, @, © be as in the definition

and, in addition, let FD have a colimit x € X . Then T

compresses a iff the induced morphism % :x—> Fa is epi.

Proof is evident.

We say that an object e of C 1is nearly 4 -free when-
ever there exists a natural monotransformation @ U C(e,—) .
We recall that for a 4 -free object o is requested to be
iso. Examples of nearly 4 -free objects which are not 4-free
are supplied by concrete categories with constants because
any object e of such a category is nearly 4 -free with .
assigning to each x € lUc the constant morphism with the
value X .

2.3. Lemma. Any nearly 4-free object is a generator
of C .

Proof: Let £,g:c-—> d  be morphisms of C and £k =

=gh for any M:e—>c . Hence @y UCE) = Cle,£) g, =

=Cle, @), =, U(g) and £f=g¢g because U is faithful

and ¢, mono.

2.4. Proposition: Let X be a subcategory of C con~-
taining a nearly 4 -free object e of C. If X inductive-
ly generates C ,then X is dense in C . If Py (%) =

= Ul (z)) , 2 € Ue, ce C are components of a natural
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transformation » : J—> Ems(Ue,J-) where J:UC—Emp

is the inclusion, then the -converse implication holds.
Proof: Let X inductively generate C, I: X—s C be

the inclusion,c,d € C and ©:C(I~,¢) —> C(I-,d)a

natural transformation. Let x; € X, gz : ¥; —>c in C and

z; elx; for & =1,2 such that

(1) Ulg)(2,) = Ulg,)(z,) -

Since @ is natural, for 4 =4,2 it holds

(2) C(e,g,,l)@,x% = @ llgy) ,

(3) C(e«,cu_‘b(ch))@x_i = (tLaLU('t:x%(ch)) .
Similarly, the naturality of & implies

(4) —neC(MX%(z%),c) = C(“‘“-;Cz‘-)’d)f“x4 .

Evaluating (2) at 2; and using (1), we get gy, () =
=%§L‘x2Cz2) .Further, by evaluation of (4) at g, we obtain

/5“1(%)(%(1 (z,) =c“2(q,2)@x2Cz2) . Finally, the evaluation

of (3) at z; yields uy(U ("‘xﬂ(q{»y))(zq))"‘(“d,(U('c.xz(q’z))(zé_n’

and thus 11('u¥4(%))(z4) =U(fdx2(%r2))(z2) because « is mono.

This observation makes it possible to find a mapping f£:
i Ue—> Ud such that fU(qg) = Ulz,(g)) for any xelX
and @ : x—> ¢ . Since X inductively generates C , there
is a morphism £tc—> 0o of C with U(£’) = £, Therefore
©=C(I~-, £€’) and the density of X 1is verified.

The rest of the proof follows from 1.8 using the compu-

tation of the proof of 2.5 apPlying to » instead of w .

- 639 -



2 is natural if e is 4 -free or if @ is definead

'b‘y constants. Thus 2.4 generalizes Lemma 3 from [9].

2.5. Proposition: Let A have colimits from ¢, and TA
contain a nearly 4 -free object @ of ;e , Then I = L .
In addition, if V compresses colimits from ZD1 , then 1L =
= L'1 .

Proof: LetceC, x,4eVL,c and x~ 4.Since
Vhe(h)(x) = VLo (h)(g) for any hic— m, me M
and uw is natural, Lo("”)(“'l.,c("") = fhr,, (VLo (B)(x) =

=uTm(VL°(h)(q,))= Lo(h)fLL’c(/y,) for any & . Therefore
AL, ) = 3%, o (g)  and further V(AZ)x)- VI )y

because ¢ is natural and mono (and therefore pointwise mono

because Emb is cocomplete).

Let f£:L,c—>» a be a morphism of A with V(£)(x)=
=V(£)(q) for any X, € Vlyec ,x~ay . let meM andfig’:
+Tm —> L,e be morphisms of A such that L,(%)£ =L, (h)g’
for any m:ec—> m,meM , Hence V(£)(x)~V(g/)(z) for
any x e TM and thus ££‘= £’ . By the definition of ?L:_”
there is a unique h:ch—s a such that b.’/l? = £ ., Thus,

0,1 - -
ﬁ'c. = A and L =L .

If ¥ compresses colimits from D, , then VJ\%" is epi.
Let m eM and f,¢: Tm —>» L,c such that L, (W)£) =
=L1(h)q, for any h:ic—>m, me M . For any zx « VIm
there are X,4 €VL,c such that vcoﬁ’;._‘ W)=V (€Y (=) =amd
Y( &2‘ YNy) = Vig )z .« The naturality of 9«.2_'4 implies that
X~ and therefore V(?«.?)(u):-:'\f(?\.:'q)(@) . Thus £ =g
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and L =1, .

K close connection between L, and T is in a general
case, too, because L1 C — A can be obtained as a res-
triction of L, Cg—> A, , where C, and Ag arise

from C and A Dby a suitable addition of a 4-free objecte

2.6. Propgsition: Let TM contain a nearly /-free ob-
jecte of A, ¢ >0 be an ordinal, A have colimits from %,

and V compress colimits from g, . Then L, = L, -

Proof follows from similar computations as in the proof

of 2.5.

2.7. Lemma. Let TM contain a nearly ;l—free object
e of L°C and V compress colimits from ‘6‘, . Then any na-
turel transformation €:L,—> S inducing the identity on
K into a left £fe % -faithful functor S is pointwise mono.

Proof: Let c ¢ C and X;,x, eVL,c with V(6,)(x,) =
= V(6.)(x,) . Since V compresses colimits from ¢, ,there
are m, €M, f;:m;—>c and z; e VIm, with
VL0p(£y) (25) = x;, for 1+ =4,2 . Since T is full, there

exist morphisms i, of M domaining in e with T(xy) =

= 5.91?4' (2,) for 4 = 4}, 2 . It holds S(f+/n4)=; 6ol (fynyl=
= 6’cLo(£‘4)(.on1(z,,)= 6 (o (VLo (£)(%, N = Op oy o (X)) =

= M&(V(Gc)(xﬂ)): (wsc (V(‘c)(b(z)) = S(£2L27 by the natﬁra—
lity of ¢ and o .The left {e} -faithfulness of S yields
£ny= £3, . Further, @Lac(x4)=moc(VLQ(f,,)(a:,‘))-La(f,,)%(z4)-
=L,(f4)T()L,,)=Latfz)ba),pLoc(xz).Since @ is mono, x,= X, and
therefore €& is pointwise mono.

2.8. Theorem. Let TM contain a nearly 4 -free object
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of L,C , let A have and V compress colimits from %, .
Let M be dense in C , any a€ A have a proper class of
objects of A isomorphic with it and let there exist a full

embedding S extending T, Then L, is a full embedding.

Proof: L, is faithful by Proposition 1 from [9], and

left M-full by 2.7 and 1.1. Therefore L, is full by 1.9
and 1l.6.

This result generalizes Proposition 4 from [9].

2.9. Definition. We call a functor L: C—> A V-co-

vered (with respect to M ) if the family {VL(€)/me M ,

£f: m —> ct is jointly epi.

2,10, Lemma. Let A have and V compress colimits from

€, or €, .Then L or L, resp. exists and is V -covered.

Proof: If V compresses colimits from ¢, ,then V(Af“‘)

is epi for any ordinal « &and any ¢ e C . Thus there is only
a set of .?ng end therefore L, exists. Further,

{VL(£) /£:m —> ¢ ,m e M}t is jointly epi because V
compresses the colimit L, c = Colim (CKde)s MTo A)
having §L,(£)/f: m—>¢c , m ¢ M ¢ . as components of the
colimiting cone for any ¢ €« C , Since YV compresses coli-

mits from %, (€,) and any A is a natural transformation,

the assertion holds.

If £f,:@;—> a 1is a family of monics of A having
a limit in A , then a component of the limiting cone with
the codomain a 1is monic which is called an intersection of

£,

2.11, Lemma. Let A have and V preserve finite limits
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and arbitrary intersections. If A has coequalizers and co-
limits from <, , then T exists and if V compresses them,
then T is V-covered.

Proof: Letc € C and 4: ~ —> VL,e x VL ¢ be the
monic defined by the equivalence ~ . Let d: &—sLyec xLyc
be the intersection of all monics 4:x—>L,c x L,c of
A such that 4 can be factorized through V4 . Since Y
preserves intersections, 4 = Y(d)&, for a unique mapping
,934 . Let g1 fog t Loe = Lye be projections and i a coe-
qualizer of s, and fpel . It holds Vi) Vip)i =
=V(p)V(p,)4 . Let f:L,c—> a be a morphism of A with
V(E)Vip)d = VIE)V ()4  and g an equalizer of £fi,c
and £4,d . Since V preserves finite limits, V(g) ~is an
equalizer of V(ff,d) and V(fp,d) .Since V(gp, ddk, =
= Vigpi = V(Ep, )4 = V(En,dlk, ,there is a unique 4k,
with V(g)h, = &, . Hence V(dglhk, =+ and the definition
of o yields that V(g) is iso. Thus V(fmd)=V(fn,d) and
ffn.,,d, = f‘,rpzd . There is a unique morphism & of A such that
kp = £ . Hence _ﬁ.‘c.-_— £,

Thus I, exists, when A has coequalizers and colimits
from ‘fo ,If V compresses them, then foc> is epi for
any ce C and L, is V -covered by 2.10 and therefore T

is V -covered.

Conversely, if T exists, A has and V preserved kernel

pairs, then —ﬂ.'c is a coequalizer for any ce C .

2.12. Lemmg. Let L, be 7V -covered. Then {VL (). t :

te—> m,meM? is jointly monic for any c e C ,
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Proof: Using the naturality of A it can be proved that
VZ is epi for T is V-covered and then, by the definition
of T, that Lemma holds.

§ 3. Fulness in concrete setting

3.1. Proposition: Let L: C—A be a faithful functor
extending T such that YL =2 U and M inductively generate
C. Thenl is right M -full. _

Proof follows from 1.4, 1.5 and 1l.7.

(A,Y) has the property of transfer if for every object
& of A and for every bijection £ from Va onto an arbit-
rary set X there is an isomorphism £’ of A such that
Vig) =£.CW) ‘has the property of unicity, if every iso-
morphism £ of C such that V(£)=4d is an identity (see
[8]1). A full embedding L :C—> A such that VL =U is

called a realization (see [71).

3.2. Theorem. Let (C,U) have the property of unicity,
(A,V) of transfer, M inductively and projectively genera-
te C .Let L:C—>» A be a faithful functor extending T
and let there exist a natural isomorphism between U and VL
inducting an identity on X . Then there is a realization C—
~ A extending T naturally isomorphic to L .

Proof: I, is full by 1.4, 1.5, the dual of 3.1 and by
1.6. The rest of the proof follows from [81 , Lemmé 1.5.

3.3. Theorem. Let (C,U) have the property of unicity,
CA,V) of transfer, A have and V compress colimits from

€ ,Let M inductively and projectively generate C , cOge-
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nerate C and contain a 4 -free object ¢ of C such that
Te is a 4 -free iject of A. Let ws U—>C(e,~) ,
@1 V—> A(Te, =) be corresponding natural isomorphisms,
B:C(e,-)—> A(Te, L, -) a natural transformation defi-
ned by (3. (£) =1L,(£) and (p.". L,p.w)X be an identi-
ty.

Then L, is a realization.

Proof: Since M cogenerates C, L, 1is faithful by
2.3 and 1.2 and therefore (3 is mono. Hence the composition
% = F,'A. L,B.w: U—> VL, is a natural monotransfor-
mation. BX is iso because T is full and {VL, (£)/m e N ,
€£: m —> ¢t is jointly epi by 2.10. Therefore « is epi.
Hence o¢ is a natural isomorphism and L, can be chosen as a

realization by 3.2.

3.4. Theorem. Let (C,U) have the property of unicity,
(A ,V) of transfer, M inductively and projectively genera-
te C, UKW/ " hic—m, meM} be jointly monic
and {U(£)/ " f: m—>c , m € Nt Jjointly epi for any
ceC .LetT be a realization and L; C—> A a V-covered
functor extending T such that {VL(h) " hic—m,6 mel}
is jointly monic for any c e C .

Then there is a realization' C —> A extending T natu-
rally isomorphic to L .

Proof: Since {fUCh)/ h:c—> m,meN} or {U(£)./f:
: m—>c,meM}? is jointly monic or epi, M cogenerates
or generates C , respectively. Hence L is faithful by 1.2.
Let c € C and define a mapping oc,: Ue —> VLe as follows:
o (X)=VL(£)(z) if Xx=U(L)(x) for £:m—>c, meN ,
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% € Um . Indeed, x, is a mapping because any X is equal
toa UC£)(z) and UL (z,) = U(E) (%)  for £ my—> c, '
m,eM, z, e m; ioplies that VL(E ) () = VT(E) (2,) =

= WhE ) (2y) = UhE, ) (%)= VLIAL,)(2,) for any hic—>m,mel
for T is a realization and therefore VL(£,)(z,) = VL(£,)(z,)
because {VL(W) /" A : c— m, m e Mt is jointly monic. Let
Xq% xgele, X3 =W(E)(2,) Since {UR) A hic—> m, meli
is jointly monic, there is h: c—>m with VL(hf,)(z,) =

= Wlhe)(z,) £ Ulhi))(z,) = VL(hf,)(z,) .Hence e is
mono. Since L is V-covered, %, is epi. It is easy to com-
pute that «, are components of a natural isomorphism oc; U—>

~—> VL . Thus the Theorem follows from 3.2.

A full embedding L: C—> A is called a pseudorealiza-
tion in [8] when Uec € VLe for any ce C and these inclu-

sions are components of a natural transformation U—> VL .

3.5. Theorem. Let the suppositions from the first se-
quence of 3.4 hold. Let T be a pseudorealization, L exist
and be V-covered. Let for any meM, ce C-M and g
tam—>c in C there existme M and 4, : c—m with
the following properties:
a) for any 4 € Um - Wk, g)(Um) there are 5,4t m —>m
such that 44"k, g = sM,q, UK )(g) =4 and UlXNy) % 4 ;
b) for anym'eM and mic—sm’ {UE) t:m'— m, theo=thg
for a t's m —>m} is jointly monic.

Then L is & pseudorealization.
Proof: Put Wa =4{xeVo/x=V(E£XZ),meN,£: Tm—a
and zelUm? and W(g)=V(g)/Wa, for any g:a—> & in
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A . Evidently W: A—> Ems is a functor and WI'=1U be-
cause T is a pseudorealization. Let A’ be a full subcate-
gory of A consisting of all objects of A isomorphic with
an object from LC and W’ be the restriction of W onto A’.
For proving that W’ is faithful it suffices to show that
W’ is faithful on LC . Let ¢,d €C and g, % 9, *
:Te—> Ld . Since I, is V-covered, there exists m € m
and £: m —sc such that g, L (f) % q,L(£) .By 2.12 the-
re is m'eM and h:d—>m’ such that T(h)g,L(f) +
*i(h)q‘lf(f) . Further, L(&)g; L(£)=T(n;) for x; :
tm—>m',4=1,2 and Ulx,)4 U(x,). Thus there is

z € Um  such that VL (x)(x) % VL(x,)(z) ,which implies
that W(g,) & W(g,) .

If we show that L is W -covered, then the Theorem will
follow from 3.4 applied to the concrete category (A’, W’) in-
stead of to (A,V) ,Consider ¢ € C and x € WILec . There
ismeM, gt m—>c and zxe VIm with x=VL(g)(2)
because L is V-covered. Take m and 4, for this g . Since
xeWIe, g =VLheh,)(x)elUm ,Further np € VI (hryg ) (Um)
because otherwise taking A4 and &’ for this A~ we get a
contradiction. Namely, 4 = VI(4')(4g) = VL (4'hyq)(2) =

< VI (o’ 1o @ (2 )= VI(5A' () # 4 - Hence = YL Chg g (w) for
some a& € Um . Suppose that VL () (x) & VE(hg,)(wJ

for an Jvie—> m’ and m’'€ M ,By b) there are t: m'— m ,
t/:im —> m  with VL(t'h,g)(w) = VI (thg)w) & VL (th)(X) =
=VL(thg)(2) = VL (t'4h,yg)x) = VI (#'4,)(x) , which is a
contradiction. Hence x = VL (g)(ar) Dby 2.12 and the proof

is accomplished.
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3.6. Remarks: 1) Conditions ensuring in 3.4 and 3.5 that
T exists and is V -covered, are yielded by 2.11 or 2.5 and
2.10.

2) If {UAV/f:rm—> c,meM} is not always jointly
epi, then Ue = U4UEN(Um) 1 m~—>c, me M } defines
a new concrete category (C, U’) which shares with (C,U)
all other suppositions of 3.4 or 3.5.

3) Condition b) can be replaced by the following one:
Vi(h‘,)(x,‘)- YL (hp)(xy) for x,,X, € YIe implies that
VE(h)(x,,) = Vf(h)(xﬁ) for any M;ec—»m and meM .

3.7. Theorem. Let (C,U) have the property of unicity,
(A,V) of transfer, M inductively and projectively generate
C , cogenerate C, let A have and Y compress colimits from
€., Let M contain a 4 -free object @ of ¢ and for any
meM,ceC-M andgim—> c of C there exist a coge-

nerator m € A of C and Jh.ax ¢—»m such that

a4) for any permutation t’ of Um interchanging precisely two
elements of Um there is a morphism t: m —>» m of C: such
that U(t) =t

a,) oarnol (Um - Uk, g)(Um)) > 1

and b) from 3.5 hold.

Then L, is a pseudorealization. -
This Theorem is a slight generalization of Theorem 1 from
[10] (use 2.10 and 2.4). Conditions a,y) and a,) imply a)
(see [101).



§ 4. Binding categories

If .4+ 1is a regular cardinal, then a category J is cal-
led 4x-filtered when J is not empty, to any family {3; ?
of less than 4t objects of M there is 4 &« J and morph-
isms j4—> Z for any 4 and for any family {£;% of less
than 4 parallel morphisms of J there is a morphism £ ofl
J equalizing all £, . It follows that any diagram in J

having less than 4t morphisms is a base of a cone in J .

4,1, Lemmg. Let M'={m eM ./ there is ce C-M and
a morphism m —>» ¢ in C% be non-empty and contain any
colimit in € of a diagram in M’ having less than 4 mor-

phisms. Then the comma category (X de) is w -filtered

for any c € C .

Proof is evident.

Let .4 be a regular infinite cardinal, &4 the comple-
te graph (with loops) havihg 4 vertices and 4,2 or 4
the complete graph without loops having one, two or four ver-
tices respectively. Let CM, be the full subcategory of the
category of undirected graphs composed of all connected 3-
colourable graphs and the graph m, having & and 4 as
components and M,w the full subcategory of Cw determi-
ned by 4 ,m, and the graph M, having « copies of
2 as components. CM‘ is binding for the category of con-
nected 3-colourable graphs (see[11]). Let U be the usual
forgetful functor of the category of graphs. Any restriction .

of U onto a full subcategory will be denoted by the same
letter.
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4.2, Theorem, Let (A, V) have the property of trans-
fer, A have and V preserve finite limits and arbitrary in-
tersections. Let 4 be a regular infinite cardinal, let A
have and V compress coequalizers and small 4r -filtered
colimits.

Then A is binding if and only if M, can be fully em-
bedded into it.

Proof: If A is binding, then any small category can
be fully embedded into it (see [3]). Let M, be fully em-
bedded into A . {UCKR)/h:ec—> 4} is jointly monic for
any ¢ € C,y (see [11], (a) of Lemma 1). Thus, there is a
pseudorealization T: M, —> A by Theorem 1.8 from [81]
because 4, m, 6 M, and 4 s;tiafies a,) from 3.6. My
projectively generates C,, ,for m, does (see [11], (b) of
Lemma 1) and inductively generates C,, ,for f,, does. Since
there is no morphism from 4 to a 3-colourable graph, (Kle)
is8 4 -filtered essentially by 4.1,which can be verified by
consideration of coproducts of less than 4¢ objects and co-
equalizers, because M need not contain coproductﬁ of _'1 y
for those are subgraphs of f,, and any morphism from such a
subgraph into a connected graph with at least two vertices
can be extended to the whole 4, . Following 2.11, L exists
and is V -covered. Finally, let meMy,,ce C, - M, and
g i m —>» ¢ be a morphism of C, . Take n=m, and h,:

: c—>m, such that Uh,)(Uec) € 4  and Ulh,)/U(g)(Um)
is injective. Then a) holds because a,‘) and a,) from 3.7 are
satisfied. b) holds for {U(t)/t:m'—> % is jointly monic

for-any m’e M and kg can be factorized through k,g for
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any A :c¢ —» 4 . Therefore Theorem 4.2 follows from 3.5.

4.3. Corollary. Let 4 be a regular infinite cardinal.
An equational class A of algebras having less than .« -ary
operations is binding if and only if M,  can be fully em-

bedded into it.

4.4, Remark: 4.2 and 4.3 remain true if we suppose that
My -44% cean be pseudorealized into A instead of M, ful-

ly embedded.

Let C be the full subcategory of the category of undi-
rected graphs determined by all connected 3—colourablé graphs
and the graph 4 and M the full subcategory of C composed
of 4,2 end 4. M is the testing category from [11]. The
following result is given in [10] for co-well-powered A and
this additional supposition can be left out by 3.7. Similar-

ly, co-well-poweredness can be omitted in Theorem 3 of [101].

4.5. Theorem. Let (A,Y) have the property of transfer,
let A have and V compress colimits from €, .Then A is

binding if and only if M can be fully embedded into it.

Finally, supposing the existence of many measurable car-
dinals we shall give an example of a non-binding monadic ca-
tegory containing any small category as a full subcategory.
Let P7: Emsr —> Emn be the contravariant power set
funttor, i.e. P"x = expp x and PT(£) () =% for £:
ixXx—> 4 afnd T E Yy .

4.6. Lemma. Let (A,V) be a monadic category and V
have a right adjoint. Then (Am, P"Vv°"*) ia monadic.
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Proof: TFollowing [5] , (Em»‘m, P”) is monadic. Hence
P~ has a left adjoint and creates split coequalizers. Fur-
ther, V°® creates all colimits because V is monadic. Put-
ting all these facts together, P~V°®  has a left adjoint
and creates split coequalizers and therefore is monadic by

Beck's precise tripleability theorem.

We recall that (M) denotes the following assumption:
There is a cai'dinal 4 such that every ultrafilter closed

under intersections of « elements is trivial.

4.7. Example: Let mon (M) hold, (A,Y) be the catego-
ry of all algebras with two unary operations, where V is
the usual forgetful functor. By 4.6 (A.m, P~ V™) is mona- -
dic, Since A is binding (see [1]), any emall category can be
fully embedded into A°™ , By [4] Ems°® cannot be fully em-
bedded into A and therefore A°™ is not binding.

By 4.5 and 4.7 there is no colimit compressing faithful

functor Ems™—s Emp ,under mom (M) .
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