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EACH CONCRETE CATEGORY HAS A REPRESENTATION BY ﬂ} PARA-
COMPACT TOPOLOGICAL SPACES

Védclav KOUBEK, Praha

Abstract: It is shown that every concrete category can
be fully embedded into a category whose objects are para-
compact Hausdorff spaces and whose morphisms are all non-
constant continuous (or closed continuous) mappings between

these spaces.
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The aim of the paper is to prove that each concrete
category is isomorphic to a category whose objects are pa-
racompact connected Hausdorff spaces and whose morphisms
are all non-constant continuous (closed continuous, respec-
tively) mappings between these objects. The theorem is based
on the fact that each concrete category is fully embeddable
into 8 (?2.) proved in [3] by KuZera. '

A similar result was obtained by V. Trnkové [5] who
proved an analogical theorem for metric (or compact Haus-
dorff) spaces under the assumption of the non-existence
proper class of measurable cardinals. The present results

do not require any special set-theoretical assumption.
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The author would like to express his gratitude to V.

Trnkovéd who introduced him to this problematics.

Convention: Denote Py =<=-,A ) the contravari-
ant hom-functor from the category of all sets and their

mappings into itself.

Definition. Let F be a contravariant functor from

sets to sets. Denote S(F) the c?tegory, objects of
which are couples (X , %), X being a set; U <Px,
and £ (X, U) —> (Y, V) is a morphism if £: X=~—p Y
is a mapping with P£(%) « % . 1In particular, objects
of S(P,) arecouples (X,W%), cep X  and mor-
phisms £ (X, U) —> (Y, V) are mappings such that
£7(A)eU foreach Ae ¥ .

Theorem 1. Every concrete category can be 7fully en—

bedded into the category S(P,) .
_ Proof: see [3].

Theorem 2. There exists a metric continuum M  such
that if Z is a subcontinuum of M, £:Z—> M is a
continuous mapping then either £ is constant or £(x) = X
for all x € Z . M has ¥, Dpairwise disjoint subconti-
nua.

Proof: see [1].

Convention: For a given topological space T, Tx de-
note, the topological product of topological spaces Ty »
i € X , where each T; is homeomorphic to T ,Let Ty ,

4+ €] Dbe topological spaces, then T, denote,

1€l
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the topological sum of topological spaces T, , 4+ € I .

Convention: Denote Z the set of all integers.
Choose arbitrary but fixed disjoint subcontinua A, B, C,,
z €2 of M . Notice that the only continuous mappings
between these three spaces are constants and the identi-

ties of A,B,C,, z€Z .

Theorem 3. There exists a full embedding
$: S(Pﬁ——» S(PA) .

Proof: see [4].

Definition. A topological space T 1is stiff if eve-

ry continuous mapping f£3 T—— T  is either the identi-

ty or a constant.

Theorem 4. Let T be a stiff Hausdorff space. Let
£ Ta—> T be a continuous mapping. Then £ 1is either
a projection or a constant.

Proof: see [2].

Corollary 5: Let T be a stiff Hausdorff space. Then
£ 5 T  is a continuous mapping if and only if the-
re exists a partial mapping ¢ tR—> O and a point
aeT s@=4a;l; op ,8uch that for every x € T¢
£(X)= =iy, 3, o where g = Xgey if g (i) is defi-
ned, ;= @, otherwise.

In particular, £ : T—> ’I‘N is a continuous mapping if
and only if there exists N'c N and a ={aglinN€ ol
such that £(x) = ap={a 3. \ ond g=x if 4 & Ny .

My = @; otherwise.
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Corollary 6: The only continuous mappings between AN

and either 3 or C,, # € Z ,are constants.

Lemms 7. Let K be a subcontinuum of a Hausderff spa-
ce B ,let o, €K, a % & such that M=K ~{a, &} is
open in @ . Then for each continuous mapping f: Z—» @ ,
where Z is a cpntinuum, either there exists a component H
of £-1(X) such that o, ef(H) or there exists a con-
tinuous mepping £ : Z—> 8 such that £=¢ on
£7(0-M) and F(&(XKNcha,&d .

Proof: see [51].

Construction 8: In each C,, = € Z ,choose a pair
distinct points ¢, , d.z . Define a topological space

D=z\e/z ¢,/~ , where d, ~ c ., for every ze€Z .

Choose distinct points a, yag€h, Ly &, eB , For given
set X define a topological spéce E, = A (B x £0,1) /~ ,
where {0,411 1is a discrete topological space and

o e qald o A 407,08 410y, O ity 43,48, Mm@ =180 ¢y »
where &/, = a,, &y = a, for every xeX .,

For each object P=(X,U) of S(P,) denote by P* the
space Dy v (Dx %), where % is the discrete topologi-
cal space with underlying set U . Let P be a coarser to-
pological space than P* : a set V , open in P* is open
in ¥ if and only if for each « € % AY  cither u &V

or there exists m, with U C,x{w«tcV and either
n> M,
i%,,03 € V or there exists m, 'lthmqu CpxUcV,

clearly 3 is a connected paracompact Hausdorff space.

Define a contravariant functor from S(P,) into the
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category PAR  of connected paracompact Hausdorff spaces:

¥P=F, yfa(BEV U= 10,4D) /R v () x BF/ U/~

where 4, ' and 4, are the identities of B and D .
Clearly, wf is correctly defined and it is a closed
continuous mapping.

Evidently the functer 4  is faithful.

Lemmg 9. Let f: T—> T e a non-constant continu-
ous mapping.
a) If T=A then £(T)c.A.x;
b) if T= B then £(T) B x {4}, where i € {0,4} .

c) If T= C, then £(T) c Dx{w} for some w4 & «£ .

In all above cases, £ 1is an embedding.

Proof: Let K, a, & denote one of the following:
8) K=Cx{aul, aalc, ud L=ld, «’ for some

z2eZ, uel .

b) X=Bx4t3}, a= lfq,&),”s(bi,t)for some

< e40,1% .

Suppese that the former case in Lemma 7 takes place, i.e.
that there is a cempenent L of £ '(K) witha,fef(L).
Then we get easily by Theerem 2 that L is homeomerphic
to T and £ 1is a homeomorphism of T ento X . Now, sup-
pose that, for all X, &, &r as above, the latter case in

Lemma 7 takes place.

1) Suppose that £(T) meets the interior of some X 4 whe-
re X is from a). Then apply Lemma 7 on f,

K'=C, ,xSud, e, ,4>, <k, ,,4> toobtain ¥
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and again Lemma 7 to F, K”= Cpyqx fud , {Cppqra?, Kby, a0

X4t
to obtain £ . Then ¥  coincides with £ on £1(K) and
?(T) is a continuum which does not meet the interiors of
both X’ and K” but it meets the interior of X . Then,
as easily seen from the construction of ‘13‘, Ferrcex .

By Theorem 2, £ isen embedding of T onto K and
£=F . '

2) Let the assumption of 1) not hold. Then £(T)c Af v
vBx{0,4F as for any continuum which does not meet the
interior of any X from a).

Let us apply Lemma 7 on £, B x {0} ,<(%,,0>, <2y, 0) to ob-
tain € and agein Lemma 7 on &, B x{1}, (&,1>,<8,1>
to obtain ? .

I1f £ is constant then clearly £(T) c B x {0} and £
is an embedding by Theorem 2. Analogously, if F is con-
stant then £ is an embeddiné of T onto Bx4{41% and so
is £. Let ¥ be non-constant. As ¥ (T) c A% , We may
apply Corollaries 5, 6. We obtain that ¥ isen embedding

of T into A* and so is £ .

Lemma 10. Let £ 'i"—-» i be a continuous mapping
P,R € S(P,) with £/Bx40}=4; .o .Then there exists
q,:R-—;P such that g = £ . -

Proof: Lemma 9 implies either £/B x {4} = 15,44+ or
F(BxiMY =<y ,1> . If £(B=x {13) = <21:”4) then £(&)=
=<2y, 4) and therefore there exists M :A— TR such
that <®,,0>, <(Lp,0> € HCA) but this is impossible.
Hence £/Bx{4} = 4pyqq3 - Demote Ay the diagonal of
A* , A,  the diagomal of AY, where P=(X,%) ,
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R=(Y, V). We have £(Ay)= Ay and s £(AF) c 47
Corollary 5 implies that there exists @ : Y—> X such that
£/A% = Big . As £(K by, 4>) = (&, 4> and £AN Y,
/7D x{u? is an embedding from Dx{«} into Dx{f(w)}
and therefore £/Dx U = 19 < Pgru and Pyg (U)c
c YV . Hence ¥yg=f£f .

Lemmg 11. Let £ Fes R be a continuous mapping
such that £/B x40} % 4p,4p; - Then £ is constant.

Proof: Assume that £/B x €0} is non-constant. Then
Lemma 9 implies that £.B x40} 1is an embedding and so
£(<x,0)) =<{x,41> for every x € B . Therefore
£¢< Ay, 1)) =£(4y,0>) =<, ,1> and by Lemma 9 we have
£(B x{1¥) = <&, ,1>, Hence <Ly, 1> e £(4,) and
{l,,0>e£(Ay) which is a contradiction (see Lemma 9).
Therefore f/B x40} is constant by Lemma 9. Analogous-
ly £/3B = {4} is constant and so is £/A, . Therefore

£ /A% is constant by Lemma 9 end so is £ .

Definition. Let ¥, &  be concrete categories. 4
functor & : X —» & is an almost full embedding of X
into & if & is an embedding of X onto a subcatego-
ry of & whose objects are D(a) , @ running over ob-
Jjects of K aﬁd whose morphismse are all non-constant & -

morphisms between these objects.

Theorem 12, Denote PAR the category of paracom-

pact connected Hausdorff spaces and continuous mappings,
PAR , its subcategory with the same objects and continu-

ous closed mappings as morphisms. Then each category L
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with

?Axcc L ¢ PAR

is elmost universal in the sense that each concrete cate-
gory has an almost full embedding. into L .

'Theorem 12 follows from Construction 9 and Lemmas 10 and

11.

A class C of topological spaces is called stiff for every

continuous mapping £: T-—> T/, with T,T‘e C ,is ei-
ther constant or the identity of the space T = T’ onto
itself.

V. Trnkovéd had constructed a stiff class ( = not a set) of
paracompact spaces as follows.

Let Hy , v=41,..,5 be five disjoint subcontinua of
the Cook continuum. Choose points a, &, fv,, 2, € H ,
ry py,€H; 4=2,..,5,all distinct. For each ordinal
« eand +=1,..,5, put Hf.fa {(x,c)|x e Hy ¥,

g{: (x,c)= X . We write x% instead of (X, ) . Let

@ be an ordinal. Put
o

e, =(¢k‘Jw}£:'\ 9 S (o 52 ixy, »T3) v
cew
u(}{z\ {)cz_,/oZ}) v H;") .
G e '&a is open iff it fulfils (1) - (5).
(1) gv: (G nH:) is open in H_; for 2ll 4 = 4,...,5?
g, i
(2) ifcoea),o;‘eﬁ- then
Q:CG n}{:) is a mbh of %, in H* whenever

< =0
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2, (G n Hf) is a mbh of £, in H, whenever
X = ﬂ +1
G contains H;‘r for all «'& 9 < oc (and some

«’< oc ) whenever e¢ is limit;

[ A
(3) if wew ,4=2,3,4, €6 ,then g (CnH) con-
tains a mbh of n; in H, ;
(4) if x,;" e G then G contains H,T for all «’ &

£ y< o (and some x'= @ ).

(5) if /o? € @, then gF (6 A HZ)  contains a mbh
of »; in H; for all (i,ee) = (0,4),(w,5) or 4+ =2,3 and

xX € w

By means of Lemma 7, one can prove that 8|1 & <}

is a stiff proper class of paracompact spaces.

The existence pf a 8tiff proper class of paracompact spaces
follows also from the main result because "large discrete

category" can be almost fully embedded in PAR .
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