Commentationes Mathematicae Universitatis Caroline

Svatopluk Fučík

Nonlinear equations with linear part at resonance: Variational approach

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 4, 723--734
Persistent URL: http://dml.cz/dmlcz/105815

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

18,4 (1977)

NONLINEAR EQUATIONS WTTH LINEAR PART AT RESONANCE:
VARIATIONAL APPROACH
Svatopluk FUČfk, Praha

Abstract: Under some assumptions we give the variational proofs of the existence results for the equation $\mathrm{Lu}=\mathrm{Su}$, where L is linear selfadjoint Fredholm and noninvertible, S is a nonlinear bounded and potential operator in a Hilbert space.

Key words: Potential operators, maxmin-points, minmaxpoints, nonlinear equations with linear part at resonance, implicit function theorem.

AMS: 47H15 Ref. Ž.: 7.978.5

1. Introduction. Let H be a real separable Hilbert space with the inner product $\langle u, v\rangle$ and with the norm $\|u\|=$ $=\langle u, u\rangle^{1 / 2}$. Suppose that $B: H \rightarrow H$ is a linear completely continuous selfadjoint operator and let Λ be a sequence of all eigenvalues of B calculated together with the multiplicity. Let $e_{\lambda} \in H,\left\|e_{\lambda}\right\|=1$, be the normalized eigenvector of B corresponding to $\lambda \in \Lambda$, i.e.

$$
\lambda e_{\lambda}=B e_{\lambda}, \lambda \in \Lambda .
$$

Choose the eigenvalue $\lambda_{0} \in \Lambda$ to be fixed. Let W be a nullspace of the operator

$$
L: u \longmapsto \lambda_{0} u-B u, u \in H
$$

and denote
$\mathrm{d}=$ distance of λ_{0} to $\left\{\lambda \in \Lambda ; \lambda \neq \lambda_{0}\right\}$.
Let $S: H \rightarrow H$ be strongly continuous nonlinear operator (i.e. it maps weakly convergent sequences $u_{n} \rightarrow u$ onto strongly convergent sequences $S u_{n} \longrightarrow S u$) and suppose that

$$
\begin{equation*}
\sup _{u \in H}\|S u\|=\infty<\infty . \tag{1}
\end{equation*}
$$

Moreover, let the operator S be potential with the potential $\boldsymbol{\varphi}: H \rightarrow \mathbf{R}^{1}$ (i.e. the Frechet derivative of $\boldsymbol{\varphi}$ is S). Define

$\mathcal{X}: \mathbf{r} \longmapsto \inf _{w \in W} \boldsymbol{y}(w)$.
$\|w\|=x$
The following result was firstly proved for partial differential operators in [1]; for abstract setting see [6], [3]. In [3]it is considered also the case of the growth condition

$$
\|s u\| \leq \alpha+\beta\|u\|^{\delta}, u \in H
$$

where $\sigma^{\sigma} \in(0,1]$ and they are given the applications to the boundary value problems for nonlinear partial differential equations and the existence theorems obtained by this way extend the previously proved results.

Theorem 1. Under the above assumptions the equation

$$
\begin{equation*}
L u=S u \tag{2}
\end{equation*}
$$

is solvable in H provided one from the following conditions is satisfied:

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sigma(r)=-\infty, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x(x)=\infty . \tag{4}
\end{equation*}
$$

Theorem 1 is of the variational type, however, its proof is topological. In this note we shall give (under some additional assumptions) the $v a r i a t i o n a l ~ p r o o f ~ o f ~ T h e o r e m ~$ 1. The additional assumptions are important for the method used below and the obtaining of the variational proof of Theorem 1 without these assumptions is an open problem up to now.

We shall show that the solutions of (2) are characterized as maxmin-points (or minmax-points) of certain functional. This fact can be useful for using the numerical methods for constructing the solution of (2). Unfortunately, we had no success to obtain that the solutions of (2) are characterized as the saddle points of certain functional.

Before stating the main results of the present note let us introduce the following notation.

Let Z and V be the closures of linear hulls of all eigenvectors of B corresponding to $\lambda \in \Lambda$ with $\lambda>\lambda_{0}$ and $\lambda<\lambda_{0}$, respectively. Then $H=W \oplus V \oplus Z$ (the direct sum) and denote by $P_{V}, P_{W}, P_{W} \oplus V$ the orthogonal projections from H onto V, W and $W \oplus V$, respectively. Obviously

$$
\begin{aligned}
& \langle L v, v\rangle \geqq d\|v\|^{2}, v \in V \\
& \langle L z, z\rangle \npreceq-d\|z\|^{2}, z \in Z .
\end{aligned}
$$

Define the functional $\Phi: W \times V \times Z \longrightarrow \mathbb{R}^{1}$ by

$$
\Phi:(w, v, z) \longmapsto \frac{1}{2}\langle L v, v\rangle+\frac{1}{2}\langle L z, z\rangle-\varphi(w+v+z) .
$$

We shall seek a solution of (2) which satisfies

$$
\begin{equation*}
\Phi\left(w_{0}, \nabla_{0}, z_{0}\right)=\max _{z \in Z} \min _{(w, v) \in W_{\times} V} \Phi(w, v, z) \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\Phi\left(w_{0}, v_{0}, z_{0}\right)=\min _{v \in V} \max _{(w, x) \in W \times Z} \Phi(w, v, z) . \tag{6}
\end{equation*}
$$

The main results are the following two theorems.
Theorem 2. Let $S: H \rightarrow H$ be Frechet differentiable at arbitrary $u \in H$. Suppose (1), (3) and that the Frechet derivative $S^{\prime}(u)$ at $u \in H$ (considered as a linear bounded operator from H into H) satisfies

$$
\begin{equation*}
\left\langle s^{\prime}(u) h, h\right\rangle<0 \tag{7}
\end{equation*}
$$

for arbitrary $h \in H, h \neq 0$.
Then the equation (2) has at le ast one solution

$$
\begin{equation*}
u_{0}=w_{0}+v_{0}+z_{0} \in H, \quad\left(w_{0}, v_{0}, z_{0}\right) \in W \times V \times Z \tag{8}
\end{equation*}
$$

such that (5) holds.
On the other hand, arbitrary point $\left(w_{0}, v_{0}, z_{0}\right) \in W \times V \times Z$ satisfying (5) defines by the rule (8) the solution of (2).

Theorem 3. Suppose (1), (4) and that the Frechet derivative $S^{\prime}(u)$ at $u \in H$ satisfies

$$
\begin{equation*}
\left\langle s^{\prime}(u) h, h\right\rangle>0 \tag{9}
\end{equation*}
$$

for arbitrary $h \in H, h \neq 0$.
Then the equation (2) has at least one solution (8) such that (6) holds. Arbitrary point $\left(w_{0}, \nabla_{0}, z_{0}\right) \in W \times V \times Z$ satisfy ing (6) defines by the rule (8) the solution of (2).

The proof of Theorem 2 will be given in Section 2. The proof of Theorem 3 will be omitted as it is quite analogous to that of Theorem 2. In Section 3 we shall present some re-
marks concerning the special case

$$
\begin{equation*}
\lambda_{0}=\max \Lambda \tag{10}
\end{equation*}
$$

2. The proof of Theorem 2

(i) As S is strongly continuous the functional $\mathscr{\mathcal { S }}$ is also strongly continuous. The assumption (7) implies that

$$
\begin{equation*}
\left\langle s u_{1}-s u_{2}, u_{1}-u_{2}\right\rangle<0 \tag{11}
\end{equation*}
$$

for arbitrary $u_{1}, u_{2} \in H, u_{1} \neq u_{2}$, and that the functional - \mathscr{P} is convex, i.e.

for $u_{1}, u_{2} \in H, t \in[0,1]$.
(ii) Notice that if $\mathrm{f}: \mathrm{H} \rightarrow \mathrm{R}^{1}$ is Frechet differentiable and convex on H then

$$
f\left(u_{0}\right)=\min _{\mu \in H} f(u)
$$

if and only if

$$
f^{\prime}\left(u_{0}\right)=0
$$

(iii) Let $z \in Z$ be fixed. Then $\Phi(0, \ldots, z)$ is two times Fréchet differentiable weakly lower semicontinuous (for definition see e.g. [4],[7]) on WXV. From

$$
\begin{aligned}
& \Phi(w, \nabla, z) \geq \frac{d}{2}\|v\|^{2}+\frac{1}{2}\langle L z, z\rangle-\varphi(w+\nabla+z)+\varphi(w)- \\
& -\varphi(w) \geq \frac{d}{2}\|\nabla\|^{2}-\sigma(\|w\|)+\langle S(w+\theta(v+z)), \nabla+z\rangle- \\
& -\frac{1}{2}\|L\| \cdot\|z\|^{2} \geq \frac{d}{2}\|\nabla\|^{2}-\sigma(\|w\|)-\propto\|v\|-\alpha\|z\|- \\
& -\frac{1}{2}\|L\| \cdot\|z\|^{2} \\
& \text { it follows that } \Phi(0,,, z) \text { is coercive: }
\end{aligned}
$$

$$
\lim _{\|w\|+\|v\| \rightarrow \infty} \Phi(w, v, z)=\infty .
$$

From this and from the main theorem on calculus of variations (i.e. the lower weakly semicontinuous and coercive functional attains over reflexive Banach space its infimum - see e.g. [4],[7]) we obtain the existence of at least one couple $w(z) \in W, V(z) \in V$ such that
(12) $\Phi(w(z), v(z), z)=\min _{(w, v) \in W \times V} \Phi(w, v, z)$.
(iv) Lemma. $w(z), v(z)$ with the property (12) are determined uniquely.

Proof. Suppose that there exist $z \in Z$ and $w_{1}, w_{2} \in W$, $\nabla_{1}, \nabla_{2} \in V$ such that

$$
\Phi\left(w_{1}, v_{1}, z\right)=\Phi\left(w_{2}, v_{2}, z\right)=\min _{(v, v) \in W_{\times} V} \Phi(w, v, z) .
$$

Then the partial Frechet derivatives $\Phi_{1}^{\prime}\left(w_{i}, v_{i}, z\right)$,

$$
\begin{aligned}
& \Phi_{2}^{\prime}\left(w_{i}, v_{i}, z\right)(i=1,2) \text { vanish, i.e. } \\
& \left\langle L v_{i}, k\right\rangle=\left\langle S\left(z+v_{i}+w_{i}\right), h+k\right\rangle
\end{aligned}
$$

for $i=1,2$ and arbitrary $h \in W, k \in V$. Put $k=\nabla_{1}-\nabla_{2}, h=$ $=w_{1}-w_{2}$. Then

$$
\begin{aligned}
& d\left\|v_{1}-v_{2}\right\|^{2} \leqq\left\langle L v_{1}-L v_{2}, v_{1}-v_{2}\right\rangle= \\
= & \left\langle S\left(w_{1}+v_{1}+z\right)-S\left(w_{2}+v_{2}+z\right),\left(w_{1}-w_{2}\right)+\right. \\
+ & \left.\left(v_{1}-v_{2}\right)\right\rangle \leqq 0
\end{aligned}
$$

which implies $\nabla_{1}=\nabla_{2}=\nabla$. Thus

$$
\left\langle S\left(w_{1}+v+z\right)-S\left(w_{2}+v+z\right), w_{1}-w_{2}\right\rangle=0
$$

from which together with (11) we get $w_{1}=w_{2}$ and the unique-
ness of $w(z), v(z)$ defined in (iii) is proved.
(∇) Lemma. The mappings $w: Z \longrightarrow W, V: Z \longrightarrow \nabla$ defined in (iii) map bounded subsets of Z onto bounded subsets of H.

Proof. It is
$d\|v(z)\|^{2}\langle L v(z), v(z)\rangle=\langle S(z+w(z)+v(z)), v(z)\rangle \leqslant$ $\leqslant \propto\|v(z)\|$. Thus if $M \subset Z$ is a bounded set then $\{\nabla(z) ; z \in$ $\in M\}$ is a bounded subset of V. From
$\frac{d}{2}\|\nabla(z)\|^{2}-\sigma(\|w(z)\|)+\frac{1}{2}\langle L z, z\rangle-\propto\|\nabla(z)\|-$ $-\alpha\|z\| \xi(w(z), v(z), z) \leqslant \Phi(0,0, z) \leq-\frac{d}{2}\|z\|^{2}+\propto\|z\|$ it follows that $\{\sigma(\|w(z)\|) ; z \in M\} \in \mathbb{R}^{1}$ is bounded from below and with respect to the assumption (3) the set $\{w(z)$; $z \in M\} \subset W$ is bounded.
(vi) As $\Phi(., ., z)$ is a convex functional on $W \times V$ we have with respect to (ii) that

$$
v=v(z), w=w(z)
$$

if and only if

$$
\langle L v, k\rangle=\langle S(w+v+z), h+k\rangle
$$

for arbitrary $h \in W, k \in V$.
(vii) Lemma. The mappings $w: Z \longrightarrow W, V: Z \longrightarrow V$ transform the weakly convergent sequences in Z onto strongly convergent sequences in H.

Proof. Let $\left\{z_{n}\right\}_{n=1}^{\infty} \in Z, z_{n} \rightarrow z_{0}$ in Z. Then $\left\{\left\|w\left(z_{n}\right)\right\|\right\}_{n=1}^{\infty},\left\{\left\|\nabla\left(z_{n}\right)\right\|\right\}_{n=1}^{\infty}$ are bounded sequences of real numbers (see Lemma (v)) and with respect to the refle-
xivity of V and finite-dimensionalness of W there exists a subsequence $\left\{z_{n_{i}}\right\}_{i=1}^{\infty}$ of $\left\{z_{n}\right\}_{n=1}^{\infty}$ such that

$$
w\left(z_{n_{i}}\right) \rightarrow w_{0} \text { in } W, \nabla\left(z_{n_{i}}\right) \longrightarrow v_{0} \text { in } v_{0}
$$

Letting $i \rightarrow \infty \quad$ in

$$
\left\langle\operatorname{Lv}\left(z_{n_{i}}\right), k\right\rangle=\left\langle S\left(z_{n_{i}}+w\left(z_{n_{i}}\right)+v\left(z_{n_{i}}\right)\right), h+k\right\rangle
$$

we obtain

$$
\left\langle L \nabla_{0}, k\right\rangle=\left\langle S\left(w_{0}+\nabla_{0}+z_{0}\right), h+k\right\rangle
$$

for arbitrary $h \in W, k \in V$. Thus according to (vi) we have

$$
v_{0}=\nabla\left(z_{0}\right), w_{0}=w\left(z_{0}\right)
$$

From this it easily follows (by contrary) that

$$
v\left(z_{n}\right) \rightarrow v\left(z_{0}\right), w\left(z_{n}\right) \rightarrow w\left(z_{0}\right)
$$

The strong convergence $\nabla\left(z_{n}\right) \longrightarrow v\left(z_{0}\right)$ follows from

$$
\nabla\left(z_{n}\right)=K P_{V} S\left(w\left(z_{n}\right)+\nabla\left(z_{n}\right)+z_{n}\right)
$$

(where K is the inverse of L considered as an operator from V onto V) and from the strong continuity of S.
($\mathbf{\nabla}$ iii) Lemma. The mappings $w: Z \longrightarrow W, \nabla: Z \longrightarrow V$ are Fréchet differentiable.

Proaf. Define $F: \nabla \times V \times Z \longrightarrow W \times V$ by

$$
F:(w, \nabla, z) \longmapsto\left(-P_{w} S(w+\nabla+z), P_{V} L_{z}-P_{V} S(w+\nabla+z)\right)
$$

Obviously
$F^{\prime}(w, v)(w, v, z):(\tilde{w}, \tilde{\nabla}) \longmapsto\left(-P_{w} S^{\prime}(w+v+z)(\tilde{w}+\tilde{\nabla})\right.$,
$\left.P_{\mathbf{V}}{ }^{\text {TV }}-P_{\mathbf{V}} S^{\prime}(w+v+z)(\tilde{w}+\tilde{v})\right)$.
According to (vi) and Implicit Function Theorem it is sufficient to prove that

$$
F_{(w, v)}^{\prime}(w(z), \nabla(z), z): W \times \nabla \rightarrow \nabla \times V
$$

is an isomorphism. Put

$$
\begin{aligned}
A:(\tilde{w}, \tilde{v}) \longmapsto\left(\lambda_{0} \tilde{w}\right. & +P_{w} S^{\prime}(w+v+z)(\tilde{w}+\tilde{v}), P_{V} B \tilde{v}+ \\
& \left.+P_{V} S^{\prime}(w+\nabla+z)(\tilde{w}+\tilde{v})\right) .
\end{aligned}
$$

Obviously $A: W \times V \rightarrow W \times V$ is completely continuous and

$$
F_{(w, v)}^{\prime}(w, v, z):(\tilde{w}, \tilde{v}) \longmapsto \lambda_{0}(\tilde{w}, \tilde{v})-\Delta(\tilde{w}, \tilde{v})
$$

According to the Fredholm theory for linear operators to prove that $F^{\prime}(w, v)(w, v, z)$ is an isomorphism it is sufficient to prove that the equation

$$
\begin{equation*}
P_{V} I \tilde{v}=P_{w \odot} V^{0}(w+V+z)(\tilde{w}+\tilde{v}) \tag{13}
\end{equation*}
$$

has only a trivial solution. Let $(\tilde{W}, \tilde{\sim}) \in W \times V$ be a solution of (13), Then $d\|\nabla\|^{2} \leqslant\langle L \tilde{T}, \tilde{v}\rangle=\left\langle S^{\prime}(w+\nabla+z)(\tilde{v}+\tilde{v})\right.$, $\tilde{\boldsymbol{w}}+\boldsymbol{\forall}>\leqslant \mathbf{~}$
and thus $\tilde{\mathbf{v}}=0$. From

$$
P_{w(1)} S^{\prime}(w+\nabla+z) \tilde{w}=0
$$

we have

$$
0=\left\langle S^{\prime}(w+v+z) \tilde{w}, \tilde{w}\right\rangle
$$

and the assumption (7) implies $\mathbb{\sim}=0$. The proof of the Frechet differentiability of $w(z)$ and $v(z)$ is comple ted.

$$
\text { (ix) Define } G: Z \rightarrow R^{1} \text { by }
$$

$$
G: z \longmapsto \Phi(w(z), \nabla(z), z)
$$

Then -G is weakly lower semicontinuous and

$$
\begin{aligned}
G(z) & =\Phi(w(z), v(z), z) \leqslant \Phi(0,0, z)=\frac{1}{2}\langle L z, z\rangle-\mathcal{L}(z) \Leftrightarrow \\
& \Leftrightarrow-\frac{d}{2}\|z\|^{2}+\propto\|z\|
\end{aligned}
$$

implies that -G is coercive, i.e.

$$
\lim _{\|x\| \rightarrow \infty} G(z)=-\infty .
$$

Thus there exists at least one $z_{0} \in Z$ such that

$$
G\left(z_{0}\right)=\max _{z \in Z} G(z)
$$

and we have $G^{\prime}\left(z_{0}\right)=0$, i.e.

$$
\left\langle G^{\prime}\left(z_{0}\right), z\right\rangle=0
$$

for arbitrary $z \in Z$. As

$$
\begin{aligned}
& G^{\prime}\left(z_{0}\right)=\Phi_{1}^{\prime}(w(z), v(z), z) \circ w^{\prime}(z)+ \\
& \quad+\Phi_{2}^{\prime}(w(z), v(z), z) \circ v^{\prime}(z)+\Phi_{3}^{\prime}(w(z), v(z), z)
\end{aligned}
$$

(the Leibniz rule on differentiation of composition) we have (putting $\left.u_{0}=w\left(z_{0}\right)+v\left(z_{0}\right)+z_{0}\right)$

$$
\begin{align*}
& 0=\left\langle G^{\prime}\left(z_{0}\right), z\right\rangle=\left\langle\operatorname{Lv}\left(z_{0}\right), \nabla^{\prime}\left(z_{0}\right) z\right\rangle+\left\langle L z_{0}, z\right\rangle- \tag{14}\\
& -\left\langle S u_{0}, w^{\prime}\left(z_{0}\right) z+v^{\prime}\left(z_{0}\right) z\right\rangle-\left\langle S u_{0}, z\right\rangle
\end{align*}
$$

As

$$
\begin{equation*}
\left\langle L v\left(z_{0}\right), k\right\rangle=\left\langle S u_{0}, h+k\right\rangle \tag{15}
\end{equation*}
$$

for arbitrary $k \in V$ and $h \in W$ we obtain from (14):

$$
\begin{equation*}
\left\langle L z_{0}, z\right\rangle=\left\langle S u_{0}, z\right\rangle \tag{16}
\end{equation*}
$$

for arbitrary $z \in Z$. The relations (15) and (16) imply

$$
L u_{0}=S u_{0}
$$

and the theorem is proved.

3. Remarks

(i) If (10) holds then $Z=\{0\}$ and if the assump-
tions of Theorem 2 are satisfied then the solution of (2) is unique.
(ii) If (10) holds then the additional assumptions upon S are not necessary. One can immediately prove the following theorem.

Theorem 4. Suppose (1), (3), (10). Then the equation (2) has at least one solution

$$
\text { (17) } u_{0}=w_{0}+\nabla_{0} \in H, w_{0} \in W, \nabla_{0} \in V
$$

such that
(18) $\Phi\left(w_{0}, v_{0}\right)=\min _{(w, v) \in W \times V} \Phi(w, v)$
(where $\Phi:(w, v) \longmapsto \frac{1}{2}\langle L v, v\rangle-\varphi(w+v)$). On the other hand, arbitrary solution of (18) defines by the rule (17) the solution of (2).
(iii) Analogous result as in Theorem 4 is proved in [2] under more complicated assumptions.
(iv) The procedure how to prove Theorem 2 (or Theorem 3) extends the method from [5] for obtaining the existence of saddle point of convex-concave functional.

> References
[I] S. AHMAD - A.C. IAZER - J.L. PAUL: Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. Journal 25(1976), 933-944.
[2] M.S. BERGER, M. SCHECHTER: On the solvability of semilinear operator equations and elliptic boundary value problems, Bull. Amer. Math. Soc. 78(1972), 741-745.
[3] S. FUČK: Nonlinear potential equations with linear parts at resonance (to appear).
[4] S. FUČfK - J. NEČAS - V. SOUČEK: Variationsrechnung, Teubner Texte zur Mathematik, Teubner, Leipzig, 1977.
[5] A.C. LAZER - E.M. LANDESMAN - D.R. MEYERS: On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl. 52(1975), 594-614.
[6] A.C. LAZER: Some resonance problems for elliptic boundary value problems, Lecture Notes in Pure and Applied Mathematics No 19: Nonlinear Functional Analysis and Differential Equations (ed.: L. Cesari, R. Kannan, J.D. Schuur), pp. 269-289.M. Dekker Inc., New York and Basel, 1976.
[7] M.M. VAJNBERG: Variational methods for the study of nonlinear operators (Russian), Moscow 1956. English transl.: Holden-Day, San Francisco, California 1964.

Matematicko-fyzikalni fakulta

Universita Karlova
Sokoloveká 83, 18600 Praha 8
Ceskoslovensko
(Oblatum 4.7. 1977)

