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ON A WEAK KELIEY-MORSE THEORY OF CLASSES
W. MAREK, Warsaw, and A. SOCHOR, Prague

Abstract: We show that in the Kelley-Morse theory of
classes without powerset axiom one can interpret the same
theory together with the axiom of constructibility amd so-
me forms of (generalized) continuum hypothesis. An appli-
cation to interpretability problems of the Alternative Set
Theory of Vop&nka is shown, too.

. Key words: Kelley-Morse theory, Alternative Set Theo-
ry, interpretation, continuum hypothesis, constructibility.
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§ 1. Preliminaries. In this paper we consider the Kel-
ley-Morse theory of classes (cf. [ 3]) without powerset axi-
om (denotation KM_). This theory is roughly speaking the
impredicative extension of ZF~ (i.e. the Zermelo-Fraenkel
set theory without the powerset axiom). Let us stress that
in KM_ the choice scheme is not contained and moreover that
neither the axiom of choice is used in the following con-
struction. We are going to show that in this theory the no-
tion of constructible class can be introduced. Instead, how-
ever, of repeating G8del’s proof (which is possible) we use
instead of constructibility predicate (for classes) the ra-
mified-analytical construction (see [31). This corresponds

to "strongly constructible" sets of Cohen (see [2]) and
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Gandy-Putnam construction of the least [ -model of second
order arithmetic (see {1)). Similarly to the fact that the
ramified analysis over { @ ,+,., < ) satisfies "Every real
is constructible® our construction yields, over each (8 -mo-
del of KM_ the least [(3-extension of its L-part (to see
this analyse the proof of our interpretability result simi-
larly as it is done in [3]). Our proof is heavily based on
the methods of [3], Section 2.

The ramified analytical hierarchy over an arbitrary
structure ¥ is defined as follows:
R.A.? =% v "family of all subsets of %L} parametri-
cally definable in %1 "

R.A.::'l = (@l "family of all subsets of |#L| definable
over (m,R.A.:Y') "

W _ ot .
R.A.A = gEJ” R.A.g for limit A

w . Y
R.A., §:J%R'A.E

This construction can be trivially generalized using
arbitrary wellordering instead of the class of all ordinal
numbers and we are going to use this generalization. More-
over our construction (admitting %% to be a proper class)
may be formalized in a two sorted innguage and in particu-
lar in Kelley-Morse type theory of classes. If 4l posses-
ses a definable wellordering and an appropriate coding sche-
me then R.A.m has a definable wellordering. Elaboration
of some of these facts is done in [3], Section 2.

We remind that W.0.(X) denotes that X is wellordering;
if ® is a formula amd P a predicate then QP is a rest-
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riction of § to P.

§ 2. Interpretation. We are going to construct an in-
terpretation of KM_ + V = L in KM_. So from now on work in
m .

We have the following two cases (to start with):

(i) wi‘ exists (i.e. it is a set)

Then the interpretation of KM_+ V = L in KM_ is the

following: Sets are interpreted as elements of L L » clas-
@3
ses are subsets of L I‘\vhicl'x are constructible. This in-
@
1

terpretation forms a set or proper class depending on whet-

L

her the w, is a set or is just On.

(ii) w{‘ does not exist (i.e. it is not a set)

This is the principal case and the moment of refleect-
ion shows that On plays the role of wi‘. The rest of this
section will be devoted to this case.

Now we start the construction of ramified analysis in
the fashion described in [ 3], Section 2 using wellorderings
of the class On and having in mind however that we do not
have the powerset axiom here. Let T be a variable for (class)
wellordering of On. In our interpretation the role of ¥t
will play the class of all constructible sets and therefore
the index M{ will be omitted. Our definition of R.A.q is
rather informal and precise definition using the predicate
Up can be found in [31.

Note that since 1, has a definable wellordering, the pre-
wellordering Vg of L3] is actually a wellordering of R.A.p.
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We are going to consider two possible cases and treat
them almost simultaneously, though the situation is quite
different in eaeh of them:

(a) There is a wellordering T such that R‘A'T+1 does

not contain a wellordering of the type =T.

(b) The case (a) does not hold.
If (a) holds then the desired interpretation is as fol-

lows: Sets are elements of L, classes are elements of R.A.p
0
(i.e. those classes which are sections of U.ro) where T  is

the shortest wellordering T such that R.A.qp,q does not con-
tain & wellordering of the type = T.

If (b) holds then the desired interpretation is as fol-
lows: Sets are elements of L, classes are members of union
(through all wellorderings in question) of R.A.T (in fact
those which are sections of Up for any T).

Now we have to show the following three key .facta:

I. There is no proper semiset in R.A.TO (R.A. resp.)
i,e, if such a class is included in a set it is a set it-
self.

II. B-property of R.A.p (R.A. respectively) i.e. if

ReAug RA °
Ww.0. 0(s) (w.o. *(S) respectively) then W.0.(S). Thus
we show that R.A.q (R.A. rbspectivély) is a 3 -interpreta-
tion (see [81).

III. Our interpretation interprets t.he comprehension
scheme.

Fact I. In order to deal successfully with I we mti-

ce that since we have a definable wellordering of R‘A'To

(R.A. respectively) we are able to imitate the G8del ‘s proof
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for GCH while proceeding as follows: Take X a subclass of
some L , o is denumerable in L since 0:{' does not ex-
ist. Assume Xe& R.L.T. By Skolem-Idwenheim argument we have
an elementary denumerable l&R.A.T. By contraction we get
denumerable Z&P(Lgj) for some L/s >a but (3 < On, We
get :ldLﬁU Z. Now Z is R.A.‘J? ramified analytical le-
vel over L for some ¥. But L is a ZF” model so it is clo-
sed under R.A. construction. Thus X which is not moved un-
der Jr belongs to R.A._:".3 Thus Z€ L.

The fact I takes also care of the lower case of conti-
nuum hypothesis; reals become wellordered in type On (which
plays the role of co:IL' ) such that every proper segment is
denumerable.

Fact II. Let .0. Ta(x) (w.0.RA+(x) respective-
ly). Uniformly both for case (a) and (b) we are going to
show W.0.(X). Indeed, if not, then 'there is a denumeratle
descending sequence Z for X. By the axiom of replacement
there must be o¢ < On such that Z € e ., But L is a ZF~

26 L is similar to an ordinal which

model, thus (by I) XA
is ebsurd.
Fact III. In both cases (a) and (b) we prove reflec-

tion principle for R.A..! (R.A. respectively). In the proof
[

the line of (31 is followed. (Since we do have the defin-

able wellordering < of R.A.p (R.A. respectively) we do
0

not need the selectiom principle of [3) . That principle
took case of the case when we had only "good" prewellorde-
ring of all classes but used the powerset axiom). Here we

proceed as follows (we point out only the main steps): If
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the case (a) holds then for every wellordering 8< ’0 the-
re is an isomorphic wellordering which is in R.A.p 5 (by the

minimality of To). In case (b) we have

Lemma. Under the assumption of (b) for eaeh Wellor-
dering S there is an R.A.-wellordering T such that T=S,

Proof. Let us assume that our statement is false,
i.e. that there is S whieh is not isomorphic to any R.A.-
wellordering. Then S must be longer than all R.A.-wellorde-
rings since the latter family is closed under initial seg-
ments. But then there is no wellordering of the type S in
R.A.s+1 eontradicting assumptions.

Having the lemma we proceed as follows:

In case (a) we first show that B.A.&o has enough elo-
sure properties (see [ 3], Section 2) and then if we could
not £ind a bound for existeneial quantifier (this is the
only nontrivial case of reflection principle) then there
would exist a wellordering of the type = '.l'o, definable

over R.A.m o
To

In case (b) we simply can assume that all wellorder-
ings under consideration are R.A. and having in mind that
R.A. has a definable wellordering.we proceed as in case (a).

Thus we completed the proof of the following theorem:

Theorem. (In KM_ .) There are definable predicates
P (unary) and Q (binary) such that

(1) All axioms of KM_ , relativized to P, hold

(2) (v = HC)P holas

(3) (v = L nolas

(4) W wellorders P in such a way that every initial
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segment of Q is codable as a class.

Thus two instances of general continuum hypothesis
eorresponding to 2$° = ¥, and 24‘1 = $5 hold in the in-
terpretation.

We notiece that the idea of considering an alternative

(a)v (b) is due to Gandy (unpublished).

§ 3. AST and KM_ are mutually interpretable. P. Vo-

pénka built the alternative set theory as an alternative
to the Cantor’s set theory (see [61). A formalization of
Vopénka ‘s theory ean be found in [ 4], here we are going to
describe an equivalent axiomatic system (cf. [51).

Let ZFFin derote the Zermelo-Fraenkel set theory (ZF)
in which the axiom of infinity is replaced by its negation.

The Alternative set theory (AST) is the theory with
the language consisting of one sort of (class) variables
and two binary predicates € and = . Sets are defined as
members of classes.

We_.define that a set x is finite if every its subclass
is a set (in symbols Fin(x) = (V X&x)Set(X)). £ is called
a wellordering if it is & linear ordering such that every
non empty subclass of the field of & has the minimal ele-
ment (i.e. (VX)(O%XSdom(&)—> (IxeX)(VyeX)(ny<x))).
A class X is countable (in symbols Count(X)) if it is not
finite and if there is a wellordering & of it such that
(VY x) Fin({ y;y£x §).

It is necessary to stress the fact that all sets in AST
are finite from the Cantor’s point of view (this is a conse=

quence of the third axiom). On the other hand we admit pro-
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per elasses which are subclasses of sets (the existence of
such classes follows from the prolongation axiom) and hence
there are sets x with = Fin(x). The class of all natural
numbers is not wellordered by € s8ince the class of all "non-
standard” natural numbers (i.e. the class of all natural num-
bers which are not finite) has no minimal element (cf. [6]
or [51).

We acecept the following axioms

1) Axiom of extensionality (for classes)

2) Scheme of existence of classes
For every formula. ¢ (X,X;,...,X;) we accept the axiom

(VX))eoo(VX (3 (YY) (yeY & ¢ (y,Xy,...,X)))

3) A1 axioms of Z¥p;.
(more precisely we assume that V w= ¢ holds for every ¢ which
is @ formal axiom of (formalized) Zermelo-Fraenkel set theo~
ry of finite sets - cf. also another formulation in L[4]).

4) Prolongation axiom

(VY F)((Fne(F) & Count(F)) —> (3f)(Fnc(f) & FE£))

5) Axiom of choice
The universal class V can be wellordered

6) Axiom of cardinalities
For every two uncour;table classes there is one-one mapping
between them (i.e. there is only one uncountable cardinality).

In the following diagram —» denotes the existence of an

interpretation of the first theory in the second one.

(1)
AST — > KM_ + CH
3 (2)
m-
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The arrow (2) is assured by § 2. In the following we
are going to sketeh proofs of the last two interpretations
(detailed proofs can be found in [41).

Interpretation (1). We can construct in KM_ + CH a
countable model (X of (formal) erin. Let Z be a nontrivi-
al ultrafilter on < . Interpreting x-sets as elements of

JL®/zZ\ (and x* e* y* a8 UL9/Zm x*¥e y¥) and %~
classes as subsets of | (L% /Z) (und defining x¥ e¥ X*
as x* ¢ X* for X¥* which is not a k-set) we get an inter-
pretation of AST in KM_ + (H (more preeisely we identify
x* with {y*; 9/2m y¥¢ x* } ). Since the axiom A7 in
the sense of the interpretation follows from the fact that
the cardinality of | A®/2| is i, (according to GH),
the only little bit nontrivial is the axiom A5.

Let P & | A% /2| & card(F) = % % Fnc* (F). Every finite
subset of P (G, say) can be considered as an element of

% /2| and moreover we have (L% /Zm Fne(G). Iiencc the
existence of f with Fne¥* (f) & Set® (£) & Fa* £ follows
from the fact that (L “/Z is ¥ ,-saturated.

Interpretation (3). Since AST is stronger than zr?in'
we are able to define the class N of all natural numbers.
Moreover we can define FN (the class of all finite natural
numbers) by

FN =4{neN; Fin(n) %

In AST one can prove that FN with the usual operations is
a model of Peano arithmetic. Moreover we obtain the formu-
la

(VXEFN) (3 x)(X = xAFN)

as a consequence of the axiom A5 and therefore we are able
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to code every subclass of FN by a set,

Hence Zbierski’s construction (see [7]) gives us (us-
ing the axiom of choice) & model UL of ZF~ with absolute
equality such that

(i) (v x)(Count({y; (f = yex3))

(ii) (vX & 10l )(Count(X)—> (Ix « \CL\ ) (X =
=4y; U »= yex3))
and so if we interpret x-sets as elements of |(4! (and
x¥ ¢* y* as Olm x*e y* ) and x-classes as subsets of
L] (and x*e* X* as x*¥*e X¥* for X* which is mt a X -
set), we get an interpretation of KM_ in AST.

If we carefully check our construction, we see that
the lxiom&%hrdinalitiea was not used in it. Moreover the
last construction can be made even in the theory containing
the axioms 1) and 2) and weaker forms of the axioms 3) - 6)
only (see [4]). In that paper it is further shown that the
prolongation axiom is essential since there is no interpre-~

tation of AST in "theories without the prolongation axiom".
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