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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

18,4 (197?) 

COVERING OF A SPACE BT NOTOERE DENSE SETS 

Petr SIMON, Praha 

Abstract: The estimate of the cardinality of a fami
ly of nowhere dense sets which can cover a topological 
space without isolated points is given by means of cofinal 
subsets of ordinal-valued functions from cardinals. This 
improves some of known results. 
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ber, ar-base, partially ordered set, cofinal subset. 
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Definition. Let X be a dense-in itself topological 

space, ND(X) the set of all nowhere dense subsets of X. De

fine n(X) = min < 1^1 :3>c ND(X) & UoD * X5,and call this 

cardinal invariant the Novak number of a space X. 

Let us recall several known facts about the Novak: num

ber: 

(a) (§tgpanek-Vopenka T3v3 ): If X is a nowhere sepa--

rable metric space, then n(X) «* oy ̂ . 

(b) (Broughan [B]): If X is dense-in-itself metric 

space, then n(X)£ c. 

(c) (Stepanek-Vopenka [§V]): Let X be a uniformizab-

le space, let oc , ft be cardinals such that O 6 oc «c oc*6. 

6 fl and suppose that 

1. X admits a uniformity whose base 91 is linearly 
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ordered system of neighborhoods of diagonal with lit I m oc f 

and 

2. each non-void open subset of X contains at least (3 

pairwise disjoint non-void open subsets. 

Then n(X) 4 oo+ . 

(d) (Kulpa-Szymanski CKSJ): Let oc -=• fl be cardinal 

numbers, (I infinite and regular, and le t X be a topolo

gical space satisfying the following: 

1. X has a .7?'-base $* expressible as a union of cc 

disjoint families, and 

2. each non-void open subset of X contains at least # 

pairwise disjoint non-void open subsets. 

Then n(X) 6 /3 . 

The purpose of the present note is to prove the theorem, 

which is the common generalization of all results above,which 

gives a sharper bound for n(X) in some special cases and 

which can estimate n(X) for many spaces X where the above 

theorems are inapplicable. 

Recall the following well-known notion: If (P,<) is a 

partially ordered set and if KcP, then K is called cofinal 

in P iff for each p* P there is a k e K with p-ck. The number 

cf(P) is then defined to be inf i\ Kl: K is cofinal in P> . 

Consider, as usually, a cardinal number as an initial 

ordinal, ordered by e • The set of all functions f: cc—• /3 

(oc,/3 cardinals) is denoted by **(l and ordered by f< g iff 

f(f )€ g(f ) for all f € oc . The number cf(*^3 ) is then 

taken with respect to the order just described. 

Definition. If X is a set, ft c & (X) and xeX, then 
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pc(&,x) is, by definition, U A € & : x € A} I and 

pc(d) = sup { pc( &,x): x e X l . 

Now we are prepared to state the main result: 

Theorem. Let X be a topological space and let oc, (I 

be cardinal numbers, & infinite, such that the following 

are true: 

(i) X has a ft -base J3 expressible as a union 

<J i $c : f 6 oc I , where pc( <8e )< cf (ft ) for each £ € oc , 

(ii) to each B e ® one can assign a family - t B ^ ) : 

- TJ, € fJ J of non-void open subsets of B with pc -(B('r) ): 

: 7} 6 $}<: cf((3 ). 
Then n(X)£cf(*/3 ). 

Remark. It is clear that (d) is a special case of our 

theorem: it suffices to take 3$ = (P ani notice that the 

choice oc -*- (I with |3 regular implies cf (xfh ) = fl . (a) 

and (c) can be easily deduced from (d); the implication 

( d ) —> (a) has already been established in [KS]. The proof 

of (b ) goes as follows: Each metrizable space has a C -

discrete base, each non-void open subset in a dense-in-it-

self Hausdorff space contains infinitely many disjoint open 

non-void subsets, so the choice oc = (I = Ct> is all right 

and cf( 0 ) cannot be greater than c. 

Proof of the Theorem. Let <*> f ft t & , &* ( f € oo)t 

B(i£ ) (B € £8 , ^ e #) be given as assumed in the theorem. 

For | € oc and % e (3 define 

X j ^ « X - \J i B(u) : ^ « u ( J , B - 3 - i , The proof is a 

series of five easy observations, starting with an obvious 

Observation 1: Each X« ̂  is closed. 

For f e fh let X^ « C\ i XI f /* j: 9 € oc ? . As an in-
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tersection of closed sets, each Xf is closed. 

Observation 2. For each f e °°fl , X-. is nowhere dense. 

Let 04-Uc X open be given. ^ is a sr-base, so one can 

find some | € oc and a B € CQc with 0-pBcU. For (cf(£ ), 
L * (I , by definition of B ( l ) , ]3#B(t)cBcU and, by 

definition of X- ffc)> B^ c ^n *fc B( u )n X~ «/gx = 0. Sin

ce U was chosen arbitrarily, Xf is nowhere dense. 

Observation 3. Let f,g e *A , f<g. Then X^cX . 

(An obvious consequence of the definition Xc~ .) 

Observation 4. For each xcX there is an f e */3 with x e 

e X^. Fix xeX. For c 6 oc define f(£ ) = sup i^m ft : 

there is a B € $b- with xe B( ̂ ) J . Notice that the assum

ptions (i) and (ii) imply that the set of ordinals the sup 

is taken from is of cardinality less than cf((S ), thus f € 

6 *(h is well-defined, because f(£ ) e fi . Clearly xeX^. 

Combining the last two observations, we obtain immedi

ately the final 

Observation 5: If K c */3 is cofinal in *yj , then \J*( X^: 

: f c K } = X, which completes the proof. 

Corollary of the proof: Let X, ec , A satisfy the as

sumptions of the Theorem and suppose that *f$ admits a 

well-ordered sequence (by < ) of functions, which is cofi

nal and of cardinality cf(*/3 ). Then X can be covered by a 

monotonically increasing sequence (of cardinality c f (* l? )) 

of nowhere dense sets. 

(Use the Observation 3.) 

Examples. A. A nowhere separable Souslin line L may 
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serve as an example of a space where (d) fails if one tries 

to estimate its Novalc number. Recall that a Souslin line L 

is a connected LOTS with c(L) =o> , d(L) = o>,. Since 

er(X)£ d(X) for any topological space, no $r-basis for L 

is expressible as a union of less than co^ disjoint sub

families, necessarify <x, >. o>,# On the other hand, no open 

subset of L admits more than countably many disjoint open 

subsets, thus (I & co # Hence the assumptions of (d) can 

never be satisfied in this case. 

It is widely known that a direct computation gives 

n(L) -6 <*>1# Let us give another proof of this fact using 

our Theorem. Notice that L admits a JT -basis 3i with I CBI = 

= o>1 and pc(fo) = co . Set oc = 1, 3 = J3Q (= U -t tS c : 

: 9 < 1} )» and assign to each B € 3 the family - ( B ^ ) : 

: 7i <; co^ = 4 B' e 3* : B ' c B j , The Theorem applies: 

n(L)£ cf C1^-,) = O^ 

B. The inequality pc( J3^ )< cf C/3 ) cannot be replaced 

by pc(3c ) 6 cf ((& ) in (i) of the Theorem. As usual, denote 

by N* the space /3 N - N, where N is a countable discrete 

set. Clearly n(N*) > <*>•% without any set-theoretical as

sumption. 

But assume c = cO^ , which is consistent with ZFC. 

Under this assumption N* has a v? -basis 3$ such that 

I 3b \ = c and pc(3) ^ co1§ so let ot = 1, J3 = 53 0. For 

B e ft let 4 B ( ^ ) - ^ < C J be an arbitrary family of 

pairwise disjoint nonempty clopen subsets of B, thus 

pc •£ B( 1£ ): *» < c $ = 1 for every B 6 J5 . 

Applying the Theorem despite the fact that (i) is not 
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satisfied, one has (remember that c s <0 ) n(N**)*cf( c) = 
1 

» cf(c) = W p an obviously false result. 

Remark. The referee has raised a question, whether the

re exist3 a apace X auch that n(X)< cf (*(& ) for every pair of 

cardinals oC , fi auitable for uaing the Theorem. Though the 

pre3ent aithor believes that such a space exists at least in 

some model of set theory, he regrets that he is not able to 

exhibit it. 
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