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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
' 20, 4 (1979)

METAMATHEMATICS OF THE ALTERNATIVE SET THEORY |
Antonin SOCHOR

Abstract: In this paper the alternative set theory
(AST) s déscribed as a formal system. We show that there
is an interpretation of Kelley-Morse set theory of finite
sets in a very weak fragment of AST. This result is used to
the formalization of metamathematics in AST. The article is
the first paper of a series of papers describing metamathe-
matics of AST,

Key words: Alternative set theory, axiomatic system,
interpretation, formalization of metamathematics, finite
formula.

Classification: Primary 02K10, 02K15

Secondary 02KO05

This paper begins a series of articles dealing with me-
tamathematics of the alternative set theory (AST; see [V)).

The first aim of our work (§ 1) is an introduction of
AST as a formal system - we are going to formulate the axi-
oms of AST and define the basic notions of this theory. Do-
ing this we limit ourselves really to the formal side of the
matter and the reader is referred to LV] for the motivation
of our axiome (although the author considers good motivati-
ons decisive for the whole work in AST).

In [V] P. Vopénka lays emphasis on intuitive explanation
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and pedagogically convenient presentation and this conception
necessitates an introduction of axioms which are superfluous
in the sense that they are provable from the other axioms.

On the contrary, we try to minimalize the axiomatic system of
AST in our text.

The axioms we introduce are either exactly in the same
form as in LV] or they are formal precisations of Vopenka’s
axiom (cf. the schema of existence of classes). There is only
one essential exception since the direct formalization of Vo-
pénka‘s axiom of induction is too weak, we need "induction
for formal formulas™ (see e.g. § 1 ch. V[V]or [S-V 1]), If
we would express the axiom in question in this form we would

need motions of "formal formula®, "satisfaction relation" and

8o on before the formulation of the axiom (¢f. § 5 ch. II [V]).

Therefore we choose a little different approach and formulate
this assumption on the base of the notion of "G3del-Bernays
class" because this approach seems to be quicker and needs
less notions.

We are going to call our formal system "alternative set
theory" though the term "basic alternative set theory" would
be probably better. Our axioms formalize Vop¥nka’s alterna-
tive set theory as it is described in [ V], nevertheless it
seems to be posaible that in the following development of
the alternative set theory it will be necessary to introduce
new axioms (anl we will show some candidates of such state-
ments later in our text; moreover some principles for the
choice of such axioms were mentioned in [V]).

In the aeéond section we introduce some interesting we-
akening of axioms of AST. Some of them were accepted in [V]
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as axioms of AST, the importance of the others comes out from
the further metamathematical investigations. We also try to
motivate these newly mentioned axioms.

We are going to deal with the connections between the
usual axiomatics of set theory and AST. Let ZF (GB, KM res-
pectively) denote Zermelo-Fraenkel (GSdel-Bernays, Kelley-
Morse respectively) axiomatic system (in KM no kind of the
axiom of choice is required). Let ZFp;, denote Zermelo-Fra-
enkel set theory of finite sets, i.e. the theory ZF in which
the axiom of infinity is replaced by its negation (we‘assuna
regularity in a form which is strong enough - similarly as in
AST) and let 2F~ denote the theory ZF in which the power-set
axiom is omitted; similarly for other theories.

In the third section we construct an interpretation of
KMp: in AST. This enables us to transfer notions of ZFp;, in-
to AST in two ways. This is used to double formalization of
metamathematics in AST in the same section, too.

Let us mention some result which will be proved in the
following articles of this series. It is possible to show that
ZFp;p 18 equivalent to the system of those axioms of AST which
concern sets only and further that KlFin is equivalent to the
theory which we get from AST replacing the prolongation axiom
by the axiom guaranteeing that every subclass of a set is a
set.

The results which concern interpretability of the inves-
tigated theories can be drawn in the following diagram, where
——> denotes the existence of an interpretation of the first
theory in the second one and —/> represents the non-existen-
ce of such interpretation.
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We see from the above diagram that AST is "strictly stron-
ger"” than KuFin in the sense of intermretability. But the po-
sition of these theories changes if we investigate the prova-
bility of set-formulas, It can be shown that in AST there are
provable exactly those set-formulas as in ZFFin (and therefore
one is able to prove in AST less set-formulas then in Ku?in)‘

The existence of an interpretation of AST in ZF gives us
security that AST is consistent under the assumption that ZF
is consistent. (On the other hand there is a theoretical possi-
bility of éonsistency of AST even in the case that ZF would be
inconsistent.)

We shall show that we really extremely minimalized our
axiomatic asystem of AST since every axiom of AST is independent
on the others (except the axiom of choice where the independen-
ce of it remains as an open problem). Moreover, we shall see
that AST is not finitely axiomatizable.

We use Tarski’s notion of interpretation (cf. [ T-M-R1).
Dealing with some language and its formalization we use the u-
sual symbols (% ,", €, = and 80 on) in both levels since we
hope tha£ this will not lead to any confusion. To indicate the
theory in which the statement in question can be proved, we
write it before the statement (i.e. Theorem (T). $ is written
instead of T & ).

All results we shall use from AST can be found in [V1.

The needed results of other theories and logic we try to res-
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triet to basic knowledge - the great deal of them is contain-
ed e.g. in [Sh] (the reader has to consult also [ M) and [ M-S]
since the proofs of these articles are not repeated in our

text).

In the series we shall prove some results which were an-

nounced (without proofs) in [So 11 and [So 21.

§ 1. The basic axioms of the alternative set theory

The language of the alternative set theory is the usual
language of set theory i.e. it consists of two binary predica-
tes € and = and one sort of variables. Variables of this sort
are denoted by capital Latin letters and denote classes (cf.
the language of GB or KM). The predicate = is understood as
the predicate of equality and hence we accept the usual axioms
of equality for it (as a consequence of the axiom of extensio-
nality, these requirements can be restricted to the axiom
(VX,Y,2)((X = Y& XeZ)—>YeZ)). The unary predicate "to be
a set" we define - again as it is usual in GB - as the proper-
ty "to be an element", i.e.

Set(X)=(3Y)XeY
We reserve lowerBcase Latin letters for variables running
through sets (supposing that sets exist, cf. the axiom A3 be-
low).

Formulas of the language of set theory in which only set
variables are quantified, are called normal formulas; normal
formulas in which only set variables and constants occur, are
called set-formulas; restricted formulas are those set-formu-
las which have only restricte® gauntifiers.

The theory having the fo ..v.ng eight axioms is called
- 701 -



the (basic) alternative set theory ami it is denoted by the
symbol AST.

A1 Axiom of extensionality for classes. Two classes
are equal iff they have the same elements, i.e.

(VX,Y)((32)(ZeX=2eY)=X = Y)

A 2 Schema of existence of classes. For every formula
of the language of set theory &(Z,Z,,...,%,) and for every
11,...,Xk we require the existence of a class consisting of
all sets x having the property ¢(x,X,...,X.), i.e.

(VE) 5000, ) AN (VX)) (xe ¥ = & (x,Xy,...,%))

Using the above formulated axioms we are able to define
the empty class O, the unordered pair of sets (though we do
not know that it is a set; this follows from the axiom 4 3)
and the union of classes.

A 3 Axiom of existence of sets. The empty class is a

set and if we add to a set one element we obtain a set again,
i.e,

Set(0) % (Vx,y) Set(x viy})

The theory consisting of the axioms Al - A3 is called the
theory of classes and it is denoted by the symbol TC. In this
theory one can define the usual notions of set theory e.g. the
ordered pair, the universal class, the representation of mem-
mebrship‘E = {(x,y);xey}, the identity Ia = {(x,y>;x = y} and
the notions of the list from p. 29 [V] and we are going to use
these notions quite freely. Classes are equivalent (in symbols
XXY) iff there is a one-one mapping (possibly a proper class)
of one of them onto the second one. A class is transitive (in
symbols Tran(X)) iff X 2 UX. The symbol P(X) denotes the
class of all subgets of a class X. Let us keep Vopénka's con-
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vention that the letters F,G,f and g (possibly indexed) de-
note functions.

Let us repeat from [V] the definitions which are speci-
fic to AST and which cannot be sensibly defined in Cantor’s
set theory.

A class is called semiset iff it is a subclass of a set,

sms(X) = (Qy)Xey.

A class is finite iff each its subclasgs is a finite set

from Cantor ‘s point of view, i.e.
Fin(X) = ((YYSX)Set(Y) & (VZEP(X))(0+Z —> (Jz € Z)(Vy)(yc
cz-—>y¢2))).

A class R is called a well-ordering of a class A (in
symbols We(A,R)) iff R is a linear ordering of A and each
non-empty subclass of A has the R-first element. We write
We(R) instead of We(dom(R),R).

A class is countable iff it is an infinite class having
a well-ordering with finite segments only, i.e.

Count(X) = (1 Fin(X) & (3R) (We(X,R) & (¥x) Fin(R"{x?}))).

A class is uncountable (in symbols Uncount(X)) iff it is
neither finite nor countable.

Definition (TC). a) A class X is called an 7) -element
of a class Y (in symbols X7 Y) iff there is xe Y"{0} such that
X = (Y"{13)"4x3.

b) If the system of all 7 -elements of a class S con-
tains all sets and if this system fulfils all axioms of the
group B of Gddel-Bernays set theory (cf. [G]; axiom B8 being
provable) then S is called a GB-class (more precisely a code
of Gddel-Bernays classes), in symbols
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@B(S)= ((¥x)x7n S& En S & (VX7 S) (dom(X) 7 S&X 1y S&1Lx,y,8);
{¥,8,xY€X}7S) & (VX,Y% S)(X-Y% S& X=x¥Y7S)).

¢) A class X is called nearly universal iff it contains
O and with each set it contains also all set-successors of
this set, in symbols

Fun(X)= (0 e X& (Vx € X)(Wy) (xuiyt e X)),

In TC we are able to prove the existence of GB-class
(cf. § 4), but in the following axiom we require more, namely
the existence of a GB-class such that the universal class is
its sole 7 -element which is nearly universal.

A 4 Axiom of GB-class. There is a GB-class without ne-
arly universal 7 -element different from V, i.e.

(38) (GB(S) & (VX 7S) (Fun(X) —> X = V))

We shall define the satisfaction in TC and in the fourth
section we shall see that A4 is equivalent to the induction
for all (finite) formal set-formulas ¢ ,i.e. to the state-
ment
VE( ¢ (0)& (Vx,y) (g (x) — ¢ (xudyI)))— (Vx) g (x)).

A 5 Prolongation axiom. Every countable function is a
subclass of a function which is a set, i.e.

(VF) (Couni(F) —> (3f) Fcf)

A 6 Axiom of choice. The universal class can be well-
ordered, i.e.

(3R)We(V,R)

A 7 Axiom of cardinalities. Every two uncountatle car-

dinalities are equivalent, i.e.

(vX,Y)X(Uncount(X) & Uncount(Y))—> X~Y)

A 8 Schema of regularity. If there is a set satisfying
a set-formula ¢ then there is even a set satisfying ¢ such
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that none of its elements satisfies § , i.e.

A0 d (x)— Ax)(E () & (Yyex)1d ().

The axiomatic system consisting of the axioms Al - A8 is
called the (basic) alternative set theory. For easier expres-
sing let us put moreover the convention that AST_i denotes

the theory AST in which the axiom Ai is omitted.

>

§ 2. More about the axiomatic system of AST

This section deals with axioms which arise by weakening
of the axioms of AST. Formulating these axioms we simultane-
ously explain reasons for the investigation of such axioms
and add a few remarks to the meaning of the axioms of AST.

The first axiom is quite formal - it is the axiom of ex-
tensionality restricted to sets, nevertheless it was already
formulated in § 1 ch. 1 [ V] as an axiom of the alternative
set theory.

A 11 Axiom of extensionality for sets.

(¥x,y)((Vz)(zex=z2ey)=x = y)

Essentially more interesting are the following two axi-
oms which are evidently consequences of the schema of exis-
tence of classes.

A 21 Schema of existence of normally definable classes,
For every pormal formula &(Z,2,,...,Z,) we accept the axiom

(VXpyee e, B ) GO (VX (x €Y = S (x,Xp 5000, 0

A 22 Axiom of existence of the class of all finite sets.

(AX) (vVy) (ye X=Fin(y)).

Let BTC (Bernay’s theory of classes) be the theory with

axioms Al, A21 and A3. Then BTC is finitely axiomatizable as

follows from the famous Bernay ‘s metatheorem (cf. L B1,1G] or
[V-HD). - 705 -



Metatheorem. The formula A21 is provable in the theory
consisting of Al, the pairing axiom and axioms of the group
B of GBdel-Bernays set theory.

Later we shall see that AST is not finitely axiomatizab-
le and hence AST is strictly stronger than AST , + A21 + A22.
On the other haml the last mentioned theory is strong enough
for building of mathematics in the same way as it is done in
ch, 1 - ch, 4 LVl(but of course we have to be more careful in
the formula tions of metatheorems).

The theories TC and BTC seem to be convenient bases for
the investigation of theories with sets and classes. Therefo-
re we are going to formula te our statements in these theories
(and their extensions) not taking account of the poessibility
to prove results in weaker theories.

A 41 Schema of induction. For every set-formula &(z)
we accept the axiom )

($(0) X (vx,y) (@ (x) —> d(x0 ¥}))) — (Vx) P (x)

The schema of induction was formulated in § 1 ch. I LV]
and it played the basic role in the investigation of the be-
haviour of sets in the alternative set theory, e.g. the fact
that all our sets are finite from the Cantor’s point of view,
is a consequence of it. Under the axiom A4l our definition of
finite classes coincides with Vop&nka’s one. The axiom A4l
follows from A4 according.to Bernay ‘s metatheorem.

The prolongation axiom seems to be the most specific and
powerful principle of the alternative set theory. It expres-
ses simultaneously the idea of the existence of collections
consisting of elemen ts of a given property which cannot be

represented by a list of their members (proper semisets) and
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the idea of approximation of infinity by finite sets.

For mathematics in AST it seems to be fruitful to in-
vestigate the following weakening of the prolongation axiom
A51. When the alternative set theory was built there were at-
tempts to replace the prolongation axiom by the axiom A51,
but it is too weak. On the other hand we are going to ahqw
that AS51 is strong enough for some metamathematical purposes
- we shall show that in theories with this axiom it is poa-
sible to interpret the whole AST, but without this axiom -
e.g. with the axiom A52 only - it is no longer possible. The
axiom A52 was already postulated in [V] as an axiom of the

altermative set theory.
A 51 Weaker form of the prolongation axiom. There is
a countable class X so that every subclass of X can be obtain-

ed as an intersection of X with a set, i.e.
(3X) (Count (X) & (VY <X)Qy)(Y = Xny))
A 52 Axiom of existence or proper semisets.
(3X) (Sms (X) &1 Set(X)).

To prove the implication A5 —> A51 in TC + A4l we use
the following definitions.

It is well-known that the class N of all natural numbers
(with usual properties) can be constructed even in TC + A41,
The class FN of all finite natural numbers is defined by

FN = {x eN;Fin(x)}.

We use «, (3, o (possibly indexed) as variables running over
natural numbers; the letters n,m, possibly indexed, will be
used as variables for finite natural numbers.

Let us proceed in TC + A41. The class FN is infinite and
therefore it is countable. (Let us note that in AST the class

N itself is uncountable.,) If YSFN then assuming A5 there is
- 707 - °



& set £ with £(n) = 1=necY and hence Y = Fin £71%{11. We ha-
_ ve proved the implication A5 —> 451. To prove A51—> A52 it

is sufficient to realize that the formula (3X)(Sms(X) &

& Count(X))—> (3X)(Sms({X) &« Set(X)) is provable in the theo-
ry in question (cf. § 4 ch. I LV]).

The formulation of our axiom of choice is formally simi-
lar to a form of AC in the usual set theory, but the meaning
is a little different., Let us emphasize that the class of all
natural numbers is not well-ordered by € . The axiom of choi-
ce plays in AST an important role even in cases when AC is not
used in Cantor’s set:theory e.g. if we want to consider real
numbers as sets, we have to use A5 (see § 2 ch. 21LVI),

Our axién of choice is rather formal and technical but
there are much deeper philosophical reasons for the acceptan~
ce of the following weaker (?) form of the axiom of choice.

We shall see that the axiom A6l is important from the metama-
thematical point of view, too. The implication A6 —> A6l is
trivially provable. in TC.

A 61 Axiom of countable choices of sets. From every

relation with countable domain we can choose a function with
the same domain, i.e.

(VX) (Count (dom(X)) —> (IFE X) (dom(F) = dom(X))).

The reformulation of the axiom A6l for classes with fi-

nite domain i.e. the statement (VX)(Fin(dom(X)) — (3F &X)

(dom(F) = dom(X)))is evidently provable in TC + A4l, Therefo-
re the axiom of countable choices of sets expresses our ende-
avour to project properties which are verifiable for finite
classes even on countable classes. Hence the axiom A6l is a
formalization of a principle of transcending the horizon (si-
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milarly as the prolongation axiom). We can paraphrase Vop&n-
ka‘s motivation of the prolongation axiom and motivate the
axiom of countable choices of sets as followsa: Imagine that
we find ourselves on a long straight road lined with large
stones set at regular distances. The stones reach as far as
we can see. Then it is natural to suppose that. the stones
reach the horizon.

The axiom of cardinalities guarantees that there are on-
ly two infinite cardinelities. Hence the acceptance of this
axiom implies a considerable reverse for a mathematician ac~
customed to Cantor’s set theory. This fact contributes to
doubts about fitness of the axiom of cardinalities. However,
omitting this axiom we weaken the alternative set theory con-
siderably. Therefore it is natural to look for an axiom us-
ing which we can save a deal of statements in proofs of which
the axiom of cardinalities is usedq. As such an axiom, the fol-
lowing one can s erve.

A 71 Weaker form of the axiom of cardinalities. Every

two infinite sets are equivalent, i.e.

(Vx,y) ((1 Fin(x) &1 Fin §)) — xvy).

It is well-known that the schema of regularity (i.e. in-
finitely many axioms) is equivalent in ZFpsp to the conjunc-
tion of the following two of its particular cases.

A 81 Axiom of regularity for sets. Every non—empﬁy set
has an element disjoint with it, i.e.

(Vx)(x+0 —> (3ye x)(xny = 0)).

A 82 Axiom of transitive closure. To every set there

is its transitive superset, i.e.
(Vx) @y)(xey % Tran(y))
- 709 -



In fact let ¢ (z) be a set-formula and proceeding in
ZFp;,, let us suppose that the formula ® (v) holds. Thus the-
re is y with ve y&Tran(y) and we put x =fuey; $(u)i. In
this case we have O%x and hence there is qe x with gnx = 0,
Since ge y we get {Vueq) 1 $(u).

At the end of this section let us try to answer the que-
stiom whether our formal theory can be held as a formaliza-
tion of the more intuitively taken alternative set theory so
as it is described in [V], As far as the axioms are concern-
ed, the situation is clear since all axioms of'[VJ are prov-
able in our formal theory amd conversely. This follows from
the above mentioned analysis of weakening of axioms and fur-
ther from the fact that the axiom of sets as particular clas-
ses (cf, § 2 ech. I [V]) is a consequence of our definition
of sets. The axiom of choice is implied by the axiom of ex-
tensional coding (see §§ 5,6 ch. I [V]); on the other hand
the axiom of extensional coding is a trivial consequence of
the axiom of choice.

It is essentially more complicated - but alse more im-
portant - to give an answer ir we formalized by a convenient
way the basic notions of the alternative set theory - the no-
tions of "set™ and the notion of "class". It is obvious that
our notion of "set" carresponds to Vopdnka’'s notion "element
of the universe of sets" and that our notion of "class" ag-
rees with Vopénka’s notion "object from the extended univer-
se". Even the choice of notations of variables was made in
harmony with this interpretation. The notion of "property"” in
Vopénka’s axiom of existence of classes was formalized - and
it seems conveniently enough - by the notion "property des-
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cribable by a formula of the language of set theory".

On the other hand, in our formalization we do not keep
the idea that there are sets containing proper classes as
their elements (cf. § 1 ch. ILV] where e.g. the set {X,Y}
exists even in the case that X and Y are proper classes).
Neither dove assume that every property of classes describes
a class (cf. § 2 ch. I [V]). Nevertheless in the whole of LV]
we can restrict ourselves to "codable classes" and this ob-
Ject can be grasped also in our theory since the system of
all 7 -elements of a class S is coded by the coding pair
{8"{03,S"{1}) (cf. § 5 ch. I LV]). The notion of codable
classes exceed only symbols U{iX; & (X)} and N{X; &(X)3
from § 2 ch., I [V] but these notions can be taken as only ab-
breviations,

In our conception there are "more" formal formulas than
the metamathematical ones and therefore the axiom A4 expres-
8ing the induction for (finite) formal set-formulas is stron-
ger than the scheme of induction for metamathematical set-for-

mulas (A41) - cf. the different approach in § 5 ch. II LV],

§ 3. Finite formulas

The first aim of this section is to construct a conveni-
ent interpretation of KMp:n in TC(and hence even in AST). To
do it we need some notions.

let us note that TC is a very weak theory and hence our
construction will be rather complicated but the existence of
such an interpretation enables us to formulate equivalent sta-
tements to some axioms of AST even in TC., Moreover it is ea-
sier to interpret TC than AST in a theory and this brings ot~
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her advantages.

A class X is called a 7 -pair of classes Y and Z (in sym-
bols X = {Y,237 ) iff X = 2x40%u (¥Y=x{03uZx{1}) <i1%. We
have evidently (VQ)(Q7X=(Q = YvQ = 2)); moreover by the
definition of X we are able to order the pair. Analogical de~
finitions can be done for every finite number of classes.

A m -triplet L= {A,E,T3% is called a model (of the lan-
guage of set theory) iff the formulas A+0 and (FuT)ca?
hold.

IrfU = {A,E,Ii’l is a constant denoting a model then the
symbol (L denotes the interpretation determined by the formu-
las (Tarski’s possible definition; cf, LT-M-R))

Claa' ()= (XcA% (Vx,y)xe X&<{x,y) € I)— yeXx))

x%e® ¥%= @xer?)(x¥Erixy)

x%=0y0s x0oyd

and the symbol 4)0' denotes the formula assigned ly the inter-
pretation (L to a formula ¢ (of the language of set theory).

let us note that if I is the equality restricted to A
then the formula defining Clsa'(x) simplifies itself to the
formula XSA. If moreover E equals to EfrA then the symbol
®% and the symbol ¢ (cf. § 1 ch. VIVI) coincide and the
definition of Xa’eq‘ ot simplifies itself to the formula
x%e v%

Now we are going to define the notion of hereditarily
finite set; our definition agrees with the usual definition
" of this notion in Cantor ‘s set theories. The class of all he-
reditarily finite sets is called finite universe and denoted
by FV. Defining #% = {FV,EMFV,IaMFV}" we shall see that
¥V is an interpretation of KMpiy in TC.
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Definition (TC). A set is called hereditarily finite
iff it is an element of the domain of a finite well-ordering
keeping € . The class of all hereditarily finite sets is de-
noted FV i.e.

FV = {x;(3 < )(We(£ )& Fin(<£ )& Eldom( <) & £&xedom(£ )},

Lemma (TC). The finite universe is tramsitive and it is
the minimal class containing O and saturated w.r.t. those set-
successors which are its subclasses i.e.

Tran(FV)& 0c FV & (Vx,ye FV) (xu{yte FV) & (vX)((0e X &
& (Vx,ye X)(xulyiSX—> xuiyteX))— FVEX).

Proof. The statements Tran(FV) and O € FV follow immedia-
tely from the definition of the class FV. The proof of the re-
maining statements is also very easy but rather long:

If X is finite then for every set u, the class Xu{uj} is
finite, too. In fact if YcXudiu?l then Y - {ui< X and hence
Y - tul is a set and therefore Y is also a set according to
the axiom A3, If 0+Z&P(X.uiul) then there is a minimal (w.r.t.
inclusion) element q of the class {v - {ul;ve Z% and then eit-
her q or qu{ul is a minimal (w.r.t. inclusion) element of
the class Z.

If £ is a finite well-ordering and if z edom(4 ) then
either z is the £ -first element or there is a set q with {v;
v4zy ={v;v4qtu{z}., To prove it it is sufficient to consi-
der the class i{{<v,z) ;wév<zi;w<z? and its minimal element
w.r.t. inclusion.

If <« is a finite well-ordering keeping € and if u &

c dom( <) then the well-ordering < u {<{v,u);v =uv(u ¢

¢ dom(£ )& vedom(< )) keeps € and moreover by induction us-

ing the previous parts of the proof we get that the well-or-
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dering in question is finite.

Let xedom( £,) and yedom( £,) and let £, snd £, be
finite well-orderings keeping € . Using the above proved sta-
tements (and the fact that (Vzedom(<,))(zS{qjq<, 23)) we
can prove by induc:t.ion w,r.t. £—2 that there is a finite well-
ordering keeping € so that dom(£,)u dom(4,) is a subclass
of its domain. Hence even xuiy} is a subset of its domain
and therefore the above mentioned construction gives us a fi-
nite well-ordering keeping € such that xu{y} is an element
of its domain, This prm-7ea the third statement of our theorem.

Let us assume that the formula Oe X &(vz,ye X)(xuiyic
€ X—> xuiyjeX) holds and let xeFV - X, In this case there
would be a finite well-ordering 4 keeping € with xedom(<£).
The class {ycdom(<);(3z)(2¢ X%z S{q;q<y})t would have the
£-first element and this leads to a contradiction.

Metatheorem. The interpretation F7 is an interpreta-
tion of KMp, in TC.

Demonstration. The formula 117 £o110ws immediately from
the Iast lemma and from the axiom Al; moreover the last lemma
implies even A3w. The statement a2fv is a trivial consequen-
ce of the axiom A2 since we admit all subclasses of FV as
3V -classes.

It $(z) is a set~formula such that the statement
((Ve,y) (P (x) — & (xuiy) T holds and if FS FV2 then the
classes ixe FV; @w(x)} and {x e FV;F"x ¢ FV} equal to the class
FV by the last lemma. Hence we have proved the statement A«"lFv
anml the F7 -axiom of replacement. In § 1 ch. I [V] all axi-
oms of zrﬁn were proved from the axioms All, A3 and A41,A8and
therefore it remains to say only a few words to the statement
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Let & (z) be a set-formula and let us have (}"(x)&xe
€ dom(4 ) where £ is a finite well-ordering keeping € . let
y be the £ ~first element z with éw(z). We have obviously
(Veey)n d)Fv(z) which completes the demonstration.

By the last metatheorem the formula (Vx ¢FV)(3y,z €
€ FV)(y = Pw(x)& z = Uva) is provable in TC. Moreover for
every x € FV we have PFv(x) = P(x) and U = Ux, Thus if
$(x) is a set-formula equivalent to a formula ¥(x,¥(x))
where V¥(z,,2,) is a restricted formula and F is an opera-
topm constructed from P and U then for every x ¢ FV the for-
mila $TV(x) = §(x) holds.

Theorem (TC + A4l). N@’?/’___ FN.

Proof. In TC + A4l we can define natural numbers as sets
g satisfying the formula Tran(z) & (Vx,yez)(xeyvx = yvyex)&
% (Vucz)(u+0 — (3qeu)(qnu = 0)) and hence the considera-
tion mentioned above assures us that N"n’= FVNN,

By the last lemma we have xe& FV—> Fin(x) and from this
we immediately get the inclusion N'r”& FN. Further
Tran(FVAN) and therefore if o ¢ FV then FVn N & o¢ . Since
Pe F'nN—> 3 +1 e FVN N, the class FVnN calnnot be a set
and from this the formula oc ¢ FN follows.

There are many important mtions defined in ZFp;,. Since
AST is stronger than ZFp;, we are able to define these noti~
ons in AST in the same way. However, there is moreover anot-
her method how we can construct notions of ZFp;, in the alter-
native set theory. The interpretation F7 induces namely an
interpretation of ZFpi, in AST and hence we are able to con-
struct notions of ZFpyy according to this interpretation (i.e.

if $(z) define a notion in ZFp;, then we define the corres-
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@‘W/(z)).

The notions defined by the first way are called by the

ponding notion in AST by the formula

same terms as in ZFp;, (i.e. without any attribute); to no-
tions obtained by the second way we add the attribute "fini-~
te" and in the notation we add to them the index "F", In ac-
cordance with this convention were defined e.g. the notions
of natural and finite natural numbers, the notions of ratio-
nal and finite rational numbers amd the notions of the uni-
versal class and the finite universe (finite universal class).
We are going to use this convention quite freely. Let us no-
te that there is one exception from this convention since the
term "finite set”™ is used for all sets the cardinality of
which is a finite natural number and not only for heredite-~
rily finite sets.

At the first view it is rather surprising that the no-
tions defined by the second way play a more important role
in AST than those defined by the first way but this becomes
clear if we realize that we interpret the intuitive notion
"finite®™ in the alternative set theory by the predicate "to
be finite" and therefore the interpretatiom of the collection
of all hereditarily finite sets from Cantor’s point of view
onto finite universe is in some sense more natural than its
interprétation onto the whole universe.

For some results it will be essential that the construc-
tion of notions by the second way does mot require all axioms
of AST and hence that we can define these notions even in TC,

Now we are going to use these two processes of defining
notions for double formalizing of metamathematics in AST. lLet

us note that we are forced to define some notions (e.g. no-
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tions depending on proper classes) directly in TC since they
cannot be defined in ZFpjy.

As usual we can define in ZFp  the notions of (formal)
formula, proof, provability (in symbols + ), consistency (in
symbols Con) and so on. We admit infinitely many constants,
however, we restrict ourselves in the following to formulas
with predicates € and = only; but this restrictiom is, of
course, unessential.

Thus we have all ahove mentioned notions even in AST. By
the use of the second way we define in TC the notions of fini-
te formula, finite proof, finite probability (in. symbols t—r),
finite consistency (in symbols Congp) and so on. By me/conli-
deration stated abtove we obtain in AST some connections bet-
ween notions without attribute and notions with attribute "fi-
nite"., For example we see that a formula (proof respectively)
is a finite formula (finite proof respectively) iff it is a
hereditarily finite set; further every free variable occuring
in a finite formula is a finite free variable occuring in it
and so on.

Let us emphasize that the length of ary finite proof is
a finite natural number.

We have admitted in finite formulas as parameters only
elements of FV, however, it is possible to extend this defi-
nition admitting all parameters. The class of all finite for-
mulas with parameters in a class C is denoted by FL; and its
elements are called (finite) formulas of the language 1"11‘;l
(they can be coded by pairs {¢,f) where ¢ is a finite for-
mula without parameters and f is a one-one mapping such that
elemen ts of dom(f) are finite variables free in ¢ and
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rng(f)c C)., We put FL = FIy. The class of all formlas with
parameters in C is denoted by L, and we put again L = Lye

Evidently we are able to extend usual notions also to e-
lements of I"I.c. For example a sequence of elements of FLU is
called a finite proof in predicate calculus iff there is a
one-one mapping f transferring (some) elements of C into fi-
nite constants such that our sequence is transferred to a fi-
nite proof in predicate calculus.

Subclasses of FIc are called theories (of the language
!'Lc). Let us emphasize that in accordance to our preference
of notions with attribute "finite", theories contain only fi-
nite formulas of the investigated language. For theories which
are proper classes we extend the notion of finite provability
(finite inconsistency, provability and incolnsistency respec-
tively) defining ﬂ'\—r?(ﬁ Gonr(ﬁ'),ﬂ"f-— g and 1 Con(J) res-
pectively) iff there is a subset J_ of J' with I trp @

(= Oo;xr(ﬁ'o), 3,7 ¢ and 71 Con(J,) respectively).

It U= {A,ﬁ,i}n is a model then for every finite sen-
tence FL, we define by induction (using the axiom A2)

L= aeb iff {a,bd>c B

AE=a=>b i)fr (a,b)e'i’

Aelg&ky) iff L@ and U = ¥

(@) ifr 1 A=

A =03X) @(X) iff (3acA) U= g(a)

Let us note that we have defined satisfaction only for
finite formulas. For models which are sets can be the defini-
tion of satisfaction extended for all formulas in the obvious
way. Such a definition in the general case seems to be impos-
sible (cf, [S-V 2])+
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Two models L and & are called elementarily equivalent
iff they satisfy the same finite sentence (without constants)
i,e. iff

(VoeFLI (X E@)=(b =q)).

If §° is a theory then we write (L = J° instead of
Ve F) =g

Quite analogically as in the classical case we can prove
by induction (F+p9 & LE=T)—> (L = @ and therefore we ha-
ve (3 )(U = T ) —> Cong(F). Moreover, the GBdel’s proof cen
be repeated in AST and thence we have also the converse impli-
cation, i.e. the statement Cong(J) — (I ) Uk = T,

In the special case that 'f is the identity on A we are
going to drop it in the notation; if moreover E equals to Bn
n A2 we write A = ¢ instead of <A,i) = Q-

For every metamathematical hereditarily finite object
(e.g. natural number, formula or proof) there is its usual
formaliszation in ZFFin and therefore using our second method
qf defining of notions of ZFFin we obtain its formelization in
TC. (By metamathematical inductiom can be proved that both
our ways give in AST the same for such objects.)

" If 9 is a formalization of a set-formula & in TC then
one can prove by easy metamathematical induction that
d=VrF 9.

If T is a primitively recursive (metamathematical) theo-
rj then T and J° denote its formalizations in AST and TC gi-
ven by the first and second way respectively (we suppose that
a convenient description of T is chosen). Evidently in AST
we can prove J° =TAFV and moreover we get J° = T for every
(metamathematically) finite T,
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Applying the clasaical results of logic we obtain two
kinds of statements in dependence of the choice of way but so-
metimes one of suth statements is a consequence of the second
one, For example if we investigate the applications of Gddel’s
theorem on consistency proofs we see that relevant is only the
statement

If T is a consistent theory stronger than TC then T +

+7 Conp(J) is conmsistent, too.
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