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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

16,2 (1975) 

NONLINEAR EQUATIONS OP URYSOHN 's TYPE IN A BANACH SPACE 

Chaitan P. GUPTA, Dekalb 

Abstract: Let X be a real Banach space, X* its dual 
Banach space. Let K,f...fK be a given finite family of 

compact monotone linear mappings from X* into X 'and 
F-,f...fFn be a corresponding family of bounded demicontinu-

ous mappings from X into X*1 . Some results on the exis-

tence of solutions of the equation u + .2E. K.P.u a 0 in X 
*v» n X X 

are obtained in this paper using Leray-Schauder Principle. 

Key words and phrases: Urysohn's equations, compact 
mappings, angle-bounded mappings, Leray-Schauder Principle. 

AMS: 47H15 Ref. l.i 7.978.5 

Let X be a real Banach space and X* its dual Banach 

space. Let -iK-̂ ,... 9Kn1t be a finite family of lxneaif mapp

ings from X* into X and iPnf...,f J be a corresponding 

family of (nonlinear) mappings from X into X* .In this 

paper we establish some results on the existence of solutions 

for the nonlinear equation 

(1) u • «£„ K,P4u - 0 
<V m 1 X X 

in the Banach space X . When the linear mappings K^f...fKn 

are angle-bounded, equation (1) was studied by Browder C43 in 

the non-compact case and recently by Joshi i&l in the compact 

m -



case* We study equation (1) when K-,..»fK are compact 

monotone linear mappings and our main tool is the Leray-

Schattder Principle ([9])t If C is a compact continuous 

mapping from a Banach space X into itself and there ex

ists an R > 0 such that tt + tCu 45 0 for every t e COfl] 

and every a c X with Hull = R , then there exists at least 

one soltttion a. of the eqttation tt + Cu » 0 in X with 

littll<R • We do not use splitting lemma for angle-bounded 

linear mappings due to Browder-Gupta [51 and existence theo

rems for mappings of monotone type ([33,C61) as in [8]. 

The author thanks the Forschungsinstitut fur Mathematik, 

Zurich, for their hospitality and the facilities during his 

visit there when this paper was written. 

Main results • Let X be a real Banach space and X* 

its dual Banach space. We denote by (w,u) the duality pair

ing between the elements w in X* and tt in X . A boun

ded linear mapping K: X — * X* is said to be monotone if 

(Kttfa) 2. 0 for all u in X . The bounded linear monotone 

mapping is said to be angle-bounded if there exists a constant 

co t 0 sttoh that l(Ktt,v) - (Kvftt)l& 2oc V(Kttftt) V(Kvfv) for 

all ttfv in X . A mapping K is said to be compact if it 

maps bounded subsets of X into relatively compact subsets 

of X* • k mapping Is X — * X* is said to be demi-continuous 

if it is continuous from X to I* endowed with weak-topo

logy and f is said to be bounded if it maps bounded subsets 

of X* .Into bounded sets of X* . 
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Theorem 1 : Let 4K
1
,...,K

l
t be a finite family of com

pact monotone linear mappings from X* into X and let 

{.P..
 f
 •. •

 t
I J be a corresponding finite family of demi-contlnu-

ous bounded (nonlinear) mappings from X into X * • Suppose 

that there exists an R > 0 such that for any n-tuple {u-,,•« 

u 
m/ .. 2 

•••tttjjj in X with # S . Htt1ll x = R we have 

ЛV 

(2) , £ ( F ^ H , ) * o 
H, v <f X X 

where u » . IL , u4 • 
— • ^-g 4 x 

*v 
Then the equation u + . 2 . K.F.u * 0 has at least one 
-—-—•-——-— *%, s 4 x X 

solution u £n X • 

Proof* We f irs t observe that there exists a bounded con

tinuous mapping S: X—* X*" such that for a l l u in X we 

have II Su 11 £,!*.& II u II x and (Su»u) a: — II ut^ • The existence 

of such an S was f i r s t observed by Amann [23 using an argu

ment on partitions of unity due to Stanley-Weiss. Let» now, 
Y * ^ » » ' x ^ ^e * n e cartesian product of X with i t s e l f 

** ./ T 
n-times and let for U » tu-^.^tU^] € Y , llURY • V.2L liijj. z < 

For each & > 0 we define a mapping T^i Y — > Y by 

Tfc(U) * t K - ^ u + e K 1 S u 1 , . . . f K . ^ ^ + ^K:flSun3 where U » 

• t^t.-.tU^^l c Y , u a .-E. u^ • Obviously T ^ is a compact 

continuous mapping from Y into Y . We assert that there 

exists a U^ * Y , I U e * < R such that (I + T% ) (U t ) » 

» 0 f where I denotes the identity mapping on Y • Indeed, 
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our assertion would follow from the Leray-Schauder Principle 

if we showed that (I + tT-^ ) (U) * 0 for t c[0,l] and 

U € Y with HUH y - R . Now, clearly (I + tTe ) (U) + 0 

for t = 0 and U c Y with HullY » R . For t > 0 f let 

us suppose on the other hand that there exists a U € Y f 

IIURy = R such that (I + tTe )U = 0 , i.e. [u-ĵ  + tK-jĴ u + 

+ t fiK1Su1>...fun + t-*n-?nu + te^Su^J = 0 where U =-

/TV 

« [u-, f . . . 9 u y l 3 and u = . £ . u. .We then have that 
J- n «u«1 --> 

fru 
0 » .SL ( F ^ +6,Su i f u i + tK^FjU + teK.jSu.^) 

* . S ^ í & s u ^ u . ) г — j Ł . II u±Ц ' ' x - i ^ o 

which i s a c o n t r a d i c t i o n . Hence ( I + tTg, ) (U)4= 0 for 

every t 6 1 0 , 1 3 and every U £ Y with llURy = R and thus 

there e x i s t s a U£ c Y with IIU£8Y-e R and (I + Tg ) (U g ) = 

=- 0 . 

Let f now, T: Y - * Y be defined by T(U) - [K-jF-jU,... 

. • . . f K n F n u 3 where U « t u l f . . . f u n 3 6 Y and u » , ^ u., • 

Clearly T i s a compact continuous mapping from Y i n t o 

Y . Now, 

0 « ( I + T^ ) (Ufc ) = (I + T)Uft + £W e 

where We = tK-^Su*,... ,KnSu^ 1 where U8 * tup...,uj] # 

Clearly, i \ \ 's are bounded in Y and so ewfc — * 0 

strongly in Y . Hence (I + T)UE — * 0 strongly in Y # 

Since f Uft f 'a are bounded in Y and T is compact we 

see that there exists a sequence "fê l » V̂iw"-^ 0 and a 
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W e Y such that TUg — > W strongly in Y . We then have 
it' 

that U* — > - W strongly in Y which implies by the oon-

tinuity of T that TU* — * T(- W) strongly in Y and 

again since (I + T ) U C — * 0 strongly in Y as e — * 0 

we have U* —** - T(- W) strongly in Y . Thus we must ha-

ve - W = - T(- W) . Taking U -* - W we then get that U + 

+ TU a* 0 f that is tu^ + K,F-jUf...fun + Kn^nu3 * 0 where 

U s Culf...fun3 and u • .Z-^u^ • T n is immediately implies 

rt* 
that u +i-^4KiPitt • ° • Hence the Theorem. Q.B.D. 

Remark 1. In. the case n • lf Theorem 1 is essentially 

due to Amann [23 (see also Cl],C43fL71). 

Remark 2. If in Theorem lf above we replace the demi-

continuity of the P. 's by continuity we need not assume 

that the monotone mappings K. are linear so long as we as

sume that they are Lipschitzian and KJL(°) ~ ° f o r esck i • 

Theorem 2. Let tt^ K > be a finite family of com

pact linear mappings from X* into X such that there eac-
2. 

ists a constant oc > 0 with ( w ^ w ) £ o& II K^w l x for w 

in X* and i « lf2f...fn • Let i¥«.... ..F % be the corres

ponding family of demi-continuous bounded (nonlinear) mapp

ings from X into X* . Suppose that there exists a (5 > 0 

with fJ-< cc such that for any n-taple 4ulf...funf £n X 

*p toy* 

(3) .S^PiU.up 2 - / I ^ I ttil x + (PiCO.up 
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«* tt **i-<!ai • 
Then the equation tt +.£. . K^^tt • 0 has at least one 

solution a in X . 

Proof. Let Y » Xx ... x X be the cartesian product 

of X with itself n-times. Let the norm in Y be given by 

Consider | |U|lY m V^Z^ l\ktl\ for U = Ctt 1 > . . . f o n ] e Y . 

the mapping T: Y—» Y defined by T(U) * t K ^ n , . . . fKnFnu3 

where U » C t t l f . . . f o n ] € Y and a • . 214 \x^ • Clearly, T i s 

a compact continuous mapping from Y into Y . How to comp

lete the proof of the theorem i t suffices to show, by Leray-

Schattder Principle, that there i s an R > 0 sach that (I + 

+ tT) (U) 4= 0 for every t € C0,1] and every U € Y with 

lUl ly * R , where I denotes the identity mapping on Y . 

Now, l e t R > 0 be such that 

- I* - K I ^ C o ^ V * > 0 . 

Such an R exis ts since oc - fi > 0 by assumption. We 

assert that (I + tT) (U)4= 0 for every t m t 0,1] and eve

ry U in Y with lUlly « R . This i s obvioas for t - 0 . 

For t*> 0 , suppose on the contrary that there i s a U « 

m Cn-^.. . ,*^] € Y with | U | y » R in Y sttch that 

(I + tT) (U) • ttt-̂  + t K ^ t t , . . . , ! ^ + tKj^n] « 0 where a » 

m ^ ^ t t ^ • This, then gives that 

0 "il/V'V + *•&< (-*i-.Ki'i^ 
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> *tcJŁл и к^u ŕҡ - ß, JşA и нřҡ + ^l^,(1^(0).^) 

2 (*. - ß - V J L Ч -*І<0) Ѓҡ* /R)R2 > 0 

a contradict ion. Hence (I + tT) (U) 4- 0 for every teCO.13 

and every U e Y with llUlly =- R and so there ex i s t s a U =-

s[ t t- , 9 . . . 9 u ] € Y such that 

.— 0 = (I + T)(U) = t^ + K1P1u9...9un + KnFnu3 where u » , Z u.̂ . 

It is then immediate that there is a u in X such that u + 

+ ,21-K4F.u » 0 . Hence the Theorem. .v « «1 x i 

Remark 3: Theorem 2 above generalizes and also simpli

fies the main result of C83 since our condition (w9K.jw) > 

> <** \ K^w 1 x is a proper weakening of the condition of angle-

bound edness even for compact mappings (see £73). 

Remark -}: If we replace condition (3) in Theorem 2 by 

the condition 

(3)' ,£,(?,u9u,) fc - fl .3* H tt,l2x 

we can then assume that /3 "& oo instead of (& <. oc . With 

this observation Theorem 2 generalizes Theorem 2.1 of t4 3 in 

the case of compact K* s when n > 1 • 

Theorem 3. Let A be a measure space with a finite 

measure d£ • Let us suppose that we are given measurable 

families of compact mbnotone linear mappings 4 K^ : ot « A J 
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from X* into X and of bounded demi-continuous (nonlinear) 

mappings 4 P ^ : oc e A ? from X into X* . Suppose that 

there exist a constant k such that IIK^ || £ k for oc € A 

and that for each u s X f II P a (u)llx* is essentially-boun

ded on 

yen by 

p 
ded on A • Let R be the mapping of L (AfX) into X gi-

R(u) =- f u(oc)df (oc) . 

Suppose further that there exists an r > 0 such that for 

elements u =-<u(oc)? . in L (A,X) with 

f Ru(oc)H2x df (oc) = r
2 we have 

j (*«-, (R(u))fu(ot))d£ (oc) > 0 

Then the mapping T: X—> X defined by 

T u = / K * (Poc ( u ) ) af ( o c ) 

for u € X is such that the equation a + Tu = 0 has at 

least one solution u in X . 

Theorem 4*, Let A be a measure space with a finite 

measure d£ # Let us suppose that we are Riven a measurable 

family { K ^ J cC 6 A } of compact linear mappings from X* in

to X such that there exist a constant c :> O such that 

(WJJK^ w) > c IIK^ w II x for every w 6 X* and oc c A . Let 

iP^ : oc € A ? be a corresponding measurable family of boun

ded demicontinuous (nonlinear) mappings from X into X*" such 

that for each u 6 X f II F^ u II x̂ t is essentially bounded on 

A • Let R be the mapping of L (A fX) into X given by 

R(u) = f u(oC )df (oc) . 
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Suppose that there exis t a constant d > 0 with c > d 

such that 

J (Pcfc(R(tt)),u(e«»af (oc)> - d J^ llu(oc)H2
x a f (oo) + 

+ f (P e 6 (0) ,n(o6))af (o&) 
A 

for each u = <u(oo)f in L2(A ,X) . 

Then the mapping T: X—» X defined by 

Tu - J A K 0 , (P o C (u ) )d f (oc) 

for u € X has the property that the equation u + Tu = 0 

has at least one solution u in X . 

We omit the proofs of Theorems 3 and 4 as they are ana

logous to the proofs of Theorems 1 and 2 with obvious modi

fications. 

Remark 5: Theorem 3 and 4 generalize Theorem 5.2 of 

141 when the mappings K^ 's are compact. Also we do not 

need the measurability considerations as in Theorem 5.2 of 

[43. 
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