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COMMENTATIONES MATHEMATICAE OTIVERSITATIS CAROLINAE 

16,3 (1975) 

GENERALIZED POINTWISE SYMMETRIC SPACES 

Oldfich KOWALSKI, Praha 

Abstract: In this paper we give an example of a Rie-
mannian s-manifold (with a discontinuous s-structure) 
which does not admit any regular s-structure in the sense 
of A.J. Ledger (x). 
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AMS: 53C30, 53C35 Ref. 2. 3.933.312 

1. Introduction. Let (M9g) be a differentiable Rie

mannian manifold. An isometry s_ of (M,g) for which x a 

« M is an isolated fixed point is called a symmetry of M 

aj, x t (t71). An s-structure on (M,g) is a family 4s : 

: x e M} of symmetries of (Mfg) (one symmetry at each 

point). Here the map s: M — * I(M) need not be even conti

nuous. According to a theorem by F. Brickel, if (M9g) ad

mits an s-structure9 then the group I(M) of isometries is 

transitive (L7J) 9 and thus M is a homogeneous Riemannian 

manifold. 

An s-structure \*x\ Is called regular if for every 

two points x9 y € M 

(x) I wish to thank to A.W. Deicke, who provided the basic 
"model", and also to A. Gray and H. SameIson, who kind
ly answered my questions concerning the transformation 
groups on spheres. 
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sx° sy • Bz* ax • z * s x ^ (Cf# C 3^* 

If 4s xl is regular, then the map s: M — > I ( M ) is always 

differentiable (cf. C53, Theorem 1). 

An s-structure i &xl is called of order k if (s ) » 

* identity for all x e M 9 and k is the least integer of 

this property. Following A.W. Deicke, if (Mfg) admits an 

s-structuref then it always admits an s-structure of finite 

order. Further9 if (M9g) admits a regular s-structure then 

(Mfg) admits a regular s-structure of finite order. (Cf.C53f 

Lemma 3 and Theorem 2). 

A generalized symmetric Riemannian space is a Riemannian 

manifold (Mfg) admitting a regular s-structure (cf 151). 

Now, we shall introduce a more general 

Definition. A generalized point wise symmetric Riemanni

an space is a Riemannian manifold (Mfg) admitting an s-

structure. 

Order of a generalized symmetric (or generalized point-

wise symmetric) Riemannian space (M9g) is the minimum order 

of a regular s-structure on (Mfg) (or the minimum order of 

an s-structure on (M9g) 9 respectively). 

It is easy to show that a generalized polntwise symmet

ric Riemannian space of order 2 is a usual Riemannian (glo

bally) symmetric space. Moreover9 the canonical s-structure 

consisting of geodesic symmetries is always regular (see C3l)# 

Thus., for order 2, the concepts "pointwise symmetric" and 

"symmetric" are equivalent. 

The existence of generalized symmetric Riemannian spa-
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ces of order greater than two is shown in [7] f and many ex

amples of such spaces (of orders 3f 4 and 6) are given in 

[4] and [63. 

The purpose of this paper is to present a family of ge

neralized pointwise symmetric Riemannian spaces which are not 

generalized symmetric. This example seems to be non-trivial 

as it uses the classification of compact connected Lie groups 

acting transitively and effectively on spheres, due to D. 

Montgomery, H. Samelson and .A. Borel. 

2. The main theorem. Consider the Hermitean manifold 

(c2n+l [zlf##0fZn+l ] f g A ) with the metric 

2*1+1 4 4 2*1+1 4 4 2«t+'1 4 4 

g. « ,2 dz1 dz1 + X ( . 2 , z 1 dz1) ( . 2L z° dz°) where 

ft # 0 f & > - 1 is a constant. Let us consider the sphere 

s4n-fl defined by ^^ z z » 1 f and the real Riemannian 

metric g a on s^
n + 1 induced by g^. • (Here the real coor

dinates are introduced putting z^ « x^ + iy^ f j • lf... 

...f 2n + 1 .) 

Theorem* Por n ti 2 f the Riemannian manifold 

t && ) is generalized pointw 

but it is not generalized symmetric 

(S4n+1^ g^ j is generalized pointwise symmetric of order 4 

Proof. Let us define the origin of S 4 n to be the 

point 0 m (0,...f0fl) of c 2 n + 1 . The transformation of 

c2n+l given by (,21-lj' m _ -2i f {m2±y m -2i-l (i « lf.## 

...fn) f (z
 + ) ' « £2*-+l f induces a transformation s*0 of 

34x1+1 wjLth. a fixed point o • Clearly, 9T is an isometry 

of (S + f g* ) . We can see easily that the tangent map 
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(s )-û  has no nonzero fixed vectors in the tangent space 
O 'w 

(S4n+ ) , and hence o is an isolated fixed point of BQ • 

Moreover, we have (1? ) 4 • identity. 

The group U(2n + 1) of all unitary transformations of 

C *• (with respect to its natural structure of a linear Her-

mitean space) preserves the metric g a and it acts transiti

vely and effectively on s 4 n + 1 . Thus U(2n + 1) can be con

sidered as a group of isometries of the Riemannian manifold 

(s4n+1, ^ ) . 

Define an isometry %x of (S
4n+1

t g a ) for every x e 

a S 4 n + 1 as follows: let A « U(2n + 1) be such that A(0) « 

« x f and pat s x « A o s Q A"1 . (The transformation m% de

pends, in general, on the choice of A ) . Then x is an iso

lated fixed point of 9ix • Thus (S4n+1* g A ) ia a generali

zed pointwise symmetric space. (This example was pointed oat 

by A.W. Deicke.) 

Let us remark that (S4n+1f g ^ ) is not locally symmet

ric and it is of odd dimension. Thus, the order of the space 

cannot be 2 or 3 and hence k » 4 • 

We shall now prove the second part of the Theorem. In the 

following, S0(4n + 2 ) , U(2n + 1) and SU(2n + 1) will al

ways denote the transformation groups of s 4 n + 1 which are in

duced by the corresponding transformation groups of the gi

ven real space R 4 n + 2 and of the complex space c211"*"1 . 

Lemma. Let K be a connected group of isometries of 

(S 4 n + 1
f £ * ) acting transitively on S 4 n + 1 . TJjga 
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K 2 S0(2n • 1) . 

Proof* According to Montgomery - SameIson C8], and Bo-

rel Cl]„C2]f each compact connected Lie transformation group 

acting transitively on s 4 n + 1 is isomorphic to one of the 

following groups: S0(4n + 2) f U(2n + 1) f SU(2n + 1) . Let 

G be the component of unity of the full lsometry group 

I(S*n+1
f g^ ) f then G 2 U(2n + 1) . G oarmot be isomorp

hic to S0(4n + 2 ) ; otherwise g^ would be a metric of 

constant curvature* Thus G -* U(2n + 1) . 

Let K be an arbitrary connected and transitive group 

of isometries of (S 4 n + 1
9 g^ ) ; then K s U(2n + 1) . If K 

Is isomorphic to U(2n + 1) f then K « U(2n -(-I) and Lemma 

is proved* Let now K be isomorphic to SU(2n + 1) « Then the 

Lie algebra k is isomorphic to su(2n + 1) f and 

k c u(2n + 1) * On the other hand, we have ja(2n + 1) » 

« su(2n + 1) © R (direct sum)9 and the subalgebra 

su(2n 4 1) is simple* Hence it follows k « su(2n + 1) . and 

consequently9 K » S U ( 2 n + l ) . This completes the proof* 

Let now 4sx$ be a regular s-structure on (ŝ ""f*i» g^ ) f 

and let K denote the component of unity of the automorphism 

group of the Riemannian s-manifold (S ,g ,<^l) * (Heref 

by automorphisms we mean isometries A c G such that A sx» 

* sA(x)° A jfor a 1 1 x e M *) According to C3J9 Theorem 5*6f 

K is a closed subgroup of G acting transitively on M * 

According to the Lemma, K a SU(2n + 1) • For the stability 

group KQ of K at the origin o we have K 0 s SU(2n) ( » 

* the subgroup of SU(2n + 1) leaving all points (0f*«* 

- 463 



• ••,0,e *) of s*
n + 1

 fixed)* The transformation s
Q
 commu

tes with each element of KQ and particularly, it oommutes 

with eaoh element of SU(2n) • 

Consider the tangent space (S*
n + ) Q • It is generated 

by the vectors 

« ml T) f f. * ( _ i") , where i • 1 , . . . , 2n, i » l , . . , 
1 \ dx^lo J \$tf*o 

• • • , 2n -f 1* • 

Hera *2n+l *® orthogonal to the 4n-dimensional eubspace V 

generated by e^ , f^ for i - I f . , 2n . 

Let H denote the real isotropy representation of 

SU(2n) in the tangent space ( S
4 n + 1

)
0
 , and S

0
 • (a

0
*)

0
 . 

All linear transformations h e H , and also SQ , are ortho

gonal transformations of (S
4 n + 1

) with respect to the sealar 

product (&,)
0
 • H aots transitively on the eubspace V , 

and all fixed vectors with respect to H are of the form 

^*2n+l •
 S
o

 c o n B B a
*

0 S
 *ith each h e H and hence

 s

0
(*2n+l^ 

is a fixed vector with respect to H , Thus
 s

0
(*2n+l^ " 

" - *2n+l »
 an<
*
 s i n c e s

0
 ^

o e B n o
* admit non-zero fixed vec

tors,
 s

0
(f2

n +
i) " - *2n+l *

 A l f l 0
» *

n e
 sabspace V is invari

ant with respect to SQ • 

Let h denote the Lie algebra of H , for every pair 

(r,s)
 t
 1 z. r4- e -= 2n , consider the endomorphisms fi , 

C
rs * H defined as follows: 

B
ra

( e
r> " «

8
 '

 B

r a

( f
r> -

 f
e •

 B
rB

( e
a> - - •» .

 B
ra

( f
B> - "

 f
r' 

c
rв

( в
r> - - f

я
. C

r в

( f
г> " V

 C
rs

( в
в> " "

 f
r '

 C
rв

( f
в> c

r • 
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2*1 
a £ в

3 * b £ *đ 
•*• • Xџџ Фџ џ 2 n • 

B
ra

(e
i> "

 B
rs

(f
i> "

 c
r

8

( e
i> -

 c
r«

(
*i> - ° • - * r, « . 

Let S
Q
 satisfy 

so(ei> - & 4 *i * 4 *i 

V f i>- g i c i«j + di*3 

From the relations (B
rB
» S

0
)(e

i
) - (S

0
o B

r B
)(e

1
) 

1 * r» « 
( B
r.

8 s
o>

(f
i> "

 (
V

B
r a >

(
* i > ' 

we get a| » b| » o| • d| • O
t
 for all l

f
 3 each that 1 £ 

.4.1 + 3 • (Por this st9P» the inequality n > 1 is decisive.) 

From the relations 

(Brs8 so>(er> - ( V Bra>(«r> 

(Bra* s o > ( V " ( V Bra>(fr> 
we get 

aJ - aa • br " b2 • °r " °a • dr " ds x * *• 8 * 2tt • 

Finally, from the relation 

<cr-* S0)(er) - (S0* C M)(a r) we get 

a5 - da " a t br " " C8 • b • l-'t s « 2 & . 

We have obtained 

S0(e4) « a e4 • bf< 
1 * j -6 2n f 

S0(f;J) » - bej + afj a2 + b2 « 1 • 

So(f2n+l) " " f2n+l • 

In the complex form, 

**""£& V - eJ*((l|?>o> i - - -». « 1 9- a * bi 
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^o^n+l5 s ~ f2n+l • 

Nowf let us denote by Z 1f.fZ 2 a->l
 t h e c o m P l e x ™«*or 

fields on S 4 n + 1 which are tangent components of the vector 

fields respectively. Let V, R denote 

the Riemannian connection and the curvature tensor field of the 

metric g A respectively. After a long but routine calculation 

we derive 

( V 2 R ) 0 (Zi-^.Z^^,^) * 0 f i.e., 

( V R ) 0 being invariant with respect to S f we come to a con

tradiction. 

Remark. For n « 1 f the Riemannian manifold (S 5

fg^ ) 

is generalized symmetric of order 4 (cf. [61) . 
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