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SOME RMARKS ON SUBSPACES OF WEAKLY COMPACTLY GENERATED 
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Abstract: Some hereditary properties of weakly com
pactly generated Banach spaces are shown. 
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Introduction. We work through the paper only with 

real Banach spaces. A Banach space X is said to be weak

ly compactly generated (WOG) if there exists: a weakly com

pact set KcX which generates X , i.e. the closed linear 

span of K is X • 

Recently, Rosenthal C7] has shown that a closed subspsjr 

ce of a WOG space need not be WCG. Such a subspace (even 

with an unconditional basis) was found in the space L^ft?) 

for a finite measure (U, • We have remarked in this paper 

aome properties of WOG spaces which are hereditary to gene

ral closed linear subspaces, e.g. a certain densities pro

perty (Proposition 5). 

We mention our notation. For a Banach space X we de

note B £ the unit ball of X* with the w* topology. For 
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a topological (completely regular Hausdorff) apace T. 

Cb(T) denotes the apace of real-valued functions on T 

under the supremum norm. 

By a subs pace of a Banach space we mean always a clo

sed linear subspace. 

We quote at f irs t a few marked propertiea of WOS spa

ces which are (some of them less evidently) kept by general 

subs paces of WOO spaces. 

Proposition 1. Let X be a subapace of a WCG space, 

then there holds: 

( i ) X has an equivalent norm which la LUR; 

Cii) X has an equivalent norm such that X* i s 

s t r i c t ly convex; 

( i l l ) X has a MarkuSeviS basis; 

( iv) i f c cX then there exista a linear projection 

P of X onto cA with HP* 6.2> # o 
Proof: Properties ( i ) and ( l i ) are hereditary, ( i i i ) 

can be proved using the method of £53 and the decomposition 

of subapacea of WOO spaces in 133* (i?) holds by the re~ 

suits; of L83 and [31* 

tS% use the following easy characterization of subspa-

cea of WOGf spaces for the next. 

Lemma. A Banach space X i s a subapace of a WQS spa

ce i f and only if the unit ball of X* with the w* topolo

gy la a continuous image of an Eberleln compact* 

proof: Let X be a subs pace of a WOG space X • The 
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restriction mapping R: X*—> X* defined by Rf » t/X 

for f e X * i s w * - w * continuous and R(B|) * Bj by 

Hahn-Banach theorem. The space By (with the w* topology) 

i s an Eberlein compact (£13) and Bj£ i s a continuous image 

of i t . 

On the other hand, let X be a Banach space and Bg 

m continuous image of an Eberlein compact K • Then we can 

suppose the inclusions Xc C(B|C ) c c(K) and the latter spa

ce is WCG (£11) . 

There is observed in t4) that i f T: X—*X 1$ a l ine

ar continuous mapping with the range dense in X and X i s 

WOG, then so is Y • Indeed, i f K i s a weakly compact set 

generating X , then T(K) is a weakly compact set generat

ing X • We make an analogy to this within subs paces of WOG 

spaces. 

Proposition 2. Let both X , X be Banach spaces and 

T: X—>J a continuous linear mapping with TX * Y . Sup

pose X is a subs pace of a WCG space. Then so i s X • 

Proof: The mapping T* : X*—<*> X* i s w* - w* con

tinuous and one-to-one. Accordingly, T* is a homeomorph-

ism on B^ and we can assume the inclusion B.£ a | f * | . 

• B>gf • Since the property "to be a continuous image of an 

Eberlein compactw' i s closed hereditary, our assertion is a 

consequence of the Lemma. 

Remark. Each Eberlein compact K has the following 

property due to Kaplansky: i f AcK and r e T , then there 

exists: a sequence ^xt^n=-l i n A such that xn—^x • It 
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i s easy to verify that this property is kept by continuous 

Hausdorff images of Eberlein compacts. 

Proposition 3 . Let X be a subspace of a WCG space and 

KcX* a w* -sequentially closed set which i s either bound

ed or convex. Then K is w* -closed. 

Proof: For any r > 0 the set KrWxeX*; | i | i r { 

i s w*-closed by the Remark and Lemma. 

Corollary. Let f be a convex function on X* where 

X is a subspace of a WOG space. Then f is w* -lower semi-

continuous i f i t i s sequentially w* -lower semicontinous. 

Proposltipn 4. Let X be a topological Hausdorff com

pletely regular space. Suppose (^(X) i s a subspace of a 

WOG space. Then there holds: 

(a) X is pseudocompact; 

(b) X i s compact i f i t i s normal. r 

Proof: Suppose X i s not pseudocompact. Then there ex

ists? an infinite discrete set V c X which i s O-embedded 

into X , i . e . the restriction mapping R: Cfe(X)—*» m(V ) 

(defined by Rf ~ f/V for f € Cfe(X) ) i s onto m ( D . 

The space m(T ) cannot be a subspace of a WOG space by 

Proposition 1. Consequently, the space C t̂X) cannot be a 

subspace of a WOG space by Proposition 2 , a contradiction. 

Let X be now moreoever normal. Denote B£ the unit ball 

of Cj* (X) with the w* topology. As for the Gech-Stone 

compact i f ication |3 X of X we can assume /3 Xc B« , /3 X 

i s a continuous image of an Eberlein compact by the Lemma. 

Thus (J X has the property of Kaplansky from the Remark. 
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It implies easily (provided X la normal) that X must be 

compact. 

D. Preiss and P. Simon have shown recently that i f X 

i s a pseudocompact subset of an Eberlein compact, then K 

i s compact ([63) • Consequently, i f for a Hauadorff comple

te ly regular space X the space (^(X) i s WCGf then X is 

compact* 

For a topological space X dX (density of X) i s the 

smallest cardinal number -K such that there exists a sub* 

set A dense in X with card A = -X -

The next property and also Corollary 1 are proved in 

143 for WOG space8f but the method used there cannot be ut i 

lized in our case* 

Proposition 5* Let X be a subs pace of a WCG apace • 

Then for the densities of X and X* we have the equali

ty dX * d(X* , w*) . 

Proofs For any normed linear space there holds 

d(X* f w*)-s.dX . Thus for X separable our assertion i s 

evident. So suppoaee X is a non-separable subspace of a? 

WCG space Y • We can assume dX =- dY (tl3) • Suppose the 

inequality d(r* f w*) s dX i s fa lse , i . e . let A be a 

w* -dens© subset of X* with card A-cdX . Since X i s 

non-separable we can assume that card A z J*0 . 

Let f e Y* be an extension of f for each fe M and 

denote X * 4 y ; f « A ? . B y C 3 3 there is a continuous l ine

ar projection P: T—* Y with PXcX f P* f * f for ?e t 

and d(PY)£ card A • ¥e define the projection S: X—*> X 

- 791 -



by the restriction of P on X. Clearly, S* f » f for f e 

€A . Since A i s w* -dense in X* and 3* is w* - w* 

continuous we have S* » i d ^ • Consequently, S » id^ and 

hence XcFT • But for the densities we have d(PX)£card A^ 

-<rdX , thus d(PT)<:dX , a contradiction. 

Corollary 1. Let X be m Ban&cft space such that X* i s 

a subspace of a WOG space. Then dX * dX*. 

"Proof: For any normed linear space there holds 

d(X**f w* )-£ dX*dX* , and the f i rs t member of the inequs?-

l i t y i s equal to the last one by Proposition 5. 

Corollary 2 (cf.C2.]) . Let X be as in Corollary 1. 

Then X has the densities proprty, i . e . for each subspace 

TcX there i s dX* -* dX . Thus X* has the Radon-Nikodym 

property. 

Proof: Suppose X i s a subspace of X . Then X* is 

a continuous linear image of X* and thus T* i s a subspa

ce of a WCG space by Proposition 2. Consequently, dY » dX* 

by Corollary 1. 

If X has the densities property, then X* has the Radon-

Nikodym property, see e .g . £22. 
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