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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

18,4 (1977) 

NONLINEAR EQUATIONS WITH LINEAR PART AT RESONANCE: 

VARIATIONAL APPROACH 

Svatopluk FUClK, Praha 

Abstract: Under some assumptions we give the variatio­
nal proofs of the existence results for the equation Lu » Su, 
where L is linear selfadjoint Predholm and noninvertible, S 
is a nonlinear bounded and potential operator in a Hilbert 
space. 

Key words: Potential operators, maxmin-points, minmax-
points - nonlinear equations with linear part at resonance, 
implicit function theorem. 

AMS: 47H15 Ref. 2.: 7.978.5 

!• Introduction. Let H be a real separable Hilbert spa­

ce with the inner product <u,v> and with the norm HuR = 
1/2 a < u,u> . Suppose that B: H — * H is a linear completely 

continuous selfadjoint operator and let A be a sequence of 

all eigenvalues of B calculated together with the multiplici­

ty. Let «i€ H, |e*l = 1 , be the normalized eigenvector of B 

corresponding to A e A , i.e. 

A.eA a Be^ , A c A . 

Choose the eigenvalue XQ c A to be fixed. Let V be a null-

space of the operator 

L: u h—> A Q u - Bu, u e H 

and denote 
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d = d i s tance of XQ to U c /Vj A. 4- &0 ? • 

Let S: H—.• H be strongly continuous nonlinear opera­

t o r ( i . e . i t maps weakly convergent sequences \k^—-->• u onto 

strongly convergent sequences Sii —> Su) and suppose that 

(1) sup, |)Su II =- oo « oo . 

Moreover, let the operator S be potential with the potential 

•f : H — - • R 1 (i.e. the Fr^chet derivative of tf is S) # De­

fine 

g : r »—-» sup , tf (w), 

Hiirfl««fc 

n : r .—• inf «# (w). 
*r • W 

<<wrl-» * 

The following result was firstly proved for partial 

differential operators in [13; for abstract setting see £63, 

C33* In C3)it is considered also the case of the growth con­

dition 
<T 

l|Sull&0£, + (I Bu II , UCH, 

where cf € (0,11 and they are given the applications to 

the boundary value problems for nonlinear partial differen­

tial equations and the existence theorems obtained by this 

way extend the previously proved results. 

Theorem 1. Under the above assumptions the equation 

(2) Lu « Su 

is solvable in H provided one from the following conditions 

is satisfied: 

(3) lim 6T(r) = - oo , 
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(4) lim «e(r) = co , 

Theorem 1 is of the variational type, however, its 

proof is topological. In this note we shall give (under so­

me additional assumptions) the variational proof of Theorem 

1. The additional assumptions are important for the method 

used below and the obtaining of the variational proof of 

Theorem 1 without these assumptions is an open problem up to 

now. 

We shall show that the solutions of (2) are characteri­

zed as maxmin-points (or minmax-points) of certain functio­

nal. This fact can be useful for using the numerical methods 

for constructing the solution of (2). Unfortunately, we had 

no success to obtain that the solutions of (2) are characte­

rized as the saddle points of certain functional. 

Before stating the main results of the present note let 

us introduce the following notation. 

Let Z and V be the closures of linear hulls of all ei­

genvectors of B corresponding to A e A with X > A Mid 

A ^ A 0t respectively. Then H =- W ® V ® Z (the direct sum) 

and denote by ^V'^W'^W© V ^ e orthogonal projections from H 

onto V,W and W © V, respectively. Obviously 

< Lv,v > S d II v B 2 , viV, 

< Lz,z >£ -d Hz II2, z cZ. 

Define the functional $ : W X V K Z — y ' K by 

$ : (w,v,z) t—• 7 <Lv,v> + ^ < L z , z > - if (w + v + z ) . 

We shal l seek a so lu t ion o f (2) which s a t i s f i e s 
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(5) $ (w .v -z ) = max min $ ( w , v , z ) 
0 0 0 xeZ (<ur,tr)eW><V * ' 

(6) $ ^w
0»vo»zo ) s m i r J , , m a ? u, -, < f > < w » v > z > ' 
u u ore V Cur,£)e\rVx2. 

The main results are the following two theorems. 

Theorem 2. Let S: H—> H be Frechet differentiable at 

arbitrary ueH. Suppose (1),(3) and that the Frechet deriva­

tive S'(u) at ueH (considered as a linear bounded operator 

from H into H) satisfies 

(7) <s'(u)h,h><0 

for arbitrary hcH, h-(-0. 

Then the equation (2) has at least one solution 

(8) u0 = w0 + v0 • -oe H, (w0,v0,z0)£ WxVxZ 

such that (5) holds. 

On the other hand, arbitrary point (w0>
v
0f

z
0)€ WxVxZ 

satisfying (5) defines by the rule (8) the solution of (2). 

Theorem 3. Suppose (1),(4) and that the Frechet deriva­

tive S'(u) at ueH satisfies 

(9) < S'(u)h,h> > 0 

for arbitrary heH, h4-0. 

Then the equation (2) has at least one solution (8) such 

that (6) holds. Arbitrary point (w0,vo,zQ)£ WxVxZ satisfy­

ing (6) defines by the rule (8) the solution of (2). 

The proof of Theorem 2 will be given in Section 2. The 

proof of Theorem 3 will be omitted as it is quite analogous 

to that of Theorem 2. In Section 3 we shall present some re-

- 726 -



marks concerning the special case 

(10) a o « max A . 

2. The proof of Theorem 2 

(i) As S is strongly continuous the functional *$ is 

also strongly continuous* The assumption (7) implies that 

(11) < Su-̂  - SU^U-L ~ u2 ^ < ° 

for arbitrary u-^,u2e H, Uj+ u 2 , and that the funct ional - i f 

i s convex, i . e . 

- {fCtUj + (1 - t ) u 2 ) £ - t tf (u 1 ) - (1 - t ) \S (Ug) 

for u-^fUge H, t € [ 0 , 1 3 . 

( i i ) Notice that i f f: H — • R 1 i s Freehet <Uffe*en-

tiable and convex on H then 

f (urt) « min f (u) 
0 u c H 

i f and only i f 

f ' ( u 0 ) = 0 . 

( i i i ) l e t z e 2 be f i x e d . Then < £ ( . , . , z ) i s two times 

Fre'chet differentiablte weakly lower semicontinuous ( for de­

f i n i t i o n see e . g . C43,[72) onWxV. From 

$ ( w , v , z ) S f Hvl l 2 + | < L z , z > - tf(w + v • z) • tf(w) -

- ^ ( w ) s f l v l 2 - tf(|v| ) + < S(v • * ( • • z ) ) f • + z > « 

- | l l L | | . | 2 t t 2 . s f IT I 2 - « ( | v | ) - « I T I - ocRs I -

- f c l U l . U I 2 

it follows that $(.,.,z) is coercive: 
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lim $(w,v,z) • oo . 
JurR+lvll-̂ oO 

Prom this and from the main theorem on calculus of varia­

tions (i.e. the lower weakty semicontinuous and coercive 

functional attains over reflexive Banach space its infimum 

- see> e.g. [43 ,£71) we obtain the existence of at least one 

couple w(z)e W, v(z)c V such that 

(12) $ (w(z),v(z),z) = min 5>(w,v,z). 
(w, or) e W x V 

(*v) Lemma. w(z),v(z) with the property (12) are deter­

mined uniquely. 

Proof. Suppose that there exist z c Z and W p W g C l , 

v., ,v2e V such that 

$(**•»,vlfz) = $(w2|V2,z) = min $ (w,v,z). 

Then the partial Pr^chet derivatives $i^wi-vi-z^> 

$2(w.,v.,z) (i = 1,2) vanish, i.e. 

< Lvifk > = <S(z + v± + w ^ h + k > 

for i = 1,2 and arbitrary h€W,keV. Put k = v-̂  - v2> h s 

= w-, - w2. Then 

d ' vl " v2 " • ^ L vl " Lv2»vl ~ v2 * = 

= <S(w1 + v-ĵ  + z) - S(w2 + v2 + z), (wx - w 2) + 

+ (•! - v 2)> 4 0 

which implies v^ = v2 = v. Thus 

< S(w1 + v + z) - S(w2 + v + z ) ^ - w 2 > = 0 

from which together with (11) we get w-̂  = w2 and the unique_ 
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ness of w(z),v(z) defined in (iii) is proved. 

(v) Lemma. The mappings w: Z—> Wf v: Z—> V defined 

in (iii) map bounded subsets of Z onto bounded subsets of 

H. 

Proof. It is 

d l|v(z)ll 26 <Lv(z),v(z) > » < S(z + w(z) + v(z)),v(z)>* 

£ 06 ( v ( z ) l l . Thus i f McZ i s a bounded s e t then { v ( z ) ; z€ 

€ M \ i s a bounded subset of V. From 

£ Hv(z)il 2 - Cf( Hw(z) || ) + £ < L z , z > - oO l lv(z) | -

- ocl lz II £ $ ( w ( z ) , v ( z ) , z ) £ § ( 0 , 0 , z ) £ - | I tz l l 2 + aC I z l 

i t fo l lows that •( 6 (II w(z) || ) ; z e M } c R. i s bounded from 

below and with respect to the assumption (3 ) the se t«fw(z) ; 

z c M j c W i s bounded. 

( v i ) As $ ( . , . , z ) i s a convex functional on WxV we 

have with respect to ( i i ) that 

v = v ( z ) , w = w(z) 

i f and only i f 

< Lv,k > « <S(w + v + z ) , h + k > 

for arbitrary h€ W, keV. 

(vii) Lemma. The mappings w: Z—• W, v: Z — • V trans­

form the weakly convergent sequences in Z onto strongfy con­

vergent sequences in H. 

Proof. Let izwL-iCZ, z_—-*-> z^ in Z. Then 
n n—l * n o 

-(llw(z )ll$°* ,f 48v(zn) 1 l^-jn are bounded sequences of 

real numbers (see Lemma (v)) and with respect to therefle-
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x i v i t y of V and f inite-dimensionalness of W there e x i s t s a 

subsequence ^--a.^i-si °* ^ *n^n=l 8 u c h tJaat 

w ( z n i
) — * w o *» W> T ( z n i

) ~ J " T o *» V* 

Letting i — • co in 

<Lr(zw ) f k > » < s ( z „ + w(z„ ) + v (z„ ) ) , h + k > n» * «j| iii n.* * 

we obtain 

< L v o f k > =- <S(wQ + v 0 + z 0 ) f h + k > 

f o r arbitrary h€ Wf k * V . Thus according to (vi ) we have 

v 0 - v ( z Q ) f w0 = w (z Q ) . 

From this it easily follows (by contrary) that 

vtzn)—*.v(z0)f w(zn)—*-w(z ). 

The strong convergence vCz^)—• v(z ) follows from 

v(zn) * KPV S(w(zn) + v(zn) + zn) 

(where K is the inverse of L considered as an operator from 

V onto V ) and from the strong continuity of S. 

(viii) Lemma. The mappings w: Z—*Wf v: Z—»V are 

Fr^chet differentiable. 

Proof. Define F: IxYxZ— . > W x V by 

F: (wfv,z)i—• (-P-^w + v + z)f PyLz - PyS(w + v + z)). 

Obviously 

P(w *)<*»•.*> :<*»*> ̂ < ~ V ' ( w + v + z)(* + ^ ) f 

PvI*f - PyS'tw + v + z)(* + v)). 

According to (vi) and Implicit Function Theorem it is suffi­

cient to prove that 
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P(w v)(
w(2>fv(z>fz>: * x V — > W x V 

is an isomorphism. Put 

A: (*,?)!—> ( AQ9( + PyS'fw + v + z)(« + v) f PyB? + 

+ VyS'iw + v + z)(iT + v)). 

Obviously A: Wx V—* WxV is completely continuous and 

F('WjV)(w,vfz): (9ff?) t_> A0(«ff) - A(wfv-)., 

According to the Fredholm theory for linear operators to pro­

ve that F/w v\(wfv,z) is an isomorphism it is sufficient to 

prove that the equation 

(13) PvLv * Pw#vS'(w • v + a)(9r + ?) 

has only a tr ivial solution* Let (9,v)cWxV be a solution 

of (13), Then d I v II 2 # < Iivfv > « <S'(w + v + zXSf + v) f 

«F+ v > £ 0 

and thus v » 0, From 

PV€)VS'(w + v + z) w » 0 

we have 

0 * <S'(w + v + z) 9^$ > 

and the assumption (7) implies 9 » 0* The proof of the Fr£-

chet differentiability of w(z) and v(z) is completed* 

(ix) Define G: Z—> R 1 by 

0: z >—> $ (w(z)fv(z)fz)* 

Then -G i s weakly lower semicontinuous and 

G(z) - $ (w(z) ,v (z ) f z) * $ ( 0 f 0 f z ) » y<Lz fz > - <f(z) * 

* - f i | z | | 2 + c c l z II 
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imp l ies that -G i s coercive , i . e . 

lim G(z) « - oo 0 
UI-+00 

Thus there exists at least one z j Z such that 
o 

G(zrt) « max G(z) 0 * € 2 

and we have G'(z ) = 0, i.e. 

<G'(z0),z > = 0 

for arbitrary z € Z. As 

G'(zQ) * ${(w(z),v(z)fz) o w'(z) + 

+ $2(w(z),v(z),z) o v'(z) + $^(w(z),v(z),z) 

(the Leibniz rule on differentiation of composition) we ha­

ve (putting u = w(z ) + v(z^) + z ) 

(14) 0 « < G ' ( z o ) , z > * < L v ( z 0 ) , v ' ( z Q ) z > + < L z Q , z > -

- < Su Q ,w' (z 0 )z + v ' ( z Q ) z > - < S u Q f z > . 

As 

(15) < L v ( z 0 ) , k > - = <SuQ ,h + k > 

for arbitrary k e V and heW we obtain from (14) : 

(16) < Lz0 ,z > » <Su Q , z > 

for arbitrary z & Z. The relations (15) and (16) imply 

LuA « Su o o 

and the theorem is proved. 

3. Remarks 

(i) If (10) holds then Z s{0) and if the assump-

- 732 -



tions of Theorem 2 are satisfied then the solution of (2) is 

unique • 

(ii) If (10) holds then the additional assumptions upon 

S are not necessary. One can immediately prove the following 

theorem. 

Theorem 4. Suppose (1),(3), (10). Then the equation (2) 

has at least one solution 

(17) uQ - w 0 + v0€H, V » , v0ev 

such that 

(18) $ (w„,v ) = min 3> (w,v) 
0 ° (V)eWxV * 

(where $> : (w,v) i—> i<Lv,v'> - *^(w + v)). On the other 

hand, arbitrary solution of (18) defines by the rule (17) the 

solution of (2). 

(iii) Analogous result as in Theorem 4 is proved in £23 

under more complicated assumptions. 

(iv) The procedure how to prove Theorem 2 (or Theorem 

3) extends the method from 151 for obtaining the existence of 

saddle point of convex-concave functional. 
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