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NORMAL SUBSETS OF QUASIGROUPS
Jaroslav JEZEK, Praha

Abstract: A charactenzatlon of normal subsets (i.e.
blocks of normal congruences) in quasigroups is given.
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1. A _connection between gussigroups and loops. The rea-

der is supposed to be acquainted with Section 1 of [4]. Ter-
minology can be found in (1] and [2].

Quasigroups will be considered as algebras with three
binary operations. The class X of all quasigroups is a
variety. X* denotes the variety of all algebras
Q( .,/ ,\, e) such that Q( . , / ,\ ) is a quasigroup
and e€ Q.

We denote by M  the variety of all algebras
Q* ,#,\,f,%x,R,9,d ) satisfying the following
four conditions:

(i) Q(x ,/7 4\ , £) is a loop with the unit £ ;

(i) = , 8,9, d are permuations of Q (and thus unary
operations in Q );

(iii) o = o« ana o = A7
(iv) () =¢f.
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Further, we define a translation ¢ of the type »
£.,7,\,e? into the type £ * ,7 N, f,x, B,
R and a translation y of 4 % 4N, £y,
fsd 63 inte f.,/,\ , e} as follows:

g (.)=x(x)*x 3 (),
(/)= /76H),
¢ (\)=d(x(x)\y),
o (e)=¢,

¥ (X) = (x/e) ((e/e) \ y) ,
vy(/)=(x/((e/ e\ y)) e,
¥ (\)=(e/e) ((x/ e\ y),

¥ (£) =,

¥ () = xe ,
y(B)=(e/ e x,
y(y)=x/e,
y(d)=(e/e)\'x.

Corresponding to these translations, there are mapp-

ings Ty of M into X* and Ty of X* into M .

1.1, Theorem. The varieties X* and M are rati-

onally equivalent under @, ¥ .

Proof is a matter of counting.

2. Normgl subsets. By a normal congruence of a qua-
sigroup Q( «, / , \ ) we mean any congruence of the al-
gebra Q( . , / ,\ ) . In other words: ~ is a normal
congruence iff it is a congruence of Q( . ) and the fac-

tor Q/~ is a quasigroup. A subset H of Q is called
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normal if it is a block of a normal congruence of Q .

In [3] normal subsets of finite and in [1] normal sub-
quasigroups of arbitrary quasigroups are characterized. Be-
lousov’s proof is complicated. We shall find a more simple
proof which can be, moreover, applied to arbitrary normal
subsets. The idea is the following: Theorem 1.1 enables us
to restrict ourselves to the case of normal subloops and

the proof for normal subloops is easy.

2.1. Proposition. Let ~» be a normal congruence of
a quasigroup Q ; let H be a block of ~ and e an ele-
ment of H . Then
(i) a~ b<==y) gH = bH<¢==> Ha = Hb<¢==> ea / b € H<=>
<> (a/e)\NbeH>bel(a/e)H;
(ii) (a / e) H = H(e \ a) for all aeQ ; the set

(a / e) H is just the block of ~» containing a .

Proof is easy.

Let Q be a quasigroup and e an arbitrary element
of Q . By an e-inner permutation of Q we mean a permu-
tation p belonging to the associated group of Q and sa-
tisfying ple) = e . If e is given, then the set of all

e-inner permutations of Q is evidently a subgroup of Q .

2.2. Proposition. Let Q be a quasigroup and e an

element of Q . For any a, b € Q put
R = R—1 aR_ e R
a,b -~ “e\(ea.b)” b a ?
L _ -1 o L
a,b = L(a.be)/e®La b ?
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-1
Ty = Lea/e

. Ra .

The group of all e-inner permutations of Q is just the
subgroup of the permutation group of Q generated by all
these . permutations Ra,b , I"a,b and T, (where a and b
range over Q ).

Proof is contained in [1].

If Q is a loop with the unit 1 , then 1l-inner per-

mutations of Q are called its inner permutations.

2.3. Lemmg. A subloop H of a loop Q is normal iff
any inner permutation of Q maps H into H .

Proof. Suppose first that H is normal, so that H
is a block of a normal congruence ~~ of Q . If p is an
inner permutation and he€ H, then h~ 1 and thus
p(h)~ p(l) =1e¢ H .

Suppose now that H is a sublopp and any inner permu-
tation of Q maps H into H . Taking inverse permutations
into account we see that any inner permutation maps H onto

H . Define an equivalence A~ on Q by
aa~b if gH = bH .

Evidently, H is a block of ~ , We shall show that A is

a normal congruence of Q .

We have a . bH = ab . § for a11 a, b € Q . Indeed,
a.bH=0L o L,(H) = Loy © La’b(n) = Lab(H) .

We have a~ b¢=6) b € giéewy a\ b € H . Indeed, aH =

= bH implies b =D . 1€ by =gy and be aH implies



a\ beH evidently; if a\ b e€eH , then aH =a .
. (a\ b)H=ala\ b) . H=DH .

We have aA b¢m=x) ac~ bc and a~ b<smd> ca ~ c¢cb .

Indeed, the inner permutation L;l ° Rc ° La transforms
a\ b into ac \ bc and the inner :permutation L;:- I‘c e 1,a
transforms a\ b into ca \ ¢cb .

This shows that A, is a normal congruence, so that K

is normal.

2.4. Theorem. Let a quasigroup Q , a subset H of Q
and an element e € H be given. H is a normal subset of

Q iff the following two conditions are satisfied:
(i) any e-inner permutation of Q maps H into H ;

(ii) if (a / e)b = ¢ and two of the elements a, b, c

belong to H , then the third belongs .to H , too.

Proof. Suppose first that H is normal, so that H is
a block of a normal congruence ~» of Q . If p is an e-
inner permutation and h e H, then has e and thus p(h) A~
~ p(e) =e€H .Let (a/elb=c.If a, b€ H, then
c=(a/elb~A(efe)e=e€ H. If a, ce€ H, then b =

(a/e)Nc~(e/e)\Ne=eeH.If b, c €« H, then

a=(c/ble~(e/ele=ee H.

Suppose now that the conditions (i) and (ii) are sa-
tisfied. Teking inverse permutations into account we see

that any e-inner permutation maps H onto H . Put
QU % 1I,\v1;W;ﬁr?’d')=Tw-(Q(°y/ '\, e)) .

If beQ, then (e/ e)\NbeH iff b € H . Indeed,
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(e/e)\b:Le/e

-1
(b) and Ly/e is evidently an e-inner

permutation.

This, together with (ii), proves the following: if
(a/ e) ((e/ e)\Db) =c and if two of the elements a, b,
¢ belong to H , then the third belongs to H, too. As
axb=1(a/e) ((e/ e)\b), this means that H is a
subloop of Q(»* , 4 ,N\N ) .

The associated group of the loop Q(* , Z# ,\ ) is
contained in the associated group of Q( . , / ,\ ) . In-

deed, the left translation x +» akx x of Q(x% ,/ ,N)
-1
e/e

. -1
tion X+ XXk a as R(e/e)a' Re .

can be expressed as La/e e L and the right transla-

Consequently, any inner permutation of Q(xk , # ,N )
is an e-inner permutation of Q( . , / ,\ ) . From 2.3 it
follows that H is a normal subloop of Q(% ,# ,\ ) .
Denote by A~ the corresponding normal congruence of

Qlx ,/7 ,\N ) . We have
a~ b¢=>aN\ be H¢=>(e/e) ((a/e)\ b)eH.,

If x€Q, then (e / e) xe H¢=) x € H, since (e /elx =
= Lg/e (z) and Le/e is an e-innei Dermutation. Consequ-
ently,

a~ b¢m=>(a/ e)\ beH,

Since the e-inner permutation L': ° Re ° La /e trans-
forms (a/ e)\ b into a\ be , we get a~ b (=
(=> a '\ be € H and consequently a~ b¢==> (e / e)(a\be) &
€ H. Hovéver, (e /7 e) (aN\be) = aeN\ be = (a) \Nx(b) ,
so that
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a~n b¢=> cc(a) ~ e (b) .

Further, we have

anvb=>as be Ha=>(a/ ((e / e)\ b)) ec H.

. -1 -1
The e-inner permutation R, e Rb ° Le/e ° R(e/e)\b° Re

transforms (a / ({ e /e) \ b))e into

(e / e) a)# ((e / e) b) =
R (a) / B (b) , so that

(((e /e ) a) / ble

a~ b¢== B(a) / 3 (b) € Hem> B (a) ~ 3 (b) .

This shows that A 1is a congruence of the algebra
QUx ,/,\,1,0x,f,7,0 ) . Consequently, the ra-
tional equivalence of ¥* ana M guarantees that ~v
is a congruence of the algebra Q( . , / ,\ , e) and thus

a normal congruence of the quasigroup Q .

If H is a subquasigroup of Q , then clearly (ii)
can be omitted. We shall give one more characterization of
normal subgquasigroups; another proof can be found in [11,

too.

2.5. Theorem. Let a quasigroup Q , its subquasigroup
H and an element e € H be given. H is a normal subqua-
sigroup of Q iff aH . bH.= ((ae . be) / e)H for all a,
be Q.

Proof. Suppose first that H 1is a block of a normal
congruence ~v . If h) , h, € H, then

ah; . bhy~ ae . be = ((ae . be) / e) e € ((ae . be) /e) H .
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If he H, then
((ae . be) / e)h A ((ae . be) / ele = ae . be € aH . bH .

Suppose now aH . bH = ((ae . be) / e)H for all a,
b€Q.As H isa subquasigroup, the condition (ii) of
2.4 is evidently satisfied, so that it is sufficient to ve-
rify the condition (i).

We have Ha = (ea / e)H . Indeed, if h € H , then
(e / e)\ heH, too, so that
ha = ((e/ e) ((e/ e)\Nh)) ((a/e)ele (e/ e)H .

. (a/ e)H = (ea / e)H ;

conversely, if h € H , then there exists an h'e H with
(((te /@) e) ((a/e)e)) /eh=(e/eh” . (a/ee,

so that

(ea/eh=(e/eh” . (a/ e)le=(e/edh’ . aeHa .

This proves Ta(H) =H.

We have a . bi = (a / e)e . bHS (a / e)H . bH =
= ((a . be) / e)H ; conversely, if h & H , then there ex-
ists an h'e H with (((a / e)e . be) / e)h = (a /e)e . bh”,
so that
((a . be) / e)h = (a /e e . bh =a .bh’ea . bH .
This proves a . bH = ((a . be) / e)H , i.e. La,b(ﬂ) =H.
We have Ha . b = (ea / e)H . (b / e)le S (ea / €)H .
« (b/ e)H = ((ea. b) / e)H = ((e (e N\ ea. b)) / e)H =

= H(e \ ea . b) ; conversely, if h e H , then there exists
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an h‘e H with ((ea . b) / e)h

(ea / e)h” . (b / ele ,
so that

H(e\ ea . b) = ((ea . b) /e)JHES (ea/ e)H . b=Ha . b .

This proves Ha . b = H(e \ ea ..b) , i.e. Ra b(H) =H.
’

This shows that any permutation T, » qu , L ,
a,b
-4 -1
L R R maps H into H . The same must hold

a,b * “a,b'? “a,b
for any composition of these permutations, i.e. (by 2.2)

for aby e-inner permutation of Q .
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