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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAHOLINAB 

18f4 (1977) 

NOTE TO PERIODIC SOLVABILITY OF THE BOUNDAHT VALUE PROBLEM 

FOR NONLINEAR HEAT EQUATION 

Věnceslava ŠŤASTNOV.Í and Svatopluk FUČÍK, Praha 

Abstract: There is proved the existence of an co -pe-
riodic solution of the boundary value problem for nonlinear 
heat equation. The proof is based on the Kazdan-Warner met
hod (introduced for the solvability of boundary value prob
lems for nonlinear partial differential equations of elliptic 
type) and on the theorem of Kolesov (where the existence of 
an co -periodic solution of quasilinear parabolic equation 
follows from the existence of ^-periodic sub- and super-so
lutions ) • 
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AMS: 35K05, 35K55 Ref. 2.: 7.956 

Let co > 0. Suppose that f(t,x) is <tf -periodic func

tion in t. Let T/T : R — * R be a given real valued function 

defined on the real line Br* This note is devoted to the stu

dy of the existence of a solution of the problem 

ut(t,x) - uxx(tfx) - u(tfx) + -Vf(u(t,x)) « f(tfx)f 

(tfx)6 Q « R
1 K (OfiT)f 

(1) ^ u(t,0) = u(tfJr) = 0, teR
1 

u(t +o>fx) = u(tfx)f (t,x)eQ. 

In contrast to the previous results obtained for (1) by 

various authors (for an extensive bibliography see the pre

pared book of 0. Vejvoda and Comp. [51) our result will not 
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be restricted to small nonlinearities although f will have 

to satisfy the monotonicity condition and certain one-side 

growth condition. The obtained result is in the spirit of a 

recent work by Kazdan-Warner 121 on boundary value problems 

for elliptic partial differential equations and may be gene

ralized for higher dimensional analogue of the problem (1). 

The result is very close to Theorem V.l from Br^zis-Niren-

berg [11, where the generalized solutions are considered and 

where also different one-side growth condition is supposed. 

In the sequel we shall suppose: 

(2) f(t,x) is CJ -periodic in the variable t and satisfies 

on Q the HBlder condition with some exponent oc e (0,1] ; 

(3) the function ip* : R — * Br satisfies on arbitrary com

pact sub interval of R the HSlder condition; 

(4) the function y is nondecreasing on R and there exists 

cSO such that 

y ( | )£-c (1 +£ 2) 

for arbitrary £ e W"\ 

(5) lim y(f)-c ifr(0)-clim y ( € ) . 
$-*-*> * T %-+"> T > 

The continuous function u* (t,x) on "5 is said to be a* 

solution of (1) if it is co -periodic in t, satisfies the 

boundary conditions (l^), n a 0 t n e derivatives u^ jU*^ on Q 

and verifies the equation (1-̂ ). 

The main goal of this note is the following theorem. 

Theorem. Suppose (2) - (5). Then the problem (1) has 

at least one solution if and only if 
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fi> Jt 
(6) 2o> lim tr(€ ) «c f f f(tfx) sin x dx dt< 2<o lim f< § )• 

The proof of Theorem 

(i) Let (1) have a solution u* (tfx). Then 

( f f(tfx) sin x dx dt • J J y (u* (tfx)) sin x dx dt 
•'O J* J0 % 

and from the assumption (5) it follows the necessity of (6). 

(Note that for the using of the integration by parts we apply 

the regularity result that u* is HBlder-continuous - see e.g# 

[4, Chap. 5, Thm. l.U.) 

(ii) Suppose (6). Then there exists a constant ktf w" 

such that 2 o> y(k) is close to 

c>> K 

a • f f f(tfx) sin x dx dt. 

From the absolute continuity of the Lebesgue integral it is 

possible to perturb the constant k onto smooth function z(x) 

on [Oftff2 with z(0) « z(3r" ) = 0 and such that 

Ji 
a * o J if (z(x)) sin x dx. 

(The reader is invited to sketch a picture and to make a pre

cise proof of the above assertion.) 

(iii) Put 

P: (tfx)t—* f(tfx) - y(z(x))f (tfx)eQ. 

Then for arbitrary continuously differentiable function u sa

tisfying (l2)f(l3) and 

z(x)*u(t,x)f (tfx)eQ 

we have 
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(7) f ( t , x ) - y ( u ( t , x ) ) i P ( t , x ) , ( t , x ) e Q . 

Analogously, for arbitrary continuously di f ferent iable func

t i o n «-(t ,x) s a t i s f y i n g ( l g J - d } ) and 

u ( t , x ) 4 z ( x ) , ( t , x ) 6 Q 

i t i s 

P ( t , x ) * f ( t , x ) - y ( u ( t , x ) ) , ( t , x ) € Q . 

( i v ) The problem 

f
v t "" v xx ~ v tt ** o n Q 

v ( t , 0 ) -= v ( t , * r ) -- 0, t € R1 

v ( t + a>,x) * v ( t , x ) on Q 

has at l e a s t one so lu t ion v * ( t , x ) f or 

c«> of 
f f P ( t , x ) s i n x dx d t = 0 . 

J0 J0 

Choose y c R such that 

(9) f sin x + v* (t,x)£ z(x), (t,x)c Q. 

(Note that if v(t,x) has continuous partial derivatives of 

the first order on Q and satisfies (82)1(83) then 

! z j t _ j , Iv(t -x) - v(t tO)l _ x 6 x _ 
e m x x s i n x yecdjk) s i n x 

sup l v . - ( t , x ) | 
tt,x) eft x 

from which it follows (9) on R xCO,^r) and analogously on 

R1x Cf, w3.) 

Put 

u: (t,x) I—* y sin x + v* (t,x), (t,x)e Q. 

Then obviously tl<t,x) satisfies (Ig),^) and from (7), (9) 
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we have 

ut(t,x) - u^tjx) -H(t,x) • y(i!(t,x))c5f(t,x), (t,x)c Q. 

Analogously, we choose cfe IT such that 

u: (t,x) .—* cTain x + v* (t,x)^ z(x), (t,x)€Q. 

Then u(t,x) satisfies (lg),^) and 

ut(t,x) - u^t^x) - u(t,x) + y(u(t,x))^ f(t,x)f (t,x)*Q. 

Obviously 

u(t,x)*u(t,x), (tx) €Q. 

(v) The result of Kolesov (see I33) implies that the

re exists at least one solution u* (t,x) of (1) which, mo

reover, satisfies 

u(t,x)* u* (t,x)6 u(t,x), (t,x)€§. 
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