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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

20,3 (1979) 

HIGHER ORDER NONLINEAR PARTIAL DIFFERENTIAL EQÜATЮNS 
IN ÜNBOÜNDED DOMAINS OF R" 

Daniela GIACHETTI, Elvira MASCOLO, Rosanna SCHIANCHI 

Abstract: * The Dirichlet problem for a certain nonline
ar partial differential equation on an unbounded domain is 
studied. The existence of a weak solution is proved by means 
of the theory of monotone operators. 

Key words: Nonlinear differential equation, unbounded 
domain. 

Classification: 35J60, 47H05 

Introduction. Our purpose in the present short paper 

is to describe an application of some general techniques in 

nonlinear functional analysis to the study of a class of hig

her order nonlinear boundary value problems. 

We consider the problem in .& 

( A u V ? ^ (-1)1*1 306 a^(xf\if...f 31\i)+f(u) = 0, 

where: 

(i) H is an unbounded open set in rf1 with the cone property; 

(ii) for each oc e NJJ, \OO\ £ m 

&Jxfnt...td
m\i)*a{J-hxf\it...f d\)+*^)(xfuf...fd

m~1u), 

satisfies the Caratheodory conditions and some Nemytskii hy-
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potheses on polynomial growth (assumption X^ i n Sec« 2^t 

(iii) f(u) is a nonlinear perturbation whose behaviour is 

described by a suitable hypothesis (assumption K-» in Sec.2)f 

(iv) l.rm'p(j[D are weighted Sobolev spaces defined as the com

pletion of 3X.Q.) with respect to the norm 

where J>(x) is a continuous function such that inf ro(x)>0 and 

^D(x)- • «o as Ixl—> + O D , satisfying assumption H-̂  in Sec. 

1. 

Many authors (see for instance [1],U I ,E7J,[13D have 

studied similar problems, some in bounded open subsets of BP, 

others in unbounded ones* In both cases their existence theo

rems have been proved either by assuming coercivity (see, for 

instance,[1],1131) or by giving a coercivity condition which 

involves all derivatives (assumption A in [7J). In order to 

get free from the hypothesis on the lower order derivatives, 

F. Browder, for example, imposed conditions upon the bounded-

ness of the domain and the smoothness of its boundary to ma

ke the application of the Sobolev imbedding theorems possib

le. 

Heref by assuming a coercivity condition depending only 

on the highest order derivatives (assumption K-» in Sec. 2) t 

we prove that there exists at least one solution of the prob

lem (1) in fi?'pUl) with s < - B pi 2. 

° p 

The use of these spaces allows us to apply some conti

nuous and compact imbedding theorems for unbounded domains 

which are proved in til f t23f [15], and to specify the asymp

totic behaviour of the solution. 
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The proof of the existence theorem is obtained by ua-

ing a well-known result of H. Brezis (see [5J) in the fra

mework of the theory of monotone operators. 

In See. 1 we recall the spaces U*9p(iD and some relat

ed results. 

In Sec. 2 we formulate the hypotheses of the existence ' 

theorem and state the theorem itself, which is proved in 

Sec. 3. 

Finally, Sec. 4 is devoted to an application of the a-

bove theorem to a problem of the following type: 

ł 
Д
2
u-Att+f

1
(u)-f.f

2
(x,u

f
grad

 u
)s0 inXL, 

U C U 2 > 2 ( Û L ) . 

1. Notations and preliminaries. Let IX be an open set 

in 1Rn, n 2 2, with boundary 911 and <x,= (oc*9... f aC ) an 

ordered n-tuple of non negative integers; we set: 

ic6Uo*1-f.#.+o*n> ^ * a ^ . . a ^ xo6=x^l...x^nforx6a 

and, if |oo!=-mf dm * 9°° . 

Let Q(X) be a continuous function on SL with infra (x)>-

> 0 and such that (p(x) —> + oo as |x t —y • oo * 

Definition 1.1. Let k&Nf pe [1,+ col , s 6 1R . We de

note by Ug,p(Xl) the space of distributions u on II such that 

X f <?Sp(x) \ 9flC'u(x)lp dx< + co 

normed by 

( 1 - 1 } "«^f.fp-Ck»?fc I ? 8PW I ̂ «(*>IP «*V/P > 

As usual, we set u£'p(n)«I§fo) and u£»2 (&)=-*£ (A). 
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Definit ion 1 .2 . Let k€ N, p e llf+aol f 8 f i R .We de

note by 6 t , p ( J l ) the completion of SUB.) with respect to the 

norm ( 1 . 1 ) . 

Definit ion 1 . 3 . Let k e N , pell$+oot , a 6 R .We de

note by U~ , p Ul) the space of distr ibut ions u on SI which are 

equal to a f i n i t e sum of derivat ives or order ^ k of func

tions belonging to u£,p(JX) and normed by 

i i u l i v . -iwM. S , II g j ) p _ ) 1 / p , M - k , s , p ioti.6 fh °cC o t s , p » 

where the infimum i s taken over a l l representations of u of 

the form u - M . g fc » * grf , goC e l £ ' P < I - ) . 

We assume that: 

(H-̂ ) <p e (f°(SL) and for every r e R and oc e N^ there e x i s t s 

a c e H + such that 

I d ° ° j o r ( x ) U c ( ^ ( x ) L r for every x<5 J&.. 

It is not difficult to prove that the function {t>(x)=(l+ 

+ (x( ) X / satisfies property H1. 

Under assumption H, and if H has the cone property, con

tinuous and compact imbedding theorems have been proved in 

[13,123,115]; it is also proved that there is a topological 

isomorphism of U"*,p'tQ.) onto the topological dual (U*,P(ID)' 

of the space tJg,p(il). 

To write nonlinear partial differential operators in a 
in k convenient form, we introduce the vector space H\ whose 

elements are 1^* -Cf^/ioci £> k} and divide such ^ into two 

parts §k
ss(^,^) where ^ a H - / i (3 i £ k-!$ is the lower order 

part of | j, and $ s t^/l^l *ki is the part of ^ corres

ponding to the k-th derivatives. 

Let us now recall some definitions which will be useful 
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in the sequel* Let U and V be two Banach spaces; a map f: 

:U—> V is called compact if it is continuous and maps boun

ded sets of U into relatively compact sets of V; f is called 

(sequentially) completely continuous if it maps weakly con

vergent sequences into strong convergent ones. If f is line-" 

ar and U is reflexive, compactness and complete continuity 

are equivalent properties. If X is a topological vector spa

ce, X* denotes its topological dual and <• ,*> the canoni

cal pairing. 

2. Assumptions and main result. We consider the follow

ing problem on il 

Eu* S (-i)loCl 9ot'aoC(x,u,...,9
mu)+f(u)*0l 

(2.1) 
1 UŁfi?'

P(й), 

where the functions a ^ (x^)**^ ix^)**^ (xfyi) satisfy the 

Carathe*odory conditions and the following properties: 

l a ^ > ( x f ^ ) U h o C ( x ) + c 2 ^ V V P / P > 

where 8^$^*^'*'(&) and c l f c 2 e 1^, p £ 2 . 

We also assume that 

(K2) s<-n/pf-

(KO there exists a positive constant c0> 0 and h(x) e 

eu£,p(-u,) such that for all x e & and for £ B*($i*&> e 

a1 

8 a 
(K4) for each x in il and each pair ( f. m, $'B) e E x R m 
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the following inequality holds: 

M S « -«4l)««.s.>-i1}<«.r->- c * - - r*j*oi 
(K-.) f is an increasing function and f (o)«0; moreover 

lf(At)l &r(X)\tU)\ , for every t,A e IR withy: 

>f(t)lzca)t\
p-1^ f p>0 . 

Definition 2.1. We say that u is a solution of the pro

blem (2.1) if u fij»p(0) and <Bu fv> * o for every v€& m> pttl). 

We are now able to state the following theorem: 

Theorem 2.1. Under assumptions H-^Kj-K-., the problem 

(2.1) has at least one solution. 

3. Proof of Theorem 2.1. The problem (2.1) is equivalent 

to the following one: 

Esu« <j>
flp(x) Eu-sO, r Esu« <j>~*' (x) 

(3.1) -J 
I u*5j»p(Q). 

It is not difficult to prove that 

with 

в в u = î A i 1 ) + в в u + A в 2 > u + ? в P i , < u ) » 

A в І ) u ж . Ş í- 1 ^ ' ð * [ f l , p a ( , í , ( i Э~u)j, 
8 ìac\ (rrv ì ' * / J > 

Theorem 3.1. Under assumptions K^K^K. and Hlf the ope

rator 

u 4 U ^ C ü ) — * A( 1}u+Bsu4.A
(2)u 6 if£*'vL) 
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is pseudomonotone» 

Proof. We first prove that the operator ucUm,p(il)—=• 

— > A. 'VL€ U~a,p CCL) is continuous and monotone. Assumption 
9 —a 

K.s implies the mono tonicity property. Notice that, for each 
oc & N£ such that I ot>J £ mf we have 

A«> 
ue^ , p(0)^(u f... f^%)^^U^

pCa)-^^a ( 1Ux,... fa
au)6 

.eu2»p/co)-^y^cx) a(1^x,...f8^)eii^
pp(a)4u!8

pca) 

where dfffi and d
06 are continuous by some of the imbedding 

theorems proved in L1J,[10J and[143. The continuity and the 

boundednes8 of k£~ , under assumption K^, follow from the 

standard theorems on Nemytskii operators (see [13,C15J). Now 

the operator ue D J , P U D — > B 8 u e U~
m,p C-D is compact; indeed 

we have 
A A^ 

e«°;p'(ft)-^ a ^ ^ h x f . . . f a % ) e O T J J J ^ ( Q ) 

•2-> 3r*P £> 8p(x) a ^ a ^ t x , . . . , ^ ) ^ ; ^ © , 

where, since I ($!=--« m-lf d^ is compact (see Theorem 5.2 in 

[11); d and ̂ f are continuous as before, while c is continu

ous as it is the conjugate of the mapping 

which turns out to be continuous (see imbedding theorems in 

til and [141). Finally the operator ue6j,p(4l) —>A < 2 )u 6 

e U3 8
, p CO.) is completely continuous since for every lot>i .£ n 
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we have 

« £ { ^ . P ( a ) _ ± * ( x , . . . , a m - 1 u ) á 3 » ' u ^ P 8 ( i i ) - ^ a ^ 2 ) ( x , . . . 

-Í-Í-^^ÍX) 3P-&JX a-^eoZ^O-) 

(2) oc# 
where d is a compact mapping, A ^ , 3 , f are continuous as 

before• 

Now the theorem follows d irec t ly by the def in i t ion of the 

pseudomonotone operator (see C51). 

Now l e t us se t 

F(t)« J tx(xHv and D(j>)=-4u 6 fi^Ul): J^ F(u(x))dx <+*>3 . 

By means of K5 i t i s easy to show that the functional 

• CO i f U6 6^'P (0)\D (9>) , 

Í
+ co i ř u & l 

J*F(u(x))dx, 
cp(u) 

^ , ť u€D(y) f 

iPř i s convex and D(y) i s a l inear subspace of U g , F C D . 

Theorem 3 . 2 . Under assumptions H ,̂K., jK^,^ and K-. we 

have 

< Ai 1 )u+B au+A l i
2 )u,u> + Q> (u) 

8 g 8 ' ? ^ + ^ 

m,s fp 

m,8,p 

Proof: For each ueU^ , p(il) f from the hypothesis K-* and 

the Ehrling inequality (see [15]) we get 

(3.3) <A^\i fu>=.J^4 ?^ 

2:c r t H« »S . _ - e_ 2* ft d * u l p - l ib i t n 

O m,s,p 0 ^ < i m , o f s , p o , s , p 
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* " O - » " S , . . P - t«»llS,8,p-^>'
l»»lS,8,p-«»»1lo,8,p 

=(o0-e.)ilull
P
f8fp-o(e)Hull

P
f8tp-o4. 

Furthermore, assumptions H-̂ IC, and the Schwarz-Holder and 

Ehrling inequalities imply that 

(3.4) l < B 8 u , u > l ^ Z ^ £ p 0 ^ 4 ?
8p(x)ia^>(x, 

«....,9VMtfr«l«bc -.„£„ ̂  ^ - V 4 ^
p ( x ) 

-»«*<-•>'•,,£ J9***'2 l-^-l*-

-|l=^"pc | ^ °-.jW-»^«o,.,p' " 9 uiio,a,p + 

• 2 lld^uP' . n Hamuli _ n . ] _ c . Hull B + lylir/m. o , 8 , p o , B , p 5 m,8 ,p 

+ Cfi l lullS"a n C 6 l l u l l , n « n+<=(&> »« * „ „ „3 • o m,s,p m,8,p ' o f s f p
J 

Likewise i t can be proved that 

(3.5) K A ( 2 > u , u > i ^ c 7 i l u l l i n t 8 t p + c 8 l l u l l I B f a f p U l l u | | p ^ t P + 

+ o < * > « « i i s ; i , P - . 
where c-,...fCg are positive constants independent of u» Fi

nally, by virtue of the Schwarz-Holder inequality and assum

ption K^ we have 
u,U) 

(3.6) 9(u)?J cpsp(x)(/o f(t)dt)dx>c3Jfa(p
8p(x) 

Lf^tlP-^dt] dx - !a_ f ?
8p(x)|u(x)ip+^dx 

*>o P+t*> a 

ic9C f f d l W " dx)*' *- ( fi?
8p(x)lu(x)lp) v> 
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* cio< 4 ? •*<*» »<*> i p * - ^ -•«)«» • 5 X p . 

where oC-«(p*(U/)/pf o</« cv/(os-i) and C Q , C 1 0 are positive 

constants. Now (3.2) i s an easy consequence of (3.3), (3.4), 

(3*5) and (3.6) . 

Proof of Theorem 2.1 : in virtue of Theorems 3.1 and 

3.2 we may apply Corollary 30 of £5] and s tate that there 

exists ufcD(<Jp) such that 

< A^tt+B^tt+A*2^, v-tt > £ 3>(u)- g> (v), V v* 8j»plO>. 

The proof is completed by means of known procedures (see e.g. 

Theorem 3.1 of £33) which allow to show that u is also a so

lution of the problem (3.1). 

Remark. Let us observe that a weaker Nemytskii condi

tion, such as in £73 and in tl33» allows us to prove Theo

rem 3.1 but it fails in the proof of coercivity. 

4* Example. We consider the problem on SI 

(4.1) f En« A*u- Att+f(x,ttfgrad ii)*Of r Ett« A fcu-

l neučil). 
I t ia equivalent to 

Eвtt* §>2в(x) t Д 2 ! ! - A tt+f (x ftt fgrad tt)3 * 0, 

tteЗgtø). 

We set f(xfttfgrad ttìвf^íttJ^fgíXjiUjjgrad u ) . 

Now B# may be written in the form 

{ 

with 

B t̂t-A^Nt+B t̂t+A t̂t* f2*txM, 
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with 
k(D-« A ^ 2 S A . , U S?. 3 r ^ 2 s 

B 8 uғJE^ ( Ә ş 2 в ) O x u )-2(grad<p 2 в

f gradДu)-

-Ug>28)(Au), 

A£u« ro s f 2 ( x f u f g r a d u ) . 

By supposing that f i s a r e a l function defined in A x l x 

x. iRn
f we shal l a lso assume that the functions f^ and f2 

s a t i s f y the properties 

(cCj) t^ is increasing, f^CO-sO, 

|f^(at)l ± yUOlfjU)! for every % ft <s 1R , 

with f i IK—-* 1R̂  i 

lf1(t)l^c|tl
1^f ^ > 0; 

( oC>2) f2 satisfies the Carath^odory conditions and 

|f2(x,tf |)Uh(x)+b1ltl +b2lfl; 

with hsf tg* 2 and b l f b 2 G * + • 

I t i s easy to verify that the operator E s a t i s f i e s a s 

sumptions K-pK-.jK. and K.-; then Theorem 2,1 implies that the 

problem (4*1) has at l eas t one solution* 

We sha l l conclude th i s sect ion by giving some examples of f^ 

and f2: The functions t 2 n + 1
f n & N and i \t\cC

 f 06 e IR+ f sa

t i s f y condition oC-j. The functions g (x )* V l t l * If l<* , 0«-<* f 

fi< 1 and g(x)+arctg t+arctg | £ | where g e 5 g , 2 ( i D f s a t i s fy 

condition oc2* 
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