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COMMENTATIONES MATHEMATICAE UN.VERSITATIS CAROLINAE 
20, 4 (1979) 

METAMATHEMATICS OF THE ALTERNATIVE SET THEORY 
Antonin SOCHOR 

Abstract: In this paper the alternative set theory 
(AST) is described as a formal system. We show that there 
is an interpretation of Kelley-Morse set theory of finite 
sets in a very weak fragment of AST. This result is used to 
the formalization of metamathematics in AST. The article is 
the first paper of a series of papers describing metamathe-
matics of AST. 

Key words: Alternative set theory, axiomatic system, 
interpretation, formalization of metamathematics, finite 
formula. 

Classification: Primary 02K10, 02K25 

Secondary 02K05 

This paper begins a series of articles dealing with me­

tamathematics of the alternative set theory (AST; see t V D ) . 

The first aim of our work (§ 1) is an introduction of 

AST as a formal system - we are going to formulate the axi­

oms of AST and define the basic notions of this theory. Do­

ing this we limit ourselves really to the formal side of the 

matter and the reader is referred to tV3 for the motivation 

of our axioms (although the author considers good motivati­

ons decisive for the whole work in AST). 

In CV3 P. Vopenka lays emphasis on intuitive explanation 
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and pedagogically convenient presentation and this conception 

necessitates an introduction of axioms which are superfluous 

in the sense that they are provable from the other axioms. 

On the contrary, we try to ndnimalize the axiomatic system of 

AST in our text. 

The axioms we introduce are either exactly in the same 

form as in tV] or they are formal precisations of Vopenka's 

axiom (cf. the schema of existence of classes). There is only 

one essential exception since the direct formalization of Vo­

penka's axiom of induction is too weak, we need "induction 

for formal formula*" (see e.g. § 1 ch. V [VI or tS-V 11). If 

we would express the axiom in question in this form we would 

need notions of "formal formula's "satisfaction relation" and 

so on before the formulation of the axiom (cf. § 5 ch. II tV3). 

Therefore we choose a little different approach and formulate 

this assumption on the base of the notion of "GOdel-Bernays 

class" because this approach seems to be quicker and needs 

less notions. 

We are going to call our formal system "alternative set 

theory" though the term "basic alternative set theory" would 

be probably better. Our axioms formalize VopSnka's alterna­

tive set theory as it is described in tVl, nevertheless it 

seems to be possible that in the following development of 

the alternative set theory it will be necessary to introduce 

new axioms (and we will show some candidates of such state­

ments later in our text; moreover some principles for the 

choice of such axioms were mentioned in tV])« 

In the second section we introduce some interesting we­

akening of axioms of AST. Some of them were accepted in tVl 
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as axioms of AST, the importance of the others comes out from 

the further metamathematical investigations. We also try to 

motivate these newly mentioned axioms. 

We are gping to deal with the connections between the 

usual axiomatics of set theory and AST. Let ZF (GB, KM res­

pectively) denote Zermelo-Fraenkel (GSdel-Bernays, Kelley-

Morse respectively) axiomatic system (in KM no kind of the 

axiom of choice is required). Let ZFyin denote Zermelo-Fra­

enkel set theory of finite sets, i.e. the theory ZF in which 

the axiom of infinity is replaced by its negation (we assume 

regularity in a form which is strong enough - similarly as in 

AST) and let ZF" denote the theory ZF in which the power-set 

axiom is omitted; similarly for other theories. 

In the third section we construct an interpretation of 

KMpin in AST. This enables us to transfer notions of ZF$±n *
n~ 

to AST in two ways. This is used to double formalization of 

metamathematics in AST in the same section, too. 

Let us mention some result which will be proved in the 

following articles of this series. It is possible to show that 

ZFFin i s e(luivalent to the system of those axioms of AST which 

concern sets only and further that KM«. is equivalent to the 

theory which we get from AST replacing the prolongation axiom 

by the axiom guaranteeing that every subclass of a set is a 

set. 

The results which concern interpretsbility of the inves­

tigated theories can be drawn in the following diagram, where 

— > denotes the existence of an interpretation of the first 

theory in the second one and —/ •> represents the non-existen­

ce of such interpretation. 
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Iľ 
KM 

We see from the above diagram that AST is "strictly stron­

ger" than KMj^n in the sense of interpr etability. But the po­

sition of these theories changes if we investigate the prova­

bility of set-formulas. It can be shown that in AST there are 

provable exactly those set-formulas as in ZF F i n (and therefore 

one is able to prove in AST less set-formulas than in K^pi,^* 

The existence of an interpretation of AST in ZF gives us 

security that AST is consistent under the assumption that ZF 

is consistent. (On the other hand there is a theoretical possi­

bility of consistency of AST even in the case that ZF would be 

inconsistent.) 

We shall show that we really extremely minimalized our 

axiomatic system of AST since e^ery axiom of AST is independent 

on the others (except the axiom of choice where the independen­

ce of it remains as an open problem). Moreover, we shall see 

that AST is not finitely axiomatizable. 

We use Tarski's notion of interpretation (cf. CT-M-Rl). 

Dealing with some language and its formalization we use the u-

sual symbols ( 1 , 1 , 6 , » and so on) in both levels since we 

hope that this will not lead to any confusion. To indicate the 

theory in which the statement in question can be proved, we 

write it before the statement (i.e. Theorem (T). $ is written 

instead of T H $ ). 

All results we shall use1 from AST can be found in £V3. 

The needed results of other theories and logic we try to res-
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trict to basic knowledge - the great deal of them is contain­

ed e.g. in [Sh] (the reader has to consult also [Ml and tM-Sl 

since the proofs of these articles are not repeated in our 

text)• 

In the series we shall prove some resulte which were an* 

nounced (without proofs) in LSo 11 and CSo 21. 

§ 1. The basic axioms of the alternative set theory 

The language of the alternative set theory is the usual 

language of set theory i.e. it consists of two binary predica­

tes e and =- and one sort of variables. Variables of this sort 

are denoted by capital Latin letters and denote classes (cf. 

the language of GB or KM). The predicate - is understood as 

the predicate of equality and hence we accept the usual axioms 

of equality for it (as a consequence of the axiom of exteneio-

nality, these requirements can be restricted to the axiom 

(VX,Y,Z)((X = X&XeZ) —->YeZ)). The unary predicate "to be 

a set" we define - again as it ie usual in GB - as the proper­

ty "to be an element", i.e. 

Set(X)s(3X)XeT 

We reserve lower-case Latin letters for variables running 

through sets (supposing that sets exist, cf. the axiom A3 be­

low). 

Formulas of the language of set theory in which only set 

variables are quantified, are called normal formulas; normal 

formulas in which only set variables and constants occur, are 

called set-formulaa; restricted formulas are thoae set-formu­

las which have only restricts -quantifiers. 

The theory having the fo .«r.ng eight axioms is called 
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tfce (basic) alternative set theory and it is denoted by the 

symbol AST. 

A 1 Axiom of extensionality for classes. Two classes 

are equal iff they have the same elements, i.e. 

(VXfY)((3Z)(ZeXsZeT)==X = X) 

A 2 Schema of existence of classes. For every formula 

of the language of set theory $(ZfZ-,f ... fZk) and for every 

X^ f # 9 # f7^ we require the existence of a class consisting of 

all sets x having the property <§(x,Xp ... ,-X^), i.e. 

(VXlf...fXk)(3X)(Vx)(xeXs §(x,Xr...,Xk)) 

Using the above formulated axioms we are able to define 

the empty class 0, the unordered pair of sets (though we do 

not know that it is a set; this follows from the axiom A 3 ) 

and the union of classes. 

A 3 Axiom of existence of sets. The empty class is a 

set and if we add to a set one element we obtain a set againf 

i.e. 

Set(0)MVxfy) Set(x uiy}) 

The theory consisting of the axioms Al - A3 is called the 

theory of classes and it is denoted by the symbol TC. In this 

theory one can define the usual notions of set theory e.g. the 

ordered pair, the universal class, the representation of mem-

mebrship E « *<xfy>;x€.y}, the identity Id « -t<x,y>,*x « yj and 

the notions of the list from p. 29 CVJ and we are going to use 

these notions quite freely. Classes are equivalent (in symbols 

Xr^T) iff there is a one-one mapping (possibly a proper class) 

of one of them onto the second one. A class is transitive (in 

symbols Tran(X)) iff X ^ U X. The symbol P(X) denotes the 

class of all subgej£ of a class X. Let us keep Vopenka's con-
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vention that the letters F,G,f and g (possibly indexed) de­

note functions. 

Let us repeat from LV3 the definitions which are speci­

fic to AST and which cannot be sensibly defined in Cantor's 

set theory. 

A class is called semiset iff it is a subclass of a set, 

i.e. 

Sms(X) s. (2y)X£y. 

A class is finite iff each its subclass is a finite Bet 

from Cantor's point of view, i.e. 

Fin(X) 5 ((VY £ X)Set (Y) & (VZ £P(X)) (0 -i=Z —> Bz € Z) (Vy) (y c 

c z —> y^Z))). 

A class R is called a well-ordering of a class A (in 

symbols We(A,R)) iff R is a linear ordering of A and each 

non-empty subclass of A has the R-first element. We write 

We(R) instead of We(dom(R),R). 

A class is countable iff it is an infinite class having 

a well-ordering with finite segments only, i.e. 

CourtKX) s (n Fin(X) & <3R) (We(X,R) M V x ) Fin(R"4x?))). 

A class is uncountable (in symbols Uncount(X)) iff it is 

neither finite nor countable. 

Definition (TC). a) A class X is called an ^-element 

of a class Y (in symbols X^Y) iff there is xeYNOJ such that 

X * (YMlDMx*. 

b) If the system of all TI-elements of a class S con­

tains all sets and if this system fulfils all axioms of the 

group B of GOdel-Bernays set theory (cf. £GJ; axiom B8 being 

provable) then S is called a GB-class (more precisely a code 

of GOdel-Bernays classes), in symbols 
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(B(S)s((Vx)x^Sa-ens^(Vx^sHdom(X)i2S&X~1^S&4<x,y,*>i 

<yf»,x>eXj^S)&(VXfYi2S)(X-Y')2S&XxY^S)). 

c) A class X is called nearly universal iff it contains 

0 and with each set it contains also all set-successors of 

this set, in symbols 

Kttn(X) s (0 e X& (Vx € X) (Vy) (x u-ty} € X)). 

In TC we are able to prove the existence of GB-class 

(cf. § 4), but in the following axiom we require more, namely 

the existence of a GB-class such that the universal class is 

its sole 7i -element which is nearly universal. 

A 4 Axiom of GB-class. There is a GB-class without ne­

arly universal ̂  -element different from V, i.e. 

(3S)(GB(S)gt(VX7£S)(Nun(X)~-> X » V)) 

We shall define the satisfaction in TC and in the fourth 

section we shall see that A4 is equivalent to the induction 

for all (finite) formal set-formulas <p ,i.e. to the state­

ment 

VM(g>(0)&(Vx,y)(3>(x)—* g> (xu-ty*)))—-> (Vx)y(x)). 

A 5 Prolongation axiom. Every countable function is m 

subclass of a function which is a set, i.e. 

(VF)(Coun4(P)—>(3f) F£f) 

A 6 Axiom of choice. The universal class can be well-

ordered, i.e. 

(3R)We(V,R) 

A 7 Axiom of cardinalities. Every two uncountable car­

dinalities are equivalent, i.e. 

(VX,Y)CCUncount(X)&Uncount(Y))—> X^Y) 

A 8 Schema of regularity. If there is a set satisfying 

a set-formula £ then there is even a set satisfying § such 
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that none of its elements satisfies $ , i.e. 

Qx) § (x) — > C3x) ( <$ (x) & (Vy e x) n $ (y)). 

The axiomatic system consisting of the axioms Al - A8 is 

called the (basic) alternative set theory. For easier express 

sing let us put moreover the convention that AST * denotes 

the theory AST in which the axiom Ai is omitted. 

§ 2. More about the axiomatic system of AST 

This section deals with axioms which arise by weakening 

of the axioms of AST. Formulating these axioms we simultane­

ously explain reasons for the investigation of such axioms 

and add a few remarks to the meaning of the axioms of AST. 

The first axiom is quite formal - it is the axiom of ex-

tensionality restricted to sets, nevertheless it was already 

formulated in § 1 ch. 1 [VI as an axiom of the alternative 

set theory. 

A 11 Axiom of extensionality for sets. 

(*,y)((V«)(iexs«€y)sx • y) 

Essentially more interesting are the following two axi­

oms which are evidently consequences of the schema of exis­

tence of classes. 

A 21 Schema of existence of normally definable classes. 

For every normal formula §(ZfZlf'...fZjc) we accept the axiom 

(VXlf... f \ ) QI) (Vx) (x € I a $ (x,Xlf... .Xĵ )). 

A 22 Axiom of existence of the class of all finite sets* 

(.3X)(Vy)(y€X=Fin(y)). 

Let BTC (Bernay's theory of classes) be the theory with 

axioms Al, A21 and A3. Then BTC is finitely axiomatizable as 

follows from the famous Bernay's metatheorem (cf. LBlfl63 or 
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Metatheorem. The formula A21 is provable in the theory 

consisting of Al9 the pairing axiom and axioms of the group 

B of GCdel-Bernays set theory. 

Later we shall see that AST is not finitely axiomatizab-

le and hence AST is strictly stronger than AST_2 •«- A21 •*• A22. 

On the other haii. the last mentioned theory is strong enough 

for building of mathematics in the same way as it is done in 

ch. 1 - ch. 4 LVJ(but of course we have to be more careful in 

the formulations of me ta the or ems). 

The theories TC and BTC seem to be convenient bases for 

the investigation of theories with sets and classes. Therefo­

re we are going to formulate our statements in these theories 

(and their extensions) not taking account of the possibility 

to prove results in weaker theories. 

A 41 Schema of induction. For every set-formula §>(z) 

we accept the axiom 

(j>(0)MVx,y)(§(x)~*$(xu4y})))-» (Vx) $ (x) 

The schema of induction was formulated in § X ch, I IV] 

and it played the basic role in the investigation of the be­

haviour of sets in the alternative set theory, e.g. the fact 

that all our sets are finite from the Cantor's point of view, 

is a consequence of it. Under the axiom A41 our definition of 

finite classes coincides with VopSnka's one. The axiom A41 

follows from A4 according to Bernay's metatheorem. 

The prolongation axiom seems to be the most specific and 

powerful principle of the alternative set theory. It expres­

ses simultaneously the idea of the existence of collections 

consisting of elements of a given property which cannot be 

represented by a list of their members (proper semisets) and 
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the idea of approximation of infinity by finite sets. 

For mathematics in AST it seems to be fruitful to in­

vestigate the following weakening of the prolongation axiom 

A51. When the alternative set theory was built there were at­

tempts to replace the prolongation axiom by the axiom A51, 

but it is too weak. On the other hand we are going to show 

that A51 is strong enough for some metamathematical purposes 

- we shall show that in theories with this axiom it is pos­

sible to interpret the whole AST, but without this axiom -

e.g. with the axiom A52 only - it is no longer possible. The 

axiom A52 was already postulated in Evl as an axiom of the 

alternative set theory. 

A 51 Weaker form of the prolongation axiom. There is 

a countable class X so that every subclass of X can be obtain­

ed as an intersection of X with a set, i.e. 

(3X)(Count(X)gaVYS-X)Gy)(X * Xny)) 

A 52 Axiom of existence or proper semisets. 

GX)(Sms(X)8cnSet(X)). 

To prove the implication A5 —> A51 in TC + A41 we use 
the following definitions. 

It is well-known that the class N of all natural numbers 

(with usual properties) can be constructed even in TC + A41# 

The class FN of all finite natural numbers is defined by 

FN = -txeN;Fin(x)$. 

We use oc , fi, f (possibly indexed) as variables running over 

natural numbers; the letters n,m, possibly indexed, will be 

used as variables for finite natural numbers. 

Let us proceed in TC + A41. The class FN is infinite and 

therefore it is countable. (Let us note that in AST the class 

N itself is uncountable.) If X.SFN then assuming A5 there is 
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a set f with f(a) « l=n£ I and hence X * FHA f "ill. We ha* 

r e proved the implication A5^->A51. To prove A51—> A52 it 

is sufficient to realize that the formula (3X)(Sms(X) & 

8iCount(X))—> (3X)(Sms(X)9ci Set(X)) is provable in the theo­

ry in question (cf. § 4 ch. I LVJ)* 

The formulation of our axiom of choice is formally simi­

lar to a form of AC in the usual set theory, but the meaning 

is a little different. Let us emphasize that the class of all 

natural numbers is not well-ordered by e • The axiom of choi­

ce plays in AST an important role even in cases when AC is not 

used in Cantor's set theory e.g. if we want to consider real 

numbers as sets, we have to use A5 (see § 2 ch. 2 tVJ). 

Our axiom of choice is rather formal and technical but 

there are much deeper philosophical reasons for the acceptan­

ce of the following weaker (?) form of the axiom of choice. 

We shall see that the axiom A61 is important from the metama-

thematical point of view, too. The implication A6—>A6l is 

trivially provable in TC. 

A 61 Axiom of countable choices of sets. From every 

relation with countable domain we can choose a function with 

the same domain, i.e. 

(V(X)(Count(dom(X))—» (3F£X)(dom(F) « dom(X))). 

The reformulation of the axiom A61 for classes with fi­

nite domain i.e. the statement (VX)(Fin(dom(X)) ~-> (3F£X) 

(dom(F) = dom(X)))is evidently provable in TC + A41. Therefo­

re the axiom of countable choices of sets expresses our ende­

avour to project properties which are verifiable for finite 

classes even on countable classes. Hence the axiom A61 is a 

formalization of a principle of transcending the horizon (si-
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milarly as the prolongation axiom). We can paraphrase VbpSn-

ka's motivation of the prolongation axiom and motivate the 

axiom of countable choices of sets as follows: Imagine that 

we find ourselve3 on a long straight road lined with large 

stones set at regular distances. The stones reach as far as 

we can see. Then it is natural to suppo3e that the stones 

reach the horizon. 

The axiom of cardinalities guarantees that there are on­

ly two infinite cardinalities. Hence the acceptance of this 

axiom implies a considerable reverse for a mathematician ac­

customed to Cantor's set theory. This fact contributes to 

doubts about fitness of the axiom of cardinalities. However, 

omitting this axiom we weaken the alternative set theory con­

siderably. Therefore it is natural to look for an axiom us­

ing which we can save a deal of statements in proofs of which 

the axiom of cardinalities is used* As such an axiom, the fol­

lowing one can s erve • 

A 71 Weaker form of the axiom of cardinalities. Every 

two infinite sets are equivalent, i.e. 

(Vx,y)((iFin(x) &~lFin fr)) — > x^y). 

It i s well-known that the schema of regularity ( i . e . in ­

f in i t e ly many axioms) i s equivalent in ZFpin to the conjunc­

tion of the following two of i t s particular cases. 

A 81 Axiom of regularity for set3 . Every non-empty set 

has an element disjoint with i t , i . e . 

(Vx)(x#-0 — > B y e x ) ( x n y = 0 ) ) . 

A 82 Axiom of transitive closure. To every set there 

is its transitive superset, i.e. 

(Vx)GyMxeyfcTran(y)) 
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In fact let $(z) be a set-formula and proceeding in 

ZFj,.$ n let us suppose that the formula & (v) holds. Thus the­

re is y with ve y&Tran(y) and we put x = \ ueyj $ (u)J. In 

this case we have O + x and hence there is q e x with qr\x s 0. 

Since q e y we get (\fa e q ) i § (u). 

At the end of this section let us try to answer the que* 

stiom whether our formal theory can be held as a formaliza­

tion of the more intuitively taken alternative set theory 00 

as it is described in [V3. As far as the axioms are concern­

ed, the situation is clear since all axioms of tVJ are prov­

able in our formal theory ani conversely. This follows from 

the above mentioned analysis of weakening of axioms and fur­

ther from the fact that the axiom of seta as particular clas­

ses (cf. § 2 eh. I tVJ) is a consequence of our definition 

of sets. The axiom of choice is implied by the axiom of ex-

tensional coding (see §§ 5,6 ch. ICVJ); on the other hand 

the axiom of extensional coding is a trivial consequence of 

the axiom of choice. 

It is essentially more complicated - but alae more im­

portant - to give an answer if we formalized by a convenient 

way the basic motions of the alternative set theory - the no­

tions of "sst" and the notion of "class". It is obvious that 

our notion of "set" correepond© to VopSnka's notion "element 

of the universe of sets" and that our notion of "clasa" ag­

rees with Vopenka's notion "object from the extended univer­

se".. Even the choice of notations of variables was made in 

harmony with this interpretation. The notion of "property" in 

Vopenka's axiom of existence of classes was formalized - and 

it seems conveniently enough - by the notion "property des-
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cribable by a formula of the language of set theory". 

On the other hand, in our formalization we do not keep 

the idea that there are sets containing proper classes as 

their elements (cf. § 1 ch. I L V3 where e.g. the set {X,X} 

exists even in the case that X and Y are proper classes). 

I%ither dowa assume \hat every property of classes describes 

a clas3 (cf. § 2 ch. I [VJ). Nevertheless in the whole of LVJ 

we can restrict ourselves to "codable classee" and thia ob­

ject can be graaped alao in our theory eince the system of 

all r^ -elements of a class S is coded by the coding pair 

< snoi,SM{l5> (cf. § 5 ch. I LVD. The notion of codable 

classes exceed only symbols IKX; <£>(X)$ and fUX; $(X)S 

from § 2 ch. I CvD but these notions can be taken as only ab­

breviations. 

In our conception there are "more" formal formulas than 

the metamathematical ones and therefore the axiom A4 expres­

sing the induction for (finite) formal set-formulae is stron­

ger than the scheme of induction for metamathematical set-for­

mulas (A41) - cf. the different approach in § 5 ch. II LVJ. 

§ 3. Finite formulas 

The first aim of this section is to construct a conveni­

ent interpretation of K % i n i*
1 TC(and hence even in AST). To 

do it we need some notions. 

Let us note that TC is a very weak theory and hence our 

construction will be rather complicated but the existence of 

such an interpretation enables us to formulate equivalent sta­

tements to some axioms of AST even in TC. Moreover it is ea­

sier to interpret TC than AST in a theory and this brings ot-
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her advantages. 

A class X ia called a ^-pair of classes Y and Z (in sym­

bols X = -(YjZj71 ) iff X - 2>ciQ\u (IxiOtuZxill)xill. We 

have evidently (VQMQ'ri Xs(Q s y v Q s z)); moreover by the 

definition of X we are able to order the pair. Analogical de­

finitions can be done for every finite number of classes. 

A 12 -triplet Ot- *CAfEfIJ^ is called a model (of the lan­

guage of set theory) iff the formulas A4=0 and (EuI)£A 

hold. 

If (Jt s {AfE,U^ is a constant denoting a model then the 

symbol 0/ denotes the interpretation determined by the formu-̂  

las (Tarski's possible definition; cf. LT-M-U) 

Clsa(X) = (XcA2c(Vxfy)((x6X&<xfy> e I) ~* y£X)) 

x0/ ea Y & - (3X6X^KX^=-E»ix3) 

X ^ s « t y d ' s X ^ = T ^ 

and the symbol <J> denotes the formula assigned ly the inter­

pretation Ob to a formula <[> (of the language of set theory). 

Let us note that if I is the equality restricted to A 

then the formula defining Cls (X) simplifies itself to the 

formula X£A. If moreover E equals to Bi^A then the symbol 

(j)̂  and the symbol <|> (cf. § 1 ch. V 172) coincide and the 

definition of X e^ T simplifies itself to the formula 

Now we are going to define the notion of hereditarily 

finite set; our definition agrees with the usual definition 

of this notion in Cantor's set theories. The class of all he­

reditarily finite sets is called finite universe and denoted 

by FV. Defining flQ * -CFVfE ĵ FV\Id r FV$^ we shall aee that 

3V is an interpretation of K%in *n ^* 
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Definition (TC). A set is called hereditarily finite 

iff it is an element of the domain of a finite well-ordering 

keeping e . The Qlass of all hereditarily finite sets is de­

noted FV i.e. 

FV * <x;(3 ̂  )(We(£ )& Fin(^ )& E r dom( £ ) L £ & xedom(^ )} . 

Lemma (TC). The finite universe is transitive and it is 

the minimal class containing 0 and saturated w.r.t. those set-

successors which a re its subclasses i.e. 

Tran(FV)gcOeF?&CVx,yeFV)(xu^yjeF?) &(VX)((0€X gc 

gc(Vx,y6X)(xu-Cy? .£X-~> xu-ty?eX)) —* FVQX). 

Proof. The statements Tran(FV) and OcFV follow immedia­

tely from the definition of the class FY. The proof of the re­

maining statements is also very easy but rather long: 

If X is finite then for every set u, the class Xuin} is 

finite, too. In fact if YSXuiu* then Y -iu?£X and hence 

Y - { u) is a set and therefore Y is also a set according to 

the axiom A3, If 04-Z£P(X.u-ius) then there is a minimal (w.r.t. 

inclusion) element q of the class iv --Cu^jvcZl and then eit­

her q or qu-tu* is a minimal (w.r.t. inclusion) element of 

the class Z. 

If £ is a finite well-ordering and if zedom(i=- ) then 

either z is the £ -first element or there is a set q with -{vj 

v^z$ * {v;v^q$ u*Czy. TO prove it it is sufficient to consi­

der the class *ti<v,z> \w£ v-*- Z}JW<: z j and its minimal element 

w.r.t. inclusion. 

If 4z is a finite well-ordering keeping e and if u & 

c doi( i4) then the well-ordering £u {<!v,u);v = uv(u ^ 

4 dom(i= )& v€dom(<-= )) keeps e and moreover by induction us­

ing the previous parts of the proof we get that the well-or-
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daring in question is finite. 

Let xedom( .4-^) and yedom( ̂ 2 ) and let £-* and ^ 2
 De 

finite well-orderings keeping € • Using the above proved sta­

tements (and the fact that (Vz e dom( -^2))(z£{qjq<2
 z ^ ) we 

can prove by induction w.r.t. -£2 that there is a finite well-

ordering keeping e so that dom(^-)u dom(^p) is a subclass 

of its domain. Hence even xuiy} is a subset of its domain 

and therefore the above mentioned construction gives us a fi­

nite well-ordering keeping e such that xu-ty? is an element 

of its domain. This proves the third statement of our theorem. 

Let us assume that the formula 0 e X &. Wz ,y e X) (xu {y J £. 

£,X-~*- xu4yj€X) holds and let xeFV - X. In this case there 

would be a finite well-ordering & keeping 6 with x£dom(^ ). 

The class 4y e dom( £ )jl3z)(z#Xfc z £<lqfq<y})r would have the 

£-first element and this leads to a contradiction. 

Metatheorem. The interpretation $Y is an interpreta­

tion of KMpin in TC. 

Demonstration. The formula Al follows immediately from 

the last lemma and from the axiom Al; moreover the last lemma, 

implies even A3 . The statement A2 is a trivial consequen­

ce of the axiom A2 since we admit all subclasses of FV as 

$V -classes. 

If §(z) is a set-formula such that the statement 

((vxfy)($(x)~~• $ ( x u ^ y } ) ) ^ holds and if F£ FV
2 then the 

mr 

classes ixe FV| $ (x)} and -tx€FVjF"x€ FVl equal to the class 

F7 by the last lemma. Hence we have proved the statement A41 

and the $V -axiom of replacement. In § 1 ch. I CVJ all axi­

oms of ZFp.-. were proved from the axioms All, A3 and A41,A8and 

therefore it remains to say only a few words to the statement 
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Let <J*(z) be a set-formula and let us have §>^(x)&X€ 

G dom(^ ) where ^ is a finite well-ordering keeping € .' l*t 

y be the 4z -first element zwith <£ (z). We have obviously 

(\/zey)~i (p (z) which completes the demonstration. 

l̂y the last metatheorem the formula (Vx €FV)(3y,z e 

c FV)(y » PW(x)«S z « U ^ x ) is provable in TC. Moreover for 

every x e FV we have PFV(x) * P(x) and U ^ x » U x. Thus if 

$(x) is a set-formula equivalent to a formula 3f(xt /(x)) 

where y(z^,z2) is a restricted formula and cP is an opera-

topm constructed from P and U then for every xeFV the for-

mula <$ (x)s$(x) holds. 

Theorem (TC + A41). N * FN. 

Proof. In TC + A41we can define natural numbers as sets 

z satisfying the formula Tran(z) &(Vx,y € z H x e y v x « y v y e x ) & 

&(VuSz)(u + 0 —> ( 3 q e u ) ( q n u =- 0)) and hence the considera-
&V tion mentioned above assures us that N * FVfiN. 

By the last lemma we have x e FV—> Fin(x) and from this 
$*V we immediately get the inclusion N & FN. Further 

Tran(FVnN) and therefore i f cG # FV then FVn N £ 06 . Sinee 
t 

(\> e FVn N -—> l^ +1 e FVn N, the class FVnN cannot be a set 

and from this the formula oo% FN follows. 

There are many important .notions defined in ZF-^ • Sinee 

AST is stronger than ZFyin we are able to define these noti­

ons in AST in the same way. However, there is moreover anot­

her method how we can construct notions of ZFyin in the alter­

native set theory. The interpretation fV induces namely an 

interpretation of ZFj.in in AST and hence we are able to con­

struct notions of ZFjsn according to this interpretation (i.e. 

if $(z) define a notion in ZFJ?in then we define the corres-
- 715 -



ponding notion in AST by the formula <| (z)). 

The notions defined by the first way are called by the 

same terms as in ZFp.£n (i.e. without any attribute); to no­

tions obtained by the second way we add the attribute "fini­

te" and in the notation we add to them the index "F". In ac­

cordance with this convention were defined e.g. the notions 

of natural and finite natural numbers, the notions of ratio­

nal and finite rational numbers and the notions of the uni­

versal class and the finite universe (finite universal class). 

We are going to use this convention quite freely. Let us no­

te that there is one exception from this convention since the 

term "finite set" is used for all sets the cardinality of 

which is a finite natural number and not only for heredita­

rily finite sets. 

At the first view it is rather surprising that the no­

tions defined by the second way play a more important role 

in AST than those defined by the first way but this becomes 

clear if we realize that we interpret the intuitive notion 

"finite" in the alternative set theory by the predicate "to 

be finite" and therefore the interpretation of the collection 

of all hereditarily finite sets from Cantor's point of view 

onto finite universe is in some sense more natural than its 

interpretation onto the whole universe. 

For some results it will be essential that the construc­

tion of notions by the second way does^hot require all axioms 

of AST and hence that we can define these notions even in TC. 

Now we are going to use these two processes of defining 

notions for double formalizing of metamathematics in AST. Let 

us note that we are forced to define some notions (e.g. no-
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tions depending on proper classes) directly in TC since they 

cannot be defined in ZFj..^* 

As usual we can define in ZFp^n the notions of (formal) 

formula, proof, provability (in symbols V~), consistency (in 

symbols Con) and so on. We admit infinitely many constants, 

however, we restrict ourselves in the following to formulas 

with predicates e and s only; but this restriction is, of 

course, unessential. 

Thus we have all above mentioned notions even in AST. Bjy 

the use of the second way we define in TC the notions of fini­

te formula, finite proof, finite probability (in symbols *""y)| 

finite consistency (in symbols Con™) and so on. By the consi­

deration stated above we obtain in AST some connections bet­

ween notions without attribute and notions with attribute "fi­

nite". For example we see that a formula (proof respectively) 

is a finite formula (finite proof respectively) iff it is a 

hereditarily finite set; further every free variable occuring 

in a finite formula is a finite free variable occuring in it 

and so on. 

Let us emphasize that the length of any finite proof is 

a finite natural number. 

We have admitted in finite formulas as parameters only 

elements of FV, however, it is possible to extend this defi­

nition admitting all parameters.. The clas3 of all finite for­

mulas with parameters in a class C is denoted by FI^ and its 

elements are called (finite) formulas of the language FI^ 

(they can be coded by pairs <y,f > where cp ia a finite for­

mula without parameters and f is a one-one mapping such that 

elements of dom(f) are finite variables free in cp and 
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rng(f)cc). fa put FL « FI^. Trie class of all formulas with 

parameters in C is denoted by Lc and we put again L = 1^, 

Evidently we are able to extend usual notions also to e-

lements of Fl̂ ,. For example a sequence of elements of FLQ is 

called a finite proof in predicate calculus iff there is a 

one-one mapping f transferring (some) elements of C into fi­

nite constants such that our sequence is transferred to a fi­

nite proof in predicate calculus. 

Subclasses of Fig are. called theories (of the language 

FLp). Let us emphasise that in accordance to our preference 

of notions with attribute "finite", theories contain only fi­

nite formulas of the investigated language. For theories which 

are proper classes we extend the notion of finite provability 

(finite inconsistency, provability and inconsistency respec­

tively) defining ? V f 9 ( 1 Qon^CT)9(f H <f and n ConCT) res­

pectively) iff there is a subset (P of J* with CT0r-F <$ 

(~i ConyW^), (fQn y and n Con(0^) respectively). 

If 06 « CAfE,IJ^ is a model then for every finite sen­

tence FI»£ we define by induction (using the axiom A2) 

CtN a e b iff <a,b>*% 

Ct N a -» b iff < a fb>el 

(X k=* (0/ fe y) iff (Jt N= <3p and (̂  j* f 

O t M - i 9 ) iff i ^ N y 

C i M 3 X ) 9 ( X ) iff (3aeA) Vt^q(m) 

Let us note that we have defined satisfaction only for 

finite formulas. For models which are sets can be the defini­

tion of satisfaction extended for all formulas in the obvious 

way. Such a definition in the general case seems to be impos­

sible (cf. LS-V 21K 
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Two models Oi and & are called elementarily equivalent 

iff they satisfy the same finite sentence (without constants) 

i.e. iff 

WyeFDUOlte <?)&(&**<?)). 

If (T is a theory then we write VI K CT instead of 

(V<ys T) tl& gp 

Quite analogically as in the classical case we can prove 

by induction (JV Fy & W N C T ) — > C£ {=- g> ana therefore we ha­

ve (3 OC )( C# N J*') —> Conp(ff'). Moreover, the GOdel's proof can 

be repeated in AST and thence we have also the converse impli­

cation, i.e. the statement ConytJ*) —> (3 OC) Vl 1= V. 

In the special case that I is the identity on A we are 

going to drop it in the notation; if moreover E equals to En 
2 ^ 

n A we write A l=- cp instead of <A,B > f== g? * 

For every metamathematical hereditarily finite object 

(e.g. natural number, formula or proof) there is its usual 

formaliaation in ZFp. and therefore using our second method 

of defining of notions of ZFp^n we obtain its formalization in 

TC (By metamathematical induction can be proved that both 

our ways give in AST the same for such objects.) 

If <f is a formalization of a set-formula & in TC then 

one can prove by easy metamathematical induction that 

§ 3 V 1= Cf> . 

If T is a primitively recursive (metamathematical) theo­

ry then T and T denote its formalizations in AST and TC gi­

ven by the first and second way respectively (we suppose that 

a convenient description of T is chosen). Evidently in AST 

we can prove iT » T A F V and moreover we get 3" = f for every 

(metama thematic ally) finite T. 
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Applying the classical results of logic we obtain two 

kinds of statements in dependence of the choice of way but so* 

metimes one of such statements is a consequence of the second 

one. For example if we investigate the applications of GSdel's 

theorem on consistency proofs we see that relevant is only the 

statement 

If T is a consistent theory stronger than TC then T • 

+ -iConp((f) is consistent, too. 
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