Commentationes Mathematicae Universitatis Caroline

Chaitan P. Gupta
Nonlinear equations of Urysohn's type in a Banach space

Commentationes Mathematicae Universitatis Carolinae, Vol. 16 (1975), No. 2, 377--386
Persistent URL: http://dml.cz/dmlcz/105631

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
16,2 \text { (1975) }
$$

NONLINEAR EQUATIONS OF URYSOHN 'S TYPE IN A BANACH SPACE Chaitan P. GUPTA, Dekalb

Abstract: Let X be a real Banach space, $X *$ its dual Banach space. Let K_{1}, \ldots, K_{n} be a given finite family of compact monotone linear mappings from $X *$ into X 'and F_{1}, \ldots, F_{n} be a corresponding family of bounded demicontinuous mappings from X into X^{*}. Some results on the existence of solutions of the equation $u+\sum_{i=1}^{m} K_{i} F_{i} u=0$ in X are obtained in this paper using Leray-Schauder Principle.

Key words and phrases: Urysohn's equations, compact mappings, angle-bounded mappings, Leray-Schauder Principle.

AMS: 47H15
Ref. Ž.: 7.978.5

Let X be a real Banach space and X^{*} its dual Banach space. Let $\left\{K_{1}, \ldots, K_{n}\right\}$ be a finite family of linear mappings from X^{*} into X and $\left\{F_{1}, \ldots, F_{n}\right\}$ be a corresponding family of (nonlinear) mappings from X into X^{*}. In this paper we establish some results on the existence of solutions for the nonlinear equation

$$
\begin{equation*}
u+\sum_{i=1}^{m} K_{i} F_{i} u=0 \tag{1}
\end{equation*}
$$

in the Banach space X. When the Iinear mappings K_{1}, \ldots, K_{n} are angle-bounded, equation (1) was studied by Browder [4] in the non-compact case and recently by Joshi [8] in the compact
case. We study equation (1) when K_{1}, \ldots, K_{n} are compact monotone linear mappings and our main tool is the LeraySchauder Principle ([9]): If C is a compact continuous mapping from a Banach space \mathbb{X} into itself and there exists an $R>0$ such that $u+t C u \neq 0$ for every $t \in[0,1]$ and every $u \in X$ with $\|u\|=R$, then there exists at least one solution u of the equation $u+C u=0$ in X with $\|u\|<R$. We do not use splitting lemma for angle-bounded linear mappings due to Browder-Gupta [5] and existence theorems for mappings of monotone type ([3],[6]) as in [8].

The author thanks the Forschungsinstitut für Mathematik, Zürich, for their hospitality and the facilities during his visit there when this paper was written.

Main results . Let X be a real Banach space and $X *$ its dual Banach space. We denote by (w, u) the duality pairing between the elements w in X^{*} and u in X. A bounded linear mapping $K: X \rightarrow X^{*}$ is said to be monotone if $(K u, u) \geq 0$ for all \mathfrak{u} in X. The bounded linear monotone mapping is said to be angle-bounded if there exists a constant $\propto \geq 0$ such that $|(K u, v)-(K v, u)| \leqslant 2 \propto \sqrt{(K u, u)} \sqrt{(K v, v)}$ for all u, v in X. A mapping K is said to be compact if it maps bounded subsets of X into relatively compact subsets of X^{*}. A mapping $F: X \rightarrow X^{*}$ is said to be demi-continuous if it is continuous from X to X^{*} endowed with weak-topology and f is said to be bounded if it maps bounded subsets

Theorem 1 : Let $\left\{K_{1}, \ldots, K_{n}\right\}$ be a finite family of com= pact monotone linear mappings from X^{*} into X and let $\left\{F_{1}, \ldots, F_{n}\right\}$ be a corresponding finite family of demi-continuous bounded (nonlinear) mappings from X into X^{*}. Suppose that there exists an $R>0$ such that for any $\frac{n-t u p l e}{2}\left\{u_{1}, \ldots\right.$ $\left.\ldots, u_{n}\right\}$ in X with $i \sum_{i=1}^{m}\left\|u_{1}\right\|_{X}^{2}=R^{2}$ we have

$$
\begin{equation*}
\sum_{i=1}^{m}\left(F_{i} u, u_{i}\right) \geq 0 \tag{2}
\end{equation*}
$$

where $u=\sum_{i=1}^{n} u_{i}$.
Then the equation $u+\sum_{i=1}^{m} K_{i} F_{i} u=0$ has at least one solution u in X.

Proof. We first observe that there exists a bounded continuous mapping $S: X \rightarrow X^{*}$ such that for all u in X we have $\|S u\|_{X^{*}} \leqslant\|u\|_{X}$ and $(S u, u) \geq \frac{1}{2}\|u\|_{X}^{2}$. The existence of such an S was first observed by Amann [2] using an argument on partitions of unity due to Stanley-Weiss. Let, now, $Y=\frac{X \times \ldots \times X}{n}$ be the cartesian product of X with itself n-times and let for $U=\left[u_{1}, \ldots, u_{n}\right] \in Y,\|U\|_{Y}=\sqrt{\sum_{i=1}\left\|u_{i}\right\|^{2}}$.

For each $\varepsilon>0$ we define a mapping $T_{E}: Y \longrightarrow Y$ by $T_{\varepsilon}(U)=\left[K_{1} F_{1} u+\varepsilon K_{1} S u_{1}, \ldots, K_{n} F_{n} u+\varepsilon K_{n} S u_{n}\right]$ where $U=$ $=\left[u_{1}, \ldots, u_{n}\right] \in Y, u=\sum_{i=1}^{m} u_{i}$. Obviously T_{ε} is a compact continuous mapping from Y into Y. We assert that there exists a $U_{\varepsilon} \subset Y,\left\|U_{\varepsilon}\right\|<R$ such that $\left(I+T_{\varepsilon}\right)\left(U_{\varepsilon}\right)=$ $=0$, where I denotes the identity mapping on Y. Indeed,
our assertion would follow from the Leray-Schauder Principle if we showed that $\left(I+t T_{e}\right)(U) \neq 0$ for $t \in[0,1]$ and $U \in Y$ with $\|U\|_{Y}=R$. Now, clearly $\left(I+t T_{\varepsilon}\right)(U) \neq 0$ for $t=0$ and $U \in Y$ with $\|U\|_{Y}=R$. For $t>0$, let us suppose on the other hand that there exists a $U \in Y$, $\|U\|_{Y}=R$ such that $\left(I+t T_{\varepsilon}\right) U=0$, i.e. $\left[u_{1}+t K_{1} F_{1} u+\right.$ $\left.+t \varepsilon K_{1} S u_{1}, \ldots, u_{n}+t K_{n} F_{n} u+t \varepsilon K_{n} S u_{n}\right]=0$ where $U=$ $=\left[u_{1}, \ldots, u_{n}\right]$ and $u=\sum_{i=1}^{m} u_{i}$. We then have that

$$
\begin{aligned}
0 & =\sum_{i=1}^{n}\left(F_{i} u+\varepsilon S u_{i}, u_{i}+t K_{i} F_{i} u+t \varepsilon K_{i} S u_{i}\right) \\
& \geq \sum_{i=1}^{n}\left(\varepsilon S u_{i}, u_{i}\right) \geq \frac{\varepsilon}{2} \sum_{i=1}^{n}\left\|u_{i}\right\|^{2} X=\frac{\varepsilon}{2} R^{2}>0
\end{aligned}
$$

which is a contradiction. Hence $\left(I+t T_{e}\right)(U) \neq 0$ for every $t \in[0,1]$ and every $U \in Y$ with $\|U\|_{Y}=R$ and thus there exists a $U_{\varepsilon} \in Y$ with $\left\|U_{\varepsilon}\right\|_{Y}<R$ and $\left(I+T_{\varepsilon}\right)\left(U_{\varepsilon}\right)=$ $=0$.

Let, now, $T: Y \rightarrow Y$ be depined by $T(U)=\left[K_{1} F_{1} u, \ldots\right.$ $\left.\ldots, K_{n} F_{n} u\right]$ where $U=\left[u_{1}, \ldots, u_{n}\right] \in Y$ and $u=\sum_{i=1}^{m} u_{i}$. Clearly T is a compact continuous mapping from Y into Y . Now,

$$
0=\left(I+T_{\varepsilon}\right)\left(U_{\varepsilon}\right)=(I+T) U_{\varepsilon}+\varepsilon W_{\varepsilon}
$$

where $W_{\varepsilon}=\left[K_{1} S u_{1}^{\varepsilon}, \ldots, K_{n} S u_{n}^{\varepsilon}\right]$ where $U_{\varepsilon}=\left[u_{1}^{\varepsilon}, \ldots, u_{n}^{\varepsilon}\right]$. Clearly, $\left\{W_{\varepsilon}\right\}$ are bounded in Y and so $\varepsilon W_{\varepsilon} \rightarrow 0$ strongly in Y. Hence $(I+T) U_{\varepsilon} \rightarrow 0$ strongly in Y. Since $\left\{U_{E}\right\}$'s are bounded in Y and T is compact we see that there exists a sequence $\left\{\varepsilon_{m}\right\}, \varepsilon_{m} \rightarrow 0$ and a
$W \in Y$ such that $T U_{\varepsilon_{n}} \rightarrow W$ strongly in Y. We then have that $U_{\varepsilon_{n}} \longrightarrow-W$ strongly in Y which implies by the continuity of T that $T U_{\varepsilon_{n}} \rightarrow T(-W)$ strongly in Y and again since $(I+T) U_{\varepsilon} \longrightarrow 0$ strongly in Y as $\varepsilon \rightarrow 0$ we have $U_{\varepsilon_{n}} \rightarrow-T(-W)$ strongly in Y. Thus we must have $-W=-T(-W)$. Taking $U=-W$ we then get that $U+$ $+T U=0$, that is $\left[u_{1}+K_{1} F_{1} u, \ldots, u_{n}+K_{n} F_{n} u\right]=0$ where $U=\left[u_{1}, \ldots, u_{n}\right]$ and $u=\sum_{i=1}^{n} u_{i}$. This immediately implies that $u+\sum_{i=1}^{m} K_{i} F_{i} u=0$. Hence the Theorem. Q.E.D.

Remark 1. In the case $n=1$, Theorem 1 is essentially due to Amann [2] (see also [1],[4],[7]).

Remark 2. If in Theorem 1, above we replace the demicontinuity of the F_{i} 's by continuity we need not assume that the monotone mappings K_{i} are linear so long as we assume that they are Lipschitzian and $K_{i}(0)=0$ for each 1 .

Theorem 2. Let $\left\{K_{1}, \ldots, K_{n}\right\}$ be a finite family of com= pact linear mappings from X^{*} into X such that there exists a constant $\alpha>0$ with $\left(w, K_{1} w\right) \geq \alpha\left\|K_{1} w\right\|_{X}^{2}$ for w in X^{*} and $i=1,2, \ldots, n$. Let $\left\{F_{i}, \ldots, F_{n}\right\}$ be the corresponding family of demi-continuous bounded (nonlinear) mappings from X into X^{*}. Suppose that there exists a $\beta>0$ with $\beta<\infty$ such that for any n-tuple $\left\{u_{1}, \ldots, u_{n}\right\}$ in X me have

$$
\begin{equation*}
\sum_{i=1}^{m}\left(F_{i} u, u_{i}\right) \geq-\beta \sum_{i=1}^{m}\left\|u_{i}\right\|_{t}^{2}+\left(F_{i}(0), u_{i}\right) \tag{3}
\end{equation*}
$$

where $u=\sum_{i=1}^{n} u_{i}$.
Then the equation $u+\sum_{i=1}^{n} K_{i} F_{i} u=0$ has at least one solution u in X.

Proof. Let $Y=\underbrace{X \times \ldots \times X}_{n}$ be the cartesian product of X with itself n-times. Let the norm in Y be given by $\|U\|_{Y}=\sqrt{\sum_{i} \sum_{1}\left\|u_{i}\right\|_{X}^{2}}$ for $U=\left[u_{1}, \ldots, u_{n}\right] \in Y$. Consider the mapping $T: Y \rightarrow Y$ defined by $T(U)=\left[K_{1} F_{1} u, \ldots, K_{n} F_{n} u\right]$ where $U=\left[u_{1}, \ldots, u_{n}\right] \in Y$ and $u=\sum_{i=1}^{n} u_{i}$. Clearly, T is a compact continuous mapping from Y into Y. Now to complete the proof of the theorem it suffices to show, by LeraySchauder Principle, that there is an $R>0$ such that ($I+$ $+t T)(U) \neq 0$ for every $t \in[0,1]$ and every $U \in Y$ with $\|U\|_{Y}=R$, where I denotes the identity mapping on Y. Now, let $R>0$ be such that

$$
\alpha-\beta-\sqrt{\sum_{i=1}^{m}\left\|F_{i}(0)\right\|_{Z}^{2} / R}>0 .
$$

Such an R exists aince $\alpha-\beta>0$ by assumption. We assert that $(I+t T)(U) \neq 0$ for every $t \in[0,1]$ and every U in Y with $\|U\|_{Y}=R$. This is obvious for $t=0$. For $t>0$, suppose on the contrary that there is a $U=$ $=\left[u_{1}, \ldots, u_{n}\right] \in Y$ with $\|U\|_{Y}=R$ in Y such that
$(I+t T)(U)=\left[u_{1}+t K_{1} F_{1} u_{1} \ldots, u_{n}+t K_{n} P_{n} u\right]=0$ where $u=$ $=\sum_{i=1}^{m} u_{i}$. This, then gives that

$$
0=\sum_{i=1}^{m}\left(F_{i} u, u_{i}\right)+t \sum_{i=1}^{m}\left(F_{i} u, K_{i} F_{i} u\right)
$$

$$
\begin{aligned}
& \geq t \propto \sum_{i=1}^{m}\left\|K_{i} F_{i} u\right\|_{X}^{2}-\beta \sum_{i=1}^{n}\left\|u_{i}\right\|_{X}^{2}+\sum_{i=1}^{n}\left(B_{i}(0), \dot{u}_{i}\right) \\
& \geq\left(\alpha-\beta-\sqrt{\sum_{i=1}^{n}\left\|F_{i}(0)\right\|_{X}^{2}} / R\right) R^{2}>0
\end{aligned}
$$

a contradiction. Hence $(I+t T)(U) \neq 0$ for every $t \in[0,1]$ and every $U \in Y$ with $\|U\|_{Y}=R$ and so there exists a $U=$ $=\left[u_{1}, \ldots, u_{n}\right] \in Y$ such that
$0=(I+T)(U)=\left[u_{1}+K_{1} F_{1} u, \ldots, u_{n}+K_{n} F_{n} u\right]$ where $u=\sum_{i=1}^{m} u_{i}$.
It is then immediate that there is a u in X such that $u+$ $+\sum_{i=1}^{m} K_{i} F_{i} u=0$. Hence the Theorem.

Remark 3: Theorem 2 above generalizes and also simplifies the main result of [8] since our condition ($\left.w, K_{i} w\right) \geq$ $\geq \propto\left\|K_{i} w\right\|_{X}^{2}$ is a proper weakening of the condition of angleboundedness even for compact mappings (see [7]).

Remark 4: If we replace condition (3) in Theorem 2 by the condition
(3)

$$
\sum_{i=1}^{n}\left(F_{i} u, u_{1}\right) \geq-\beta \sum_{i=1}^{n}\left\|u_{i}\right\|_{x}^{2}
$$

we can then assume that $\beta \leqslant \alpha$ instead of $\beta<\alpha$. With this observation Theorem 2 generalizes Theorem 2.1 of [4] in the case of compact K_{i} 's when $n>1$.

Theorem 3. Let Λ be a measure space with a finite measure $d \xi$. Let us suppose that we are given measurable families of compact mbnotone linear mappings $\left\{K_{\infty}: \propto \in \Lambda\right\}$
from X^{*} into X and of bounded demi-continuous (nonlinear) mappings $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ from X into X^{*}. Suppose that there exist a constant k such that $\left\|K_{\propto}\right\| \leq k$ for $\propto \in \Lambda$ and that for each $u \in X,\left\|F_{\infty}(u)\right\|_{X *}$ is essentially-bounded on Λ. Let R be the mapping of $L^{2}(\Lambda, X)$ into X given by

$$
R(u)=\int_{\Lambda} u(\alpha) d \xi(\alpha)
$$

Suppose further that there exists an $r>0$ such that for elements $u=\{u(\propto)\}_{\propto \in \Lambda}$ in $L^{2}(\Lambda, X)$ with

$$
\begin{aligned}
\int_{\Lambda}\|u(\propto)\|_{X}^{2} d \xi(\propto)= & r^{2} \text { we have } \\
& \int_{\Lambda}\left(F_{\propto}(R(u)), u(\propto)\right) d \xi(\propto) \geq 0
\end{aligned}
$$

Then the mapping $T: X \rightarrow X$ defined $b y$

$$
T u=\int_{\Lambda} K_{\propto}\left(F_{\propto}(u)\right) d \xi(\propto)
$$

for $u \in X$ is such that the equation $u+T u=0$ has at least one solution u in X.

Theorem 4e Let Λ be a measure space with a finite measure $d \xi$. Let us suppose that we are given a measurable family $\left\{K_{\alpha}: \propto \in \Lambda\right\}$ of compact linear mappings from X^{*} into X such that there exist a constant $c>0$ such that $\left(w, K_{\propto} w\right) \geq c\left\|K_{\alpha} w\right\|_{X}^{2}$ for every $w \in X^{*}$ and $\propto \in \Lambda$. Let $\left\{F_{\alpha}: \propto \in \Lambda\right\}$ be a corresponding measurable family of bounded demicontinuous (nonlinear) mappings from X into X^{*} such that for each $u \in X,\left\|F_{\infty} u\right\|_{X *}$ is essentially bounded on Λ. Let R be the mapping of $L^{2}(\Lambda, X)$ into X given by

$$
R(u)=\int_{\Lambda} u(\propto) d \xi(\alpha)
$$

Suppose that there exist a constant $d>0$ with $c>d$ such that

$$
\begin{aligned}
\int_{\Lambda}\left(F_{\alpha}(R(u)), u(\alpha)\right) d \xi(\propto) \geq & -d \int_{\Lambda}\|u(\alpha)\|_{X}^{2} d \xi(\propto)+ \\
& +\int_{\Lambda}\left(F_{\alpha}(0), u(\alpha)\right) d \xi(\alpha)
\end{aligned}
$$

for each $u=\{u(\alpha)\}$ in $L^{2}(\Lambda, X)$.
Then the mapping $T: X \rightarrow X$ defined by

$$
T u=\int_{\Lambda} K_{\propto}\left(F_{\propto}(u)\right) d \xi(\propto)
$$

for $u \in X$ has the property that the equation $u+T u=0$ has at least one solution u in X.

We omit the proofs of Theorems 3 and 4 as they are analogous to the proofs of Theorems 1 and 2 with obvious modifications.

Remark 5: Theorem 3 and 4 generalize Theorem 5.2 of [4] when the mappings K_{∞} 's are compact. Also we do not need the measurability considerations as in Theorem 5.2 of [4].

$$
R \text { eferences }
$$

[1] H. AMANN: Hammersteinsche Gleichungen mit kompakten Kernen. Math.Ann.186(1970), 334-340.
[2] H. AMANM: Existence theorems for equations of Hammerstein type. Applicable Analysis 2(1973),385-397.
[3] H. BRÉzIS: Equations et inéquations non-linéaires dans les espaces vectoriels en dualité. Ann. de 1 'Institut Fourier (Grenoble) 18(1968),115-175.
[4] F.E. BROWDER: Nonlinear Functional Analysis and Nonlinear Integral Equations of Hammerstein and Urysohn type. Contributions to Nonlinear Functional Analysis.Pub.No 27 of MRC.Univ. of Wisconsin (1971),425-501.
[5] F.E. BROWDER and C.P. GUPTA: Monotone operators and nonlinear integral equations of Hammerstein type. Bull.Amer.Math.Soc.75(1968),1347-1353.
[6] D.G.de FIGUEIREDO and C.P. GUPTA: Nonlinear integral equations of Hammerstein type involving unbounded monotone linear mappings. Journ.Math.Anal. Appl.39(1972),37-48.
[7] P. HESS: On nonlinear equations of Hammerstein type in Banach spaces. Proc.Amer.Math.Soc.30(1971), 308-312.
[8] M. JOSHI: Existence Theorem for a Generalized Hammerstein type equation. Comment.Math.Univ.Carolinae 15 (1974),283-291.
[9] J. LERAY and J. SCHAUDER: Topologie et équations fonctionnelles. Ann.Sci.Norm.Sup.51(1934),45-78.
Northern Illinois University
Department of Mathematics
Dekalb, Ill. 60115
U.S.A.
(Oblatum 29.12.1974)

