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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROXINAE 

16,1 (1975) 

2-INNER PRODUCT SPACES AND GATEAUX PARTIAL DERIVATIVES 

Charles R. DIMINNIE and albert G. WHITE Jr.,St.Bonaventure 

Abstract: The purpose of this paper is to characte
rize 2-inner product spaces by means of partial derivatives 
of bifunctionals. If (L,( • , • ! • ) ) is a 2-inner product 

space with 2-norm defined by II x,y 8 = (x,x y)i , then 
. . Ho,* t*,e,lla - llo,,e II* 

(a,b c) = lim 
t-*0+ 2t 

Key words and phrases: 2-inner product space, 2-norm 
space, GSteaux partial derivative. 

AMS: 46A99 Ref. 2.: 7.972.2 

In £41, R.A. Tapia discusses a characterization of in

ner-product spaces which involves the Gateaux derivative of 

a certain functional. Several of the results of that paper 

are useful in studying 2-inner-product spaces as well. For 

definitions and basic results in 2-inner-product spaces and 

2-normed spaces, see t2l and L33. 

Let (L, t! • , • II ) be a 2-normed space of dimension 

> 1 . If F(x,y) is a real bifunctional on L , then the 

right partial derivative of F with respect to x &t (x,y) 

in the direction of h , F1^(x,y)(h) , is defined by 

Fx^(x,y)(h) = lim ^ -1 F(x + th,y) - F(x,y) 
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Similar definitions are used for F^_ , F 2 + , Fo . 

The partial derivative of F with respect to x in the di

rection of h , F-^Cx-yXh) , is defined by: 

F1+(x,y)(h) = Fx(x,y)(h) = F-^Cx-yXh) , 

whenever the one-sided partials agree. 

F2(x,y)(h) is defined similarly. 

The following two results are easily proved from the 

above definitions. 

Theorem 1. Let x,y , h c L and F be a real bifunc-

tional on L • 

1. If F is linear in its first variable, then 

F1(x,y)(h) = F(h,y) . 

2. If F is linear in its second variable, then 

F2(x,y)(h) = F(x,h) . 

3. If F is bilinear, then F1(x,y)(h) = F(h,y) and 

F2(x,y)(h) = F(x,h) . 

Theorem 2. If F is a symmetric bifunctional and 

F^(x,y)(h) exists, then F2(y,x)(h) exists also and 

F2(y,x)(h) = F1(x,y)(h) . 

For the topics to follow, it is useful to consider a 

certain class of rormed spaces associated with (L, II • , » I) ), 

If c 4= 0 , let LQ be the quotient space L/V(c) , where 

V(c) is the subspace of L generated by c . For a e L , 
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let ac denote the element of Lc determined by a . Lc 

is a vector space under the operations a + b = (a + b) 

and ocac = d x a ) c . Define II • lle on Lc by llaclle = 

= || a, c II . B y using the properties of II • , • II f parti

cularly | || a,c II - II b,c II | £ II a - b, c II , it is 

easily shown that II • llc is a norm on L (see [11). 

The remainder of the discussion will be devoted to the 

bifunctional 

(1) F(x,y) = -i II x,y 11* • 

If c ^ O , F generates a functional Fe on Ln defined 

by 

(2) F„ (a j = F(a,c) - - II a,c II2 = — II a„ И 1 | 1 а , с У* = 1 П а с И с

а 

If Fc+ , Fc_ , and Fc denote the Gateaux derivatives of 

F , then i t i s easily seen that F 1 + (x,c)(h ) = 

= F * ( x J ( h J , F, (x,c)(h) = ?l ( x j ( h j , and F-(x,c)(h) = 
Or C C JL*™* C*** v» C X 

= F~;(xJ(hJ , whenever these derivatives exist . 
C C C ' 

= p l < 

For a, b, c e L , define 

(3) t a, b I c 3 = F 1 +(a,c)(b) . 

Theorem 3. I • , • I • 3 has the following properties: 

1* [ a , b l c l i s defined for every a, b, c e L . 

2. II a,bll = [a,a I b 1 ^ . 
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3. | [ a , b I c 3 | £ l a , c II II b,c II . 

4. If L is a 2-inner-product space, with 2-inner-product 

(*,•(-) , *-3«n [a,b I c 3 -s (a,b I c) . 

Proof. Properties 2 and 4 follow by direct computation. 

1. [ a , b | 0 3 = lim «i C ~T\\ a • tb , 0 I2 - ^ II a,0 W1 = 0 , 
t-*0+ 2 2 2 

If c+t 0 , then -?c+(ac)(bc) exists for every a, b G 

« L by Proposition 1 of C4l. Therefore, Ca,b l c ] = 

~ -?1+(a,c)(b) ex is ts , too. Hence, £ a , b | c ] exists for eve

ry a, b, c € L . 

3 . If c s 0 , the result i s obvious since Ca,b I 0]= 0 . 

If c 4-0 , then by Proposition 1 of [4 3 > 

| [ a , b I c 3 | » | F 1 + ( a , c ) ( b ) | 

* K + ( a c ) ( b c ) | 

* I a c B c l U c l l c 

-= H a,ctl llb,c 11 . 

!l:he last theorem i s a direct result of Theorem 1 of 

[4] and Theorem 6 of [21. 

Theorem A. The following are equivalent. 

1. (L, \\ •)•%) i s a 2-inner-product space. 

2. [ a , b l c l i s linear in a • 

3* Ca, b l c ] i s symmetric in a and b • 
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Remark. By Theorem 2, £ • , • I • J could also have 

been defined by £a ,b l c 3 =- F2+(c,a)(b) . 
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