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COMMENTATIONES MATHEMATICAF UNIVERSITATIS CAROLINAE 

22.1 (1981) 

ON FARKAS TYPE THEOREMS 
Winfried SCHIROTZEK 

Abstract: For linear mappings between dual pairs of re
al vector spaces, a Farkas type theorem is established which 
extends the known results to a wider class of subsets of the 
domain and range space. It is shown that this and related re
sults can be derived in a unified way. As an application, a 
duality statement for a linear programming problem is proved. 

Key words: Linear mappings and their adjoints, Farkas 
type theorems, duality in linear programming. 

Classification: 47A05 
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1. Introduction. In this note, we consider the equati

ons 

(1) (A'"1(P°)nQ°)° = AP~7~Q, 

(2) ( P O A ^ Q ) 0 = P° + A'(Q°), 

(2') ( P O A ^ Q ) 0 = P° + A'(Q°), 

where A denotes a weakly continuous linear mapping and P resp. 

Q denotes a convex subset of the domain resp. range space of 

A. (The exact meaning of the symbols used is explained in the 

following section.) 

If, in particular, A maps R11 into R01, P equals BJ (the 

non-negative orthant in R11), and Q is reduced to the zero e-

lement of HP, then (since AR^ is closed) equation (1) 



passes into 

(A-1-^)0 - AH£, 

which expres3e9 a famous result of Farkas L9] on linear in

equalities. 

It is well-known that statementa on the validity of the 

equationa (1),(2) and (2') play an important part in eatabli-

shing duality results and (necessary) optimality conditions 

for linear and non-linear programming problems. 

Theorem 1 of the present note shows that (1) is valid 

under weak conditions on P and Q. Ihis known statement is in

cluded because the proof given here is very simple and becau

se the following results will be deduced from it. 

Theorem 2 is a slight generalization of a theorem, due 

to Schechter I163, on the solvability of sublinear inequali

ties. Here it ia shown that this statement can be considered 

as- a variant of Theorem 1. 

The main resul t of this note is Theorem 3 ( i i ) which 

presents sufficient conditions for (2') to hold, the basic 

hypothesis being that 

(3) POA^dnt Q)*0. 

This statement encompas3e3 and extend3 the re3ult3 obtained 

earlier by Kretschmer 111] and Levine-Pomerol H 3 J . The proof 

is based on a lemma showing that (3) is sufficient for the e-

quation 

PnA"1^ = PnA^Q, 

and on the known fact that (3) also implies the closedness of 

P° + A'(Q°). The rest of the proof is an application of Theo

rem 1. 



The well-known fact that if P and Q are both closed then 

(2) holds, has been included here (as Theorem 3 (i)) in order 

to demonstrate that the case of closed sete and the (more dif

ficult) caae of non-closed eets can be treated parallel to 

each other by reducing both to Theorem 1. 

Applying Theorem 3 (ii), we finally obtain a quite gene

ral duality result for a linear programming problem (Theorem 

4). 
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2. Notation and terminology. Let (E,E#) be a dual pair 

of real vector spaces. The value of the canonical bilinear 

functional at (x,u)&E><E' will be denoted <x,u>. Following Bou-

rbaki [2J, we shall denote by 6f(E,E') resp. ^t(E,E') the weak 

topology resp. the Mackey topology on E with respect to (EfE'). 

For a nonempty subset X of E, int X denotes the t(E,E') -

interior of X and X denotes the #(E,E')-closure of X. Recall 

that if X is convex, then its closure is the same for all lo

cally convex topologies on E compatible with (E,E'); in this 

sense, we shall simply speak of the closure of X or say that X 

is closed. Furthermore, 

X° = { u c E' 1< x,u > £ 1 for each x € X { 

denotes the polar set and 

X* = - i u e E ' I < x , u > 4 0 for eac*j xeXl 
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denotes the dual set (which is always a convex cone). If X 

o >K 
itself is a cone, then X = X . Here X is said to be a cone 

if JlXcX for each . % £ 0. A cone which is also a convex set 

is said to be a convex cone. 

If (F,F') is another dual pair of real vector spaces and 

A:E —> F is a weakly continuous (i.e., continuous for the weak 

topologies £ ( L , E ' ) and 6'(FI"
,',i) linear mapping, then A':F'—> 

—-> E' denotes the adjoint of A. 

Finally, R, R+, R_, respectively, denotes the set of all 

real numbers, the set of all non-negative real numbers, and the 

set of all non-positive real numbers. 

3. Results concerning equation (I). w e atart with a 

technical lemma, the simple proof of which is left to the read

er. 

Lemma 1. Let (E,E') be a dual pair of real vector spaces 

and let X, Y be nonempty subsets of E such that at least one of 

them is a cone. Then 

(X + Y)° = X°f| Y°. 

Now it is easy to prove the following statement. 

Theorem 1. Let (E,E') and (F,F') be dual pairs of real 

vector spaces, and let A:E—> F be a weakly continuous linear 

mapping. Further let P be a convex subset of E and Q a convex 

subset of F. Suppose that at least one of the sets P, Q is a co

ne and that o eAP + Q. Then 

(A'"1(P°)nQ°)° = AP + Q. 

Proof. It is immediate that 
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A ' - 1 ( P ° ) = (AP)°. 

Using t h i s equat ion, Lemma 1 and the bipolar theorem (see , 

e . g . , [ 2 , p . 5 2 ] ) , we obta in 

(A"" 1 (P° )nQ°) ° * ( (AP)°f lQ 0 ) 0 = (AP + Q) 0 0 = A P T Q , 

and the proof is complete. 

Theorem 1 has been considered, in varying generality, by 

several authors (see, e.g., [1],E33,[73,[8],[123,[153). Some 

of them have also established conditions guaranteeing that 

AP + Q is closed. We shall return to this question at the end 

of this section. 

By specifying which of the sets P, Q is a cone, we can 

reformulate Theorem 1 in such a way that the assumption 06 AP + 

+ Q becomes dispensible. 

Theorem 2. Let (E,E'), (F,F') and A be as in Theorem 1. 

Further let P be a nonempty convex subset of E and Q a nonemp

ty convex subset of F. 

(i) If P is a cone, then for each zeF the following 

statements are equivalent: 

(a) zeAP + Q. 

(b) <z,v> 4 sup<y,v> for each v6A/'i(P^). 

(ii) If Q is a cone, then for each zeF the following 

statement (b') is equivalent to (a): 

(b') < z,v >4 supp<Ax,v> for each veQ*. 

Proof, (i) Choose some y-ĵe Q. Then Q^ = Q - y^ contains 

the zero element. But we also have oeP since P is a cone. Hen

ce oeAP + Q-p and we can apply Theorem 1 with Q replaced by 

Q-,. Now let z c F be given. Then z e AP + Q if and only if 
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z - y, e AP + Q-̂  (since always M • x = M • x), and by virtue 

of Theorem 1 the latter is equivalent to 

(4) CvcA'""1(P*) and sup<y - y, ,v >^1] =-> <z - y-, f v > 4 1. 

Since A'"" (P*) is a cone on which the sublinear functional 

suo <y - y-_,#> is non-negative, a well-known argument shows 

that (4) holds if and only if 

< z - y, ,v> -4 SUD <y - y, ,v> for each v£ A'~ (P*), 
•*• <H» 6 Q, <*• 

and this is equivalent to (b). 

(ii) is proved analogously. 

Using a different method, Schechter tl6] established Theo

rem 2 for the case that E is finite dimensional, F coincides 

with E, A is the identity mapping of E, and P, Q are closed. 

He observed that his result can also be proved in an arbitrary 

locally convex space E. Once this is done, it is not difficult 

to derive the more general statement of Theorem 2. However, the 

proof given here is more straightforward. 

Theorem 2 can be considered as a solvability criterion for 

an inequality system of the form 

<z,v>^h(v) for each veK, 

where K denotes a closed convex cone in F' and h denotes the 

sublinear functional defined by h(v) = sujjL<y,v> on the cone 

of all v e F ' for which the supremum is finite. Some applicati

ons of this result are given in tl6J. 

To conclude this section, we return to the question for 

conditions ensuring that AP + Q is closed. We shall not dis

cuss this problem in detail; for later use, we quote the fol-

owing criterion only. 
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Lemma 2. Let (E,E'), (F,F') and A be as in Theorem 1. 

Further let P be a nonempty closed convex subset of E and Q a 

nonempty closed convex subset of F. Suppose that 

(5) (int P°)nA'(Q°)4-0. 

Then AP + Q is closed. 

In case that P, Q are cones, Lemma 2 is due to Kretschmer 

[11]; an alternative proof was given by Nakamura and Yamasaki 

[14]. In the general case, Fan [7] established the condition 

(int P°)n A'Unt Q°)*0 

instead of (5). In the above form, Lemma 2 was stated without 

proof by Levine and Pomerol [12], The proof of this (and a mo

re general) statement can be carried out by modifying the proof 

of a closedness criterion due to Dieudonne' C43. An alternative 

proof can be given by first showing that AP is closed and then 

applying a closedness criterion of Fan C7J. 

4. Results concerning equations (2) and (2'). The 

following lemma will be crucial for our approach. 

Lemma 3. Let (E,E') and (F,F') be dual pairs of real ve

ctor spaces, and let A:E —> F be a weakly continuous linear 

mapping. Further let P be a convex subset of E and Q a convex 

subset of F. Suppose that PDA" (int Q)4* 0. Then 

7nA - 15 = PnA'^-Q. 

Proof. We have only to show that 

(6) P O A ^ Q c P n A ^ Q 

since the reverse inclusion is obvious. Let x £ PflA (int Q) 
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and take any xePflA" Q. Further let V be a balance^ open 

neighbourhood of zero for the Mackey topology 't(£,$'). Then 

there exists 51c R such that 0 < ^ l ^ l and 3l(xQ - x) e V. 

Consequently the point y = XxQ + (1 -A)x belongs t0 x + V, 

Since Ax £ int Q and Axe Q, we have 
o ' 

Ay * ̂ A x 0 + (1 -A)Axeint Q 

and so y € A" (int Q). Since A, being weakly continuous, is al

so continuous for the Mackey topologies (see, e.g., [2, p. 1043), 

A (int Q) is t(E,E')-open. Hence, with respect to ^(E,E')f 

the set W * (x + V)A A" (int Q) is open and so a neighbourhood 

of y. Since x , x e P and P is convex, y also belongs to P. Hen

ce there exists z with 

zePn wcpnu"1Q)n (x + v). / 

This shows that x c P O A ' ^ . Thus (5) is verified and the proof 

of Lemma 3 is complete. 

Notice that Lemma 3, appropriately reformulated, holds in 

an arbitrary (i.e., not necessarily locally convex) topological 

vector space. 

Now we can prove the main result of this note. 

Theorem 3* Let (E,E'), (F,F') and A be as in Lemma 3. Fur

ther let P be a convex subset of E and Q a convex subset of F. 

Suppose that at least one of the sets P, Q is a cone and that 

both of them contain the respective zero element. 

(i) If P, Q are both closed, then 

( P O A ^ Q ) 0 = P° + A'(Q°). 

nA"1(int Q) + 0, then 

(PnA^Q)0 = P° + A'(Q°). 

(ii) If FnA"1(int Q) + 0, then 
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Proof. We shall apply Theorem 1 with A',Q°,P° in place 

of A, P, Q respectively. Notice that A' is also weakly conti

nuous (see, e.g., [2, p. IOI3) and that, by virtue of the bi

polar theorem, Q 0 0 = Q, P00 = P. Therefore we obtain 

(7) (P0A - 15) 0 = P° + A'(Q°), 

from which (i) follows immediately. 

Suppose now that the hypothesis of (ii) is satisfied. Us

ing the fact that a set and its closure have the same polar 

and applying Lemma 3, w*» +*--T. vet 

( P O A ^ Q ) 0 * IPAA""1©)0 = (PflA""1^)0. 

In view of (7), it only remains to show that P° + A'(Q°) is 

closed, but this follows from Lemma 2 applied to A',Q°,P° in 

place of A, Pf Q respectively. (Notice that Q° and P°, as po

lar sets, are closed.) This completes the proof of Theorem 3. 

Theorem 3 (i) is due to Hurwicz CIO] in case that P equ

als B and Q is a cone, an alternative proof for this case was 

given by Craven and Koliha C33. For the general case, Levine 

and Pomerol [123 stated without proof the equation 

( P O A ^ Q ) 0 = P° + A'(Q°) 

which is easily seen to be identical with (2). 

Theorem 3 (ii) was established by Kretschmer [113 for the 

case that, in addition, P and Q are cones. Levine and Pomerol 

[133 proved Theorem 3 (ii) under the assumption that P is a 

convex cone and Q is an open neighbourhood of zero for 

T,(F,F'). Ifotice that, in this case, Q° is ^(F'jFj-compact ac

cording to the Alaoglu-Bourbaki theorem. Hence A'(Q°) is 



^(E'jE)-compact and this immediately implies the closedness 

of P° + A'(Q°). Thus we need not refer to Lemma 2, and the 

proof given above becomes especially simple. It is obvious 

that Theorem 3 (ii) encompasses the respective results of Cll3 

and [133 and also applies to cases not covered there, for in

stance, to the case that P and Q are both non-closed cones or 

that P is not a cone. 

As an immediate consequence of Theorem 3 (ii), we obtain 

the following result of Dubovitskii and Milyutin C5-U 

Corollary. Let (F,F') be a dual pair of real vector spa

ces and let Q0,Q-j »• • • ,Qn be convex cones in F such that Q 0 
TU 

Hint (.TV Q,)4*0. ̂ hen I ~ 1 i 

CO Q,)*=2 Q* 
^ 0 J -̂ =0 J 

Proof. For n = 1 the assertion follows directly from Theo

rem 3 (ii), and for an arbitrary integer n>l it can then be 

easily verified by induction. 

5. Duality in linear programming. With the aid of Theorem 

3 (ii), we are able to verify the following result• 

Lemma 4. Let (E,E') and (F,F') be dual pairs of real vec

tor spaces, and let A:E —> F be a weakly continuous linear map

ping. Further let P be a convex subset of E and Q a convex sub

set of F. Suppose that at least one of the sets P, Q is a cone 

and that both of them contain the respective zero element. Fi

nally let y e F and suppose that there exist x e P, a> > 0 sa

tisfying AxQ - <p0y0 £ int Q. 

(i) For each (u0,oc) e E'x R, the following statements are 

equivalent: 
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(a) x e P , f t R+ and Ax - £>y e Q imply <x,uQ> £ &$> + 1 . 

(b) There e x i s t s v e Q ° s a t i s f y i n g A'v - uQ e - P° and 

<y 0 ,v>£oG . 

( i i ) I f P, Q are both Qones, then for each ( u 0 , o 6 ) e E 'x 

>* R, the following s tatement i s equivalent to ( a ) : 

( a ' ) x e P and Ax - yQ e Q imply <x,uQ> £ <*> • 

Proof, ( i ) We s h a l l apply Theorem 3 ( i i ) with E ,E ' ,P ,A, 

r e s p e c t i v e l y , replaced by ExR f E ' x R , P ^ R ^ , and B, where B 

i s defined by B(x, §D ) = Ax - p yQ for each ( x , p ) e E x R . Not i 

ce t h a t , by assumption, (x , a> ) e ( P x R J D B ( i n t Q). I t i s 

evident t h a t (a) i s equiva lent to 

(u Q , -oc) € U P x R j n B* 3 ^) 0 

which, by Theorem 3 ( i i ) , holds i f and only i f 

(8) (u o , - o0 ) € (P°x R J + B ' (Q°) . 

Since B'v = ( A ' v , - < y o fv>) for each v e F ' , (8) i s e a s i l y seen 

to be equiva len t to ( b ) . 

( i i ) Suppose t h a t (a) i s s a t i s f i e d and l e t x e P , Ax - y e 

£ Q. Then for each g> ^ 0, we have <pxeP and k{<px) - p y 6 Q , 

Hence (a) impl ies t ha t for each p > 0 , < p x , u Q > ^ o C f + 1 or 

<x,uQ> £ 06+ -5% Thus we obta in <x,uQ> £ 00 , and so ( a ' ) h o l d s . 

Suppose now t h a t the l a t t e r i s t rue and l e t x £ P , p> e R+> Ax -

- 0->yo£Q« 1--* f> > 0, then i t follows immediately t h a t <x,u > ^ 

4 oC(0 < oCro + 1. Now l e t ^ = 0 . Then for each <o >- 0 , we have 

G ' x e P , A ( 6 / x ) e Q . Furthermore, for x.̂  « -^— x Q , we have x-,6 P 

and Ax-̂  - y Q e Q. For each 6" ^ 0, we thus ob ta in 6"x + x , 6 P , 

A( 6*x + x-.) - y e Q and so by v i r t u e of ( a ' ) , <dx + x-,,u > h 

4 06 , which implies <Cx,u0>40 < oc • 0 + 1. Hence (a) i s t r u e . 
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This completes the proof of the lemma. 

In a known faahion (cf. Pan L81), we can now derive a 

duality statement for a linear programming problem. 

Theorem 4 . Let ( E , E ' ) , ( F , F ' ) , A, P, Q, y Q , x Q , <pQ be a3 

in Lemma 4 . Fur ther l e t u £ E ' and s e t 

G M v e F ' l v c Q ° , A'v - u Q e - P 0 } . 

I f G i s non-empty, then min ^<yQ»v> I v c G j e x i s t s and one has 

(9) m i n - K y 0 , v > I v e G ? = 

<x,u0> - 1 
s u p ^ [ x € P , ^>^ 0, Ax - fDyoe Q5 . 

If, in addition, both P and Q are cones, then 

(10) m i n - K y 0 , v > I veG$* 

= sup t < x , u > I x £ P, Ax - y t Q i • 

Proof. Let M denote the 3et of all oo e. R aatisfying (b) 

of Lemma 4. It is obvious that, whenever min M exists, 

min4<y ,v>i veG} also exist9 and both valuea are equal. We 

ahall ahow that min M doea exist and equala the right-hand si

de of (9). By Lemma 4 (i), M coincides with the set of alloc e 

£ R which aatiafy (a) of Lemma 4. It follows that 

(11) M s-tcce R | x£P, f> >• 0, Ax - f>y0£ Q = » 

<x,u > - 1 , 
-==-> oC £ —1-2 \ . 

? 
To ver i fy (11) , i t suf f ice3 to consider the case p = 0 in 

(a) of Lemma 4 . Thus l e t x£ P and Ax£Q. Since G i s non-empty, 

we have A'v - u c - P° for some v e Q° and s o , as P or Q i s a 

cone, 
< x,uQ> =- <Ax,v > - <x,A'v - uQ> £. 1. 
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This proves (11) which, in turn, implies that min M exists 

and (9) holds. 

Finally, if P and Q are both cones, then it follows from 

what has just been proved and Lemma 4 (ii) that (10) is satis

fied. This completes the proof of the theorem. 

Related duality results have earlier been obtained by 

Duffin [63, Kretschmer [11],.an -7l,t8J, Levine-Fomerol [123,[13l 

and others. Notice, however, that Theorem 4 constitutes a dua

lity statement which also applies to non-closed convex cones 

P, Q. 
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