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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,3 (1976)

RINGS ON CERTAIN CIASSES OF TORSION-FREE ABELIAN GROUPS
B.J. GARDNER and D.R. JACKEIT, Hobart

‘Abstract: In earlier papers (R. Ree and R.J., Wisner,
Proc. Amer. Math. Soc. 7(1956), 6-8 and B.J. Gardner,
Comment., Math. Univ. Carolinae 15(1974), 381-392) the nil
completely decomposable torsion-free abelian groups were
characterized, and a description of the absolute annihila-
tors of comple tely decomposable torsion-free abelian groups
was given. For a completely decomposable torsion-free abe-
liam group A, a chain

0sA(1l)sA(2)s ...cA(x)E ...sA(r-) = A+ 1)
of "iterated absolute annihilators" of A was also defined
and this gave some information about the kinds of ring mul-
tiplications admitted by A. This paper is concerned with stu-

these same concepts for other classes of torsion-free
ebelian groups. § 2 is devoted to vector groups ani certain
direct products of slender groups, while 3 deals with se~
paratble groups.

Key words: Ring, nil group, absolute annihilator.
AMS: 20K99 Ref, Z.: 2.722.1

1. Preliminaries. Throughout this paper we use the word
"group” to mean abelian group, and the word "ring" to mean a
not necessarily associative ring. A ring (R,=) with addi-
tive group isomorphic to A is called a ring on A. The anni-
hilator of a ring (R ,x< ) is denoted by (0:(R ,x)), and the
abspolute annihilator A(* ) of a group A is defined as the in- _

tersection of the annihilators of all rings (R,x<) on A.
Szele [ 81 defines the nil-degree (Nilstufe) of a group

A as the largest integer n such that there is an associative
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ring (R,x ) on A with (R,x )40, if such an n exista. Ana-
logously the first author [4] defined the strong nil-degree
pf A as the largest integer n (if one exists) such that the-
re is a ring (R,=) on A with (R,x )%, the subring generat-
ed by all products of the form (...((ajx ay)x a3)...x®&,, non-
zero. We call a group A nil (resp. strongly nil) if A has nil-
degree 1 (resp. strong nil-degree 1).

The type of an element a, or a rational group A is deno-
ted by T{a), T(A) respectively. If A, end A, are two rational
groups, then the product T(4,) T(A,) and quotient T(A,):T(A,)
of the two types T(Al), T(A,) are defined as in [2], All ot-
her unexplained not;tiom appears in [1] or [2],

Ree and Wisner [ 6] have classified the nil completely de-
composable torsion-free groups, & paraphrase of their result
being:

If A = @ A;, where the A; are rational zroups, then A is nil
(equivalently strongly nil) if and only if T(4;) T(Aj)é T(A,)
for all i, Jj, and ke Il.

In the seciuel we will need

¥

Proposition 1.1, ILet A =-L@I A;, where the A; are ratio-
nal groups. If T(A;) T(Aj)—é T(A,) for some i, j and k€I then
there is an associative ring (£ ,x) on A with A4x 4, # O for
some L € I, and A <A, =0 for all meI, m+i.

Proof: See the proof of Theorem 1.1 of L[41.

2. Vector groups. A yvector group is a direct product of
rank one torsion-free groups (i.e., a group V =-.',T¢TI R; where
the R; are rational groups).

- 494 -



We begin this section by giving a description of the
nil vector groups. To do this we need the following defini-
tions, and the well known results (2.1} to (2.3).

A slender group A is a torsion-free group with the pro-
perty that every homomorphism from a countable direct product
of infinite cyclic groups < e;> (n=1,2,...) into A sends
almost ail components. < en) into the zero of A,

A set is measurable if I admits a countably- additive me-

asure @ such that « assumes only the values O and 1, and

@(I) =1, @(i) =0 for all iel.

(2.1) (Sgsiada (71, Nunke [5]) Every countable and reduced
torsion-free group is slender.
(2,2) (Fuchs [21,p. 160) Direct sums of slender groups are
slender.
(2.3) (Xo8; see [21, pp. 161, 162) If G is a slender group,
A, Ge I) are torsion~free groups and the index set I is mot
measurable, then

(i) i ¢ is a homomorphism from iT;rI A; into G such
that ¢ (;®; 43) =0, then $ =0;

(ii) there is a natural isomorphism
Hom(&'l;TI 4;,6) =.@®, Hom(4;,0).

Whenever we represent a vector group as a direct product

v =.T, R, in this section it is to be understood that the By
1€l 71

are rational groups.
We are nw in a position to prove

lemma 2,4, If V =iT£I R; is a vector group such that

the index set I is not measurable, every R; is reduced and
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Hom(Ri,é_%I Hom(Rj.Rk))-# Q for some i and ke I, then there
exists je I with T(R_-L) T(Rj)T(Rk).

Proof: Hom(Rl,é'@I Hom(Rj,Rk)) is a subgroup of
Hom(‘Ri,'} 5 Hom(R;,R,)) so Hom(R; ,Hom(R;,Ry ))# O for some
jeI. Now Hom(Rj,Rk) is a rank one torsion-free group whose

type isT(Rk): T.(Rj). Thus T(R;) T(Rj)é [T(R): T(Rj)] T(Rj)é
éT(Rk), as requireq,

Theorem 2.5. Let V =4'.EI R; be a vector group where the

index set I is not measurable. Then the following conditions

are equivalent:

(1) V is strongly nil;

(2) V is nil;

(3) T(Ry) T(RET(R) for all 4, j and ke I.

Proof: (1) ==>(2) is immediate.

(2) => (3). Suppese T(R;) T(Rj)éT(Rk) for some i, J
and keI, It follows from Propsition 1.1 that we can define
a non-trivial associative ring on a completely decomposable
direct summand V’ of V, This ring can be extended to the who-
le of V by making all other products zero, so V is not nil,

(3)==(1). If V is not strongly nil, then.

Hom(V, Hom(V,V))=# 0.

Since T(Ri)zéT(Bi) for all ieI, and I is not measur-
able, (2.1) and (2.3)(ii) show that chn(v,v)ﬁnv_'lz1 -a.QéI Hom(Rj,Rk).
Now Hom(Rj,Bk) is either zero or a rank one torsion-free group
whose type is less than or equal to T(R.). (2.1) and (2.2)
then show that é@l Hom(Rj,Rk) is a slender group for all ke I.
Applying (2.3)(ii) we get

Hom(V,Hom(V,V))Q‘-kTEI —i.%l HM‘(RL',;?I Hom(Rj,Rk)). Hence
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H°‘(Ri’5§1 Hom(RJ-,Rk))* 0 for some i and keI, so from Lem-
ma 2.4 we conclude that T(R;) T(Rj)é T(R ) for some je I.

Corollary 2.6, ILet V =&TeTI R; be a vector group, where
I is not measurable. Then V is nil if and only if %@I Ry is
nil,

We now turn our attention to the absolute amnihilator

V(*) of a vector group V.

Theorem 2,7. Iet V =JII R; be a vector group with the

index set I not measurable, and let

I, = {ie I| there exist no j and keI with T(R;) T(Rj) £
& T(RIY .

Then V(* ) = 1;[:11 R;.

Proof: let ve V(*), Write v = (...,r;,...) where some
ri# 0, r;€ Ry and assume there exist j, keI with T(R;) T(R)&

.
L3

< T(Rk). Applying Proposition 1.1 we obtain an associative
ring (R’,=x”) on a finite rank completely decomposable summand
v, =1.°@I° Rlo € V,V=V@®V’, such that ieI , R;x’ R, +

*0 for some £ ¢ I, and Ryx'R, =0 for all meI , mai.
We can extend (R’ x”) to a ring (R,x ) on V by letting x
coincide with x’ on V., end letting all other products be

- rd 4 4 -
zero. Now v 'Loglo Tt where v'e V. Thus 0 = vxry=pyx

*r, for allr, € R , This cannot be the case since Bix’

’
»"R,% 0, whence v e‘.'\;T11 R, .

Conversely, suppose v €, 1l Ri. If R; is divisible for
1;11 J
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some je I then I, is empty. 8o v = O and so ve V(*), Hence
Rj can be assumed to be reduced for all je I. Write v =
= (veeyPy,00.) where some ry+ 0, rje R;. Suppose vEV(¥),
Then there is a ¢ € Hom(V,Hom(V,V)) with ¢ (v)# 0, Thus
ly Bom( Ty Ry, Hom(Ily Ry oM B)) & -
;,".Tel'I ;@214H°m(pﬁ.’5§1 Hom(Rj,Bk)), 80 there is an ie I, and
ke I with Hon(Rl,é@I Hom(Rj,Rk))* O. From Lemma 2.4 we in-
fer that T(R;) T(Rj)éT(Rk) for some je I, contrary to our
choice of v, Hence v is in V(* ),

Consider the chain

0EV(1)EV(2)E eeeEV(x)S 2w

of subgroups of V defined inductively as follows:
V(1) = V(*); V(x+ L)/V(ec) =LV/V(e)] (*); V(R) =

=“_\2){5V(ec) if @ is a limit ordinal. It is clear that
V(u+ 1) = V() for some ordinal w .

As in [4] we introﬁuce o -matrices in order to give a

descriptiom of V(n) for n finite, A 2x m #r ~patrix is a 2xm
matrix of types '

[ tn .elz XX J zh ]
Tar a2 T
such that Tp; Tp; & rﬁﬂ for i = 1,2,,..,m - 1.

Proposition 2.8, let V =T B; be a vector group with
I not measurable, and for each positive integer n J.et 1‘.n =

=4ie I| there exists no 2x (n + 1) Jr -matrix over fT(Ry) | je
€I% with T,; =T(R)} . Then V(n) =i";\'1’nl?i.
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Proof: See the proof of Proposition 2.5 of [4l.

-We then have

Theorem 2.9, Iet V =_;_TGT1 R, be a vector group with the
index set I not measurable. Then. the following conditions are
equivalent: i

(1) V=V(n),n<oo and V%V(n - 1);

(2) there are 2xn, but no 2x (n + 1) & -matrices
over {T(R;) |iel3;

" (3) V has strong nil-degree n.

Proof: See the proof of Theorem 4.2 of [4] .

Corollary 2,10, let V =1._'q1 R; be a vector group with
I not measurable. Then V and i?l Ri have the same strong
nil-degree.

Proof: Theorem 4.2 of [4] shows that Theorem 2.9 is true
when V =-LT5TI R; is replaced by &@I R;.

We conclude this section with some necessary conditions

for a direct product of slender grbups to be nil.

Proposition 2,11, Iet A =_‘.‘1;TI 4y, where the A; are slen-
der and the index set I is not measurable, (R,x) & ring on
A, If i@l 4; is a subgroup of (0: (R,»)) then (R,x) is
the trivial ring on A.

Proof: Ilet & € Hon(i'l;fl A, Hon(a.:ql Aj,‘;fgl 4)) be
the map defining (R,x ) (thus ¢ (a)b = axb for all a, beA).
Under the natural isomor?hism Hom(é'g'I A.j’,ﬁ,-i;r_t A ) =
g—bTII Hom(é:‘l'l AJ.’Ak)’ ¢ (a) —> (ogo, ﬂk¢(&),oo-), where

Wyt &,Turl Ai—-b Ay is the projection, for all k& I. Now for
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each a“,{,?l A; we have ar, ¢ (a)a’ = ark(afs’ ) = 0 for
all k, so (2.3)(i) implies that ary ¢(a) = 0 ¥F a1 keI

and all acA. Thus ¢ (a) = O for all ae4, i.®* ¥xb = 0 for
all a,be A,

Corollary 2.12. Let A = T, A; be a direc® Product o
slender groups where I is not measurable. If L@I Ai is a sub-
group of A(*), then A is nil.

We need the following result.

lemma 2.13, Let {A,| n=1,2,...} be a countable femi-
1y of tors:ton—free groups, and B be an arbitrary 8roup. If
Hom( @,1 A, ,B) = O then Hom( Tl',, A,,B) = 0.

Proof: See Propositiom 7.3 of [31.

Propositiom 2,14, Iet A ="jj',[ 4, be a countable direct
product of slender groups such that né A, is ril, Then A is
nil.

Proof: Observe that since each A  is slender, (2.3)(i)

implies that Hon( TT An/ @4 ApsAp) = 0 for all n, 8o apply-
ing Hm(TT Ay, °) to the exact sequence

0=1T Hon(T'[4A‘/@4Am,An)5¥
2 Hon( T, 0/ 8 a STy a0 B T, an § a0 —

mz]
- Hon(m@;,’ A,O,,II{ %),
o0

we see that A is nil unon(,,m hg,Bon( &, by, Tq b)) =

m=
Now 3, 4 1 5, so Hom(,3 phoEa® A F, ) =0
whence Eom(~@4 Ak:EW(mé,[ A'm'An” = 0 for aly n, 89
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Hom( 94 A.k,Hom( é,, m?
have Eom( Ak,Hom( % Am, ‘IT Ay)) =0, so A is nil.

m.- ‘h)) = 0. By lemm 2,13, we then

3. Separalle groups. A torsion-free group A is called
separable if every finite set elements of A is contained in a
completely decomposable direct summand of A, It is clear that
we can choose this summend with finite rank,

We commence this section with a description of the nil
separable groups. First, however, we need to comsider ‘the fol-
lowing subgroups of a separable group.

Suppose (R,x ) is a ring on the separatle group 4, and
A1® Ay is a finite rank completely decomposable direct sum-
mand of A, We are permitted to write 4; =<a; )y @ < &, %@ ...
eee @ < ‘n1>* and A, = <‘hl+l W @ ( an1+2'>*@ cee
coe ® (‘n? Dx  for suitable elements &),8,.-+s8, of 4, and
A =4,® 4, 4, for some subgroup A, of A. Since A; is a di-
rect summand of A, Theorem 87.5 of [2) shows it is separable,
and so there is a finite rank comple tely decomposable direct
summa nd A3' of A; with the property that 4,® A, ® A4 conteins
all produets of the form a;x 8; where i e {1,2,...,111} and
J g:-ilyz,...,nzl - Thus A, =(anz+1>* ® < anz,,z>*@ cee
eee @ < a-na),!g for suitable elements an2+1,an2+2,...,a.!13

of A. Since Ale AZQ A3 is a pure subgroup of A it is clear
that axbed;® A4, A3 for all acd; and all bed; @ 4,.

lemma 3.1. Let (R,x ) be a ring on a separable group
A, and let Ay, Ay, and A; be subgroups of A defined as above.
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If Hom(A,,Hom(A @ A;,A,® A, @ 44))+ 0 then there exist
i 5{1,2,.‘.,111; ’ jE{l,Z,...,nz} andkE{l,Z,...,nB}
such that T(a;) T(aj)éT(ak).

Proof : Clearly
Hom(4, ,Hom(A, ® 4,,4,® 4, @ 4)) =
~
=
8 58, & Fon<apy SHon(Cagy, ;<o N
Proceeding as in the proof of Lemma 2.4 we obtain the re-

quired result.

Theorem 3,2, Let A be a separatile group. Then the fol=-
lowing conditioms are equivalent:

(1) A is strongly nil;

(2) A is nil;

(3) every rank n (n£3) completely decomposable direct
summnd of A is nil,

Proof: Clearly (1) = (2) and (2)=>(3). It remains
to show (3)=> (1). Suppose there is a ring (R,x) on 4,
and elements a,be A with axb#40. Let A; be & finite rank
completely decomposable direct summand of A containing a and
b, and let A, = O. Define Ay as we did prior to Lemma 3.1.
For e€ 4y define §: A;—> Hom(A4,A, @ A3) by P(e)f = ex?t
for all £€4,. Then ¢ € Hom(A),Hom(4),A, P 4;)) and ¢ (a)b =
= axb#0. We now apply Lemma 3.1 and Propositiom l.l. toc ob-
tain a rank n (n<3) direct summand of A which is non-nil.

We now turn our attention to the absolute annihilator
A(* ) of a separable group A. We need to make the following

definitions.
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A finite set of elements{nq,...,8,f{0f & separable
group A is called basic if it is linearly independent and
Cap % @ <% ® ... ® <{a, ) is a direct summand of A,

An element me€ A is a basic element of A if the set fa$ is

basic. For a separable group A we define
A’ ={faeA| a is a basic element of A with the property that
there do not exist basic elements b,c& A with fa,b,c} basic

and T(a) T(b)£T(e) % .

Proposition 3.3. ILet A be a separable group ami let A
be defined as above. Then A(* ) is the pure subgroup of A ge-
nerated by A/

Proof: If ae<A’> then we can write na = n,a; +
+ 585 + ..o + oy where n,yNy,05,e00,0 are integers and
aje A% for i = 1,2,...,k. If a; ¢ A(*) for some i €£1,2,...
«es,K} then there is a ring (A,x) on A with a;x a+0 for
some a€ A, Let A, = <ai>*' » 8nd Ay = {8y 0 @ < a3>*@ .o
eee @ < an2>* be such that A;® A, is a completely decom-
posable summand of A containing a. Define A3 as we did prior
to Iemma 3.1. As in the proof of Theorem 3.2, a;x a%0 imp-
lies that Hom(A,,Hom(A,® 4,, 4,9 A, @ A3))#O, so Lemma 3,1
shows that T(a;) T(aa-)é’f(ak) for some j €{1,2,3...,n,kand
ke{i,2,3,...,n3} yWhich contradicts our assumption that
g;ie'A'. Hence each a; is in A(*), so nacA(* ), &nd since
A(*) is pure in A it follows that ae A(%*).

Conversely, suppose a€ A(\* Je Now a can bé embedded in
a finite rank completely decomposable direct summand Al of A,

A =€a; 0@ (8, % ® ...® <8‘n1>* , and there exist
integers n,nl,nz,...,nn] such that na = nja8; + nsa, + ...
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veo + nnlabl. If a;¢ A" for some i € 1,2,...n;7 then the-

re are basic elements b,ce A such that -iai,b,ci is basic
and T(a;) T(b)£T(c). By Proposition 1.1 there exists & ring
(R,x) on A with aix'a'#o for some a’e A, If we let

=< %@®< X @ .8 <a, >
A2= Sk %, +2 % &, 7%
be such that A]_@ Az is a completely decomposable summand aof
A containing a“”, and define A3 as usual, then as in the proof
of Theorem 3.2, &; o a4 0 implies that
Hom( (ai>* yHom(A1 @ A4,,4,P A, @ A3)H= 0. Applying Lemma
3.1 we see that T(a;) T(aj)é‘l‘(&k) for some j & €1,2,.0.,0,%
and k € -il,2,...,n3 ¥ . Proposition l.l then shows that we
can define a ring (R',x") on 4, @ A,& 45 with
{ay 7% x7 < a£>* # O for some L€ {1,2,...,1133- and
Cap 2 x'< @a,) =0for allme{1,2,..0,03% , mbi. Ve
can extend x” to A by setting all other products equal to
0. But then 0 = (na) x” a, = (mya;) x’a, . We conclude that
& € <A'>* .

We end with some results concerning the absolute ami-
hil tor series of an arbitrary torsion-free group. Recall
that for a torsion-free group A, this is defined inductively
as follows: 4(1) = A(* ), A(cc + 1)/A(cc) =L[A/A(c )T (*)

and A((3) =¢‘<J,3“°‘) if @ is a limit ordinal.

Proposition 3.4, Let A be a torsion-free group and
(R,%) a ring on A, Then Al ) is an ideal in (R,x) for
all ordinals o< .

Proof: First we show A(* ) to be fully invariant in A,
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let £ be in Hom(A,A) end ae A, If f£(a)¢ A() then there is
a homomorphism e Hom(A,Hom(4,A)) with & (£(a))#O. But
¢ £ Hom(A,A)) and ($ £)(a)$0, so agA(*).

A transfinite induction argument shows that A(« ) is
fully invariant in A for all ordinsls o . The result now

follows immediately.

Corollary 3.5, If A = A(«) for some ordinal « then
any associative ring (R,«) on A is left and right T-nilpo-
tent, If in addition « is finite, then (R, x “l = o, '

Proof: See the proaf of Corollary 2.4 of [41,
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