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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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THE CRITICAL EXPONENT OF OPERATORS WITH CONSTRAINED
SPECTRAL RADIUS

Zden$x DOSTAL, Ostrava

Abstract: Suppose we are given a natural number n
and 0< r<1. The proof is given that there is an integer
k such that if A gs a lirear contraction on an n-dimensio-
nal Banach space with the spectral radius less or equal to

r, then
’ | a¥l< 1.
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Let n be an arbitrary but fixed positive integer. Let
X, be an n-dimensional linear space, let P(X ) be the set
of all norms on X, and let L(%) be the algebra of all li-
near operators on X . If A€ L(X)) and pe€ P(X,), then we
shall denote the operator norm of A in the Banach space
(X,,p) by p(A). The spectral radius of A€ I{X ) will be de-
noted by | A Is .

If peP(X), A€L(X), p(A) = 1and | Al <1, then
it is clear from the spectral radius formula that there is
a natural number k such that p(Ak)< 1. This led [ 2] to the
following

Definition. The number q is said to be the critical

exponent of the Banach s pace (Xn,p), if the following con-
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ditioms are satisfied:
(1) If A€ L(X,) and p(A) = p(A%) £ 1 then 14&lg =1y
(2) there exists B€ L(X,) such ‘that p(B) = p(Bq"l) =
=land |Blg< 1.

The first critical exponent to be computed (although
not described as such) was that of the n-dimensional 1,,-
space; the result, 2% -n+ 1, was obtained in 1957 by J.
Mar{x and V. Pték [1] . Later, Professor V. Pték [ 2] showed
that the critical exponent of the n-dimensional Hilbex;f. spa~

ce is equal to n.

If n22, then there is pé¢ P(Xn) such that q(ln,p) = 00
(L. Danzer, unpublished), so that no upper bound independent
of p for q(xn,p) can exist. The point of this note is te
show that the situation changes if we restrict ourselves to

operators with constrained spectral radius.

Theorem, Let O<r<l, If

x=n (@Y - 1)/nr],
Ae¢ L(X ), peP(X ), p(A)€1 and | A lg £ r, then
p(Ak)-zl,

where [ x] stands for the least natural number greater than
x.
Proof: Let r, p and A satisfy the assumptioms of the
theorem, and let
8(x) = xP =) = Cpx = vuu = oc X2

be the characteristic polynomial of A, All the roots Prreee
coey f’n of the equation g(x) = O being less than or equal
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to r in abtsolute value,

| “’11 = | ()i = 911" . 9.1‘ “(n-:-l»l)r ¢
.1+o . o’.h’n"i"l
.i < { 0,1’

Thus
: =141 o (142)%-1.

puts B Loy 16 X (207 ¢
Let & be a pesitive integer. Sime |A4%lg =la \;, , We have
(4%l & r° ama

P(A®R) = p((A®)™) & (1+2®)"-1.
Hence if
(1) rc 2/m 1,
then p(A®®)<1. Simple computations show that (1) is equi-
valent to

sz [meY™ - 1)/ ],

which finishes the proof.

We believe that a taltle of the actual values of k(n,r)

for various values of n and r may be of some interest.
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Table,

r 2 3 4 5 10 15 20
0.1 2 3 4 5 20 30 40
0.2 2 3 8 10 20 30 60
0.3 2 6 8 10 30 45 60
0.5 4 6 12 15 40 75 100
0.7 6 12 20 30 80 135 200
0.8 8 21 32 45 120 210 300
0.9 18 39 64 95 260 435 640

Our results are doubtless capable of refinement for
large r. Nevertheless, for r< 21/ n _ 1 Xx takes the value

n, which is clearly the best possible bound.
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