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NONLINEAR EQUATIONS OF URYSOHN S TYPE IN A BANACH SPACE

Chaitan P, GUPTA, Dekalb

Abstract: Let X be a real Banach space, X* its dual
Banach space. Let Kl""’Kn be a given finite family of

compact monotone linear mappings from X* into X ‘and
1”"’Fn be a corresponding family of bounded demicontinu-

ous mappings from X into X* , Some re”svulta on the exis-
tence of solutions of the equation u +&§4 Ki]!'iu =0 in X

are obtained in this paper using Leray-Schauder Principle.
Key words and phrases: Urysohn ‘s equations, compact
mappings, angle-bounded mappings, Leray-Schauder Principle.

AMS: 4TH1S Ref. Z.: 7.978.5

Let X be a real Banach space and X* its dual Banach
space. Let 4Kj,...,K 3 be a finite family of linear mapp-
ings from X* into X and irl....,In} be a corresponding
family of (nonlinear) mappings from X into X* ., In this
paper we establish some results on the existence of solutions

for the nonlinear equation
m
(1) u +L§4 K;Fsu =0
in the Banach space X ., When the linear mappings Kl""'Kn

are angle-bounded, equation (1) was studied by Browder [4] in
the non-compact case and recently by Joshi [8] in the compact




case. We study equation (1) when Kys..s9K, are compact
monotone linear mappings and our main tool is the Leray-
Schauder Principle ([9]): If C is a compact continuous
mapping from a Banach space X into itself and there ex-
ists an R > 0 such that u + tCu+ 0 for every ¢ € [0,1]
and every u &€ X with lull = R , then there exists at least
one solution u of the equation u + Cu =0 in X with
lull<R . We do not use splitting lemma for angle-bounded
linear mappings due to Browder-Gupta [5] and existence theo=-
rems for mappings of monotone type ([31,(6]1) as in [8],

The author thanks the Porschungsinstitut fur Mathematik,
Zirich, for their hospitality and the facilities during his

visit there when this paper was written.

Main results . Let X be a real Banach space and X*
its dual Banach space. We denote by (w,u) fhe duality pair-
ing between the elements w in X* and u in X ., A boun-
ded linear mapping K: X—» X* ig said to be monotone if
(Kuyu) 2 O for all u in X ., The bounded linear monotone
mapping is said to be gggl_e-boundeg if there exists a constant
‘e 2 0 such that |(Eu,v) - (Ev,u)l & 2« V(Ku,u) V(Rv,v) for
all u,v in X . A mapping K “is said to be compact if it

maps bounded subsets of X into relatively compact subsets
of X* ., A mapping P: X— X* is said to be demi-continuous
if it ie continuons from X to X* enddwed with weak-topo-

logy and J 1is said to be bounded if it maps bounded subsetis
of X*.into bounded sets of X* .

- 378 -




Theorem 1 : Let {Kl,...,l%i be a finite family of com-
pact monotone linear mappings from X* into X and let

{Fl,...,l'n§ be a corresponding finite family of demi-continu-
ous bounded (nonlinear) mappings from X into X* ., Suppose
that there exists an R > O such that for a n-tuple {ul....
4 2
ceestyd in X with ;_f—ﬂ“ﬂ'x = R we have
n
(2) , =
14 T

p (Fiu'“i) 20

s
where u =i.=4 ug .

m
Then the equation u +-,‘Z_.‘l KiFi“ = 0 has at least one
solution u in X .

Proof., Ve first observe that there exists a bounded con-
tinuous mapping S: X—» X™* such that for all u in X we
have lSu \lx,..é fully end (Su,u) 2 -;-.- ] nli . The existence

of such an S was first observed by Amann [2] using an argu-
ment on partitions of unity due to Stanley-Weiss. Let, rio',

Y= Xx...xX be the cartesian product of X with itself

w

n-times and let for U = [ulgotc,uh] €Y 'Y “UIY = b.‘.-.‘aui‘zx .

For each © > O we define a mapping Tg: Y—>Y by
T¢(U) = [KyFqu +€KySuy,e.0,K P u + €K Su, 1 where U =
= [ul....,un] €Y ,u ’.;,24 uy o Obviously Tg is a compact
continuous mapping from Y into Y . We assert that there

exists a Ug € Y, AUl < R such that (I + Tg) (Ug) =
= 0 , where I denotes the identity mapping on Y . Indeed,
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our agsertion would follow from the Leray-Schauder Principle
if we showed that (I + tT¢ ) (U)% O for + €[0,1] and
UeY with IUNly =R . Now, clearly (I + tT¢) (U)% 0
for t =0 and Ue Y with HUly =R . For t>0, let
us suppose on the other hand that there exists a Ue Y ,
NURY =R such thet (I + tT¢ )U =0, i.e. [u; + tK Fu +
+ FEK Suj,000,u, + tKF ou o+ teKnSunJ =0 where U =

"
=[uyyeeeyu_ ] and u =, ,u;, « We then have that
1 n

+=11
m
0= 4,%4 (Fyu +&8uy, uy + tkyFyu + t £K,5uy)
>,§4(eSui,ui) z 3 %4 huslx = T R°> 0

which is a contradiction, Hence (I + tTg ) (U)4 O for
every t € [0,1] and every U€e Y with lUJIlY =R and thus
there exists a Ug« Y with NUly<R and (I + T )(U,) =
=0,

Let, now, T: Y—>» Y be defined by T(U) = [K;Fyu,...
oaaa,K FnuJ Whe/re U =[u1’a'¢’un]€ Y and u'ig1 ui .
Clearly T is a compact continuous mapping from Y into
Y. Now’

0=(I+T.) (Ug) = (I+TIg+ eWg

where Vg = [KIS”‘i'”"KnS'Hi] where Ug = [ui,...,ui] .
Clearly; {Wei ‘s are bounded in Y and so €W —» 0
strongly in Y , Hence (I + T)Ug —> O s8trongly in Y,
Since { Ugt ‘s are bounded in Y and T 41is compact we

see that there exists a sequence {e,? » €p~—>0 and a
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WeY such that TUg ~>» W gtrongly in Y ., We then have
m

that U,_M'-—> - W strongly in Y which implies by the con-

tinuity of T that TU%-—\» T(- W) strongly in Y and

again since (I + T)Ug —» O strongly in Y as € —» O
we have U;m‘——h - T(= W) sgtrongly in Y . Thus we must ha-
ve - W=« T(- W) , Taking U = = W we then get that U +
+ T = 0 , that is [ul + KqFjyeee,up + KnFnu] = 0 where

m
U="Clu,.ceon,] and u ’,;,E‘qui . This immediately implies
ny
that u +,2 K.F,u = O , Hence the Theorem, Q.E.D,
451171

Remark 1., In the case n = 1, Theorem 1 is essentially
due to Amann [2]) (see also [1]1,[4],L71).

Remark 2, If in Theorem 1, above we replace the demi~
continuity of the Fi ‘s by continuity we need not assume
that the monotone mappings Ki are linear so long as we as=-

sume that they are Lipschitzian and Ki(O) = O for each 1,

Theorem 2. Let {Kl.....Kn} be a finite family of com-
pact linear mappings from X* into X such that there ex-
ists a constent « > 0 with (w,Kyw)2 o Il Kyw I’i for w
in X* and 1 =1,2,...,n . Let {Py,...,F;} Dbe the corres-

ond family of demi-continuous bounded (nonlinear) mapp=-

ings from X jinto X* . Suppose that there exists a (3 > O
with (B < o pguch that for any n-tuple {uy,e..oup} in X
we have

g

~n
(3) ‘.‘=4(riu,u1) z2 - .23.1 ] uia“x + (Fy(0),uy)
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m
where u '&%4"‘1 .

m :
Then the equation u +,& K.,F,u = 0 has gt least one
4= 4 1 i

golution u in X,

Proof, Let Y = Xx .";.xx be the cartesian product
of X with itself n-times. Let the norm in Y be given by

I|U|\Y = vif_‘ lnil y for U= [nl"“,'%] €Y. Cpnsider
the mapping T: Y—» ¥ defined by T(U) = [K;Fyu,...,K Ful

where U=En1,...,mn]e Y and u.=i'§1 uy . Clearly, T _:Ls
a compact continuous mapping from Y into Y . Now to comp-
lete the proof of the theorem it suffices to show, by Leray-
Schauder Principle, that there is an R > 0 such that (I +
+ t?) (U)& O for every t €[0,1)] and every Ue Y with
llUllY = R , where I denotes the identity mapping on Y .
Now, let R > O be such that

V.E o,
«-p- V,Z, 02002/~ >0.

Such an R exists since o ~ (3 > O by assumption. We
asgert that (I + tT) (U) 4 O for every t &« L 0,1] and eve-
ry U in Y with lUl\Y =R , This is obvious for ¢t = 0.
For t> O , suppose on the contrary that there is a U =
= (05,0005 €Y with lUly =R in Y such that

(I + t7) (?) = L) + tEjPu,..00uy + tK P ul = 0 where u=
mn
= 3241, . This, then gives that

n mn
0= :,%"1'““1’ +t k§4 (1’1“’1‘1’1“)
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m m

V.2 2w /R

z2 (- - azq I 7;(0) N'gn /R)R > O

a contradiction. Hence (I + tT) (U)% O for every t e[0,1]
and every Ue Y with UUly =R and so there exists a U =

=[u1,....un] € Y such that
t m
0= (I+ 1)) ="C[u + K,Fjuye.eyu, + K Foul where u =%§4 .

It is then immediate that there iz a u in X such that u +

(43
+,2 K,F,u = 0, Hence the Theorem,
SR B b £

Remark 3: Theorem 2 above generalizes and also simpli-
fies the main result of [ 8] since our condition (w,Kiw) 2
2 o(.llKiw l\’i is a proper weakening of the condition of angle-

boundedness even for compact mappings (see [T71).

Remark 4: If we replace condition (3) in Theorem 2 by
the condition

'

3 2
o)z - g, E Ny

3)
we can then assume that (34 o instead of 3 < o . With
this observation Theorem 2 generalizes Theorem 2,1 of [4] in

the case of compact Ki ‘s when n>1.

Theorem 3., Let A be a measure space with a finite

measure dg o Let us suppose that we are given measurable
families of compact mbnotone linear mappings £ K,: te e Al
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from X* into X and of bounded demi-continuous (nonlinear)
mappings 4F, : « € A} from X into X* . Suppose that

there exigt a constant k guch that NK, Il £ k for < eA

and that for each ue X , IP, (uW)lgy is essentially-boun-

ded on A . Let R be the mapping of L°(A,X) into X gi-
ven by
R(u) = .fAu(oc)dg () .

Suppose further that there exists an r > O such that for
= 2 .

elements u -{u(oc)iecsA in L°(A,X) with

f Ilu(«.,g;)llzX af (ec) = »°  we have

A

Sy (e (R ,ule))df () 2 0
Then the mapping T: X—> X defined by
Tu = [ Ky (B (0)AF ()

for ue X is such that the equation u + Tu = O has at

least one solution u in X .

Theorem 4, Let A be a measure space with a finite

measure dg . Let us suppose that we are given a measgurable

family {K_: o € A3 of compact linear mappings from X* in-

to X such that there exist a constant ¢ > O guch that

(w,Kee W) 2 ¢ lll{mwll:"X for every we X* and o« € A . Let
‘(F“_ i:ec € Ay be a corregsponding measurable family of boun-
ded demiéontinuous (nonlinear) mappings from X into X™ sguch

that for each ue X , WP, ullyx is essentially bounded on

A . Let R be the mapping of L°(A,X) into X given by

R(u) = .&u(oc)dg (%) .
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Suppose thatAthere exist a congtant d >0 with ¢ >d

such that

2
fA(F°° (R(u)),u(eeddf (@) 2 = a f HuCec) Iy a§ (o) +

+.er<1~~.,c (0),u(ec ))AE (ec)
for each u =€u(ec)} in L2(./\.,X) .
Then the mapping T: X—» X defined by
Tu = [ Ko (Fog (u))AF (oc)

for ue€e X has the property that the equa*ion u + Tu =0

has at least one solution u in X .

We omit the proofs of Theorems 3 and 4 as they are ana-
logous to the proofs of Theorems 1 and 2 with obvious modi-

fications.

Remark 5: Theorem 3 and 4 generalize Theorem 5.2 of
[4] when the mappings K“;'s are compact. Also we do not

need the measurability considerations as in Theorem 5.2 of
[4].
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