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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22.1 (1981) 

O N BOUNDED SOLUTIONS OF NONLINEAR ORDINARY 
DIFFERENTIAL EQUATIONS 
Moses A. BOUDOURIDES 

Abstract: We prove the existence and an asymptotic 
property of bounded solutions of the nonlinear differential 
equation (in a Banach space E and with the independent vari
able te CO,oo )) 

x = A(t)x -i- f(t,x) 
under the aaaumption that the non-homogeneous linear equatiom 

x' = A(t)x -»- b(t) 
haa at leaat one bounded solution for each b belonging to a 
function Banach space B. 

Key words: Ordinary differential equations in Banach 
spaces, function spaces, admissibility, successive approxi
mations . 

Classification: 34A34, 34G20, 34C11 

1. Introduction. The object of the present article is 

the study of the relations between the solutions of the fol

lowing equations 

(1) x' = A(t)x 

(2) x' = A(t)x + b(t) 

(3) x' = A(t)x + f(t,x) 

where t^ J =L0,eo); x, b, feE, a real Banach space; A(t), 

for every fixed t, is a continuous linear operator (endomor-

phism) of E into itself; A(t), b(t) are locally integrable 

(in the Bochner sense). 
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In the years 1930-1935, 0. Perron, IC.P. Persidakii and 

I.G. Malkin (cf. I 43 for references) established (among ot

her results) the equivalence of the following properties (in 

the case dim E <: co , A(t) continuous) 

(PI) for each bounded continuous b all the solutions 

of (2) are bounded; 

(P2) for each f continuous, II f (t,x) II ^ ft , l!f(t,x) -

f(tfy)||^^l x-yli , with sufficiently small (3 , t » all the 

solutions of (3) with sufficiently small llx(0)|| are bound

ed; 

(P3) there exist positive constants N,V such that for 

any solution x of (1) and for any t£ tQ^ 0 we have 

-»(t-tj , 
itx(t)H4 Ne ° II x(t0)ll . 

In the years 1958-1959, J.L. Massera and J.J. Schaffer 

(cf. [33,14]) generalized these properties (in the case of 

dim £ = CD and of Carath^odory type conditions), considering 

a general category of function spaces. 

The purpose of this article is to establish the equiva

lence of (PI) and (P2) in the frame of the general function 

spaces of [4] and in the case when f is such that ftf(t,x) -

- f (t,y) \\ 4s ca (t, II x-y 11 ), where o)(t,») is an appropriate 

non-decreasing function. To this end, we first extend Coppel'a 

equivalent criterion to (PI). Finally, we obtain sufficient 

conditions such that for every bounded solution x of (3) 

lim. !)x(t)u * 0. 

2. Notation and preliminaries. Let X be a generic Banach 

space with norm II • II x. We denote by X* its dual and by (•,-) 
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the d u a l i t y p a i r i n g of X and X*; the norm of X** i s denoted 

again by II • II x * . We denote by X the space of continuous 

endomorphisms of X and again by II • II # the norm of X. I f A € 

€ X, we denote by A*eX* i t s ad jo in t opera to r . 

For the Banach space E we w r i t e II • Jl« = II • H . For any 

a > 0 , we wr i t e S = { x e E; II x II < al« 

By C = C(E) we denote the Banach space of bounded c o n t i 

nuous funct ions u:J—•> E with the norm ttulL = sup -illu(s),,: 

: s e J ] . For any a > 0 , we w r i t e % = f u eC : l| UIIQ <a\. 

By iP = lP(E) , \h p -<• co , we denote the Banach space of 

s t rong ly measurable functions u : J — ^ E such t h a t L fiu(s)|lpds< 

< co with the norm II ull = \ f II u ( s ) | | p d s l 1 / p . By L°° = h°° (E) 
Lp ^ 

we denote the Banach space of s t rongly measurable funct ions 
u : J — > E such t h a t ess sup4 l lu ( s ) t | ;s & J } < oo with the norm 

Hull = ess sup { II u ( s ) II : s e j $ . 
hco 

By L = L(E) we denote the space of strongly measurable 

functions u:J—>E, Bochner integrable in every finite subin-

terval I of J, with the topology of the convergence in the 

mean on every such I. 

Let B(R) be a Banach space of measurable functions u:J—> 

—> R such that 

(i) B(R) is stronger than L(R) (cf. [41, p.35); 

(ii) if ueL°°(R) with compact support, then ueB(fi); 

(iii) if ue B(R) and v:J—> R measurable and such that 

Ivl^lul, then veB(R) and II v!lB,R) £ II «HB(R) • 

By the associate space B*(R) we denote the Banach space 

of all measurable functions v:J—> R such that 

sup 4/ lu(s)v(s)lds:ueB(R), H UI,B(B> - 1 ̂  < °° 
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with norm 0 ̂ 'B^CR) S s u p "̂ j lu(«M«)lde:ucB(R)t fl«lg(R) i-

£l3« According to Theorem 22.M of [4J, the following "Hol

der's Inequality" holds: if ueB(R) and veB*(R), then 

turl €.L1(R) and 

^ tu(s)v(s)lds4lluilB(R) HvV(R)* 

We denote by B « B(E) (B* =- B*tR)) the Banach space of 

all strongly measurable functions u:J—> E such that Hull e 

eB(R) ( )lttH£B*(R)) provided with the norm HUIIQ • 

s ' i i iu» » B ( H ) u u i i B * * n iiuii n B * ( H ) > . 

Let A e L(lf) and let E 0 be the set of all points of E 

which are values for t = 0 of bounded solutions of (1). 

We assume that E 0 is closed. Then according to Theorem 

4.1 of C3J, there exists S>0 such that every bounded solution 

x of (1) satisfies the estimate 

llxllĉ S||x(0)l| . 

Moreover, we assume that E has a closed complement E-,. 

Let P be the projection of E onto EQ. Furthermore, let U(t) 

be the fundamental solution of (1) such that U(0) = I. For 

any te J we define a function G(t,») € L(E) by 

0(t,s) =-

U(t)PU"1(s) for Oásét 

-UUMI-PЭU"
1
^) for s^t. 

3. The Non-homogeneous Linear Equation. The pair of Ba

nach spaces (B,C) is called admissible (cf. C4], p. 127), if 

for every beB there exists at least one bounded solution of 

(2). Then by Theorem 51.E of L41 there exists a constant K>0 
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ouch that for every bsB the equation (2) has a unique boun

ded solution x with x(0)s E^ and llxllc4K II bllfi. Moreover, 

by Theorem 52.J of [43 for every beB with compact support 

the unique bounded solution x of (2) with xlOje^ and 

llxllc-=K Hb.!B is represented by x(t) « J Q(t,s)b(s)ds. 

Theorem 1. Let (B,C) be admissible. Then there exists 

a constant K>0 such that, for any teJ, G(t,-)eB*(E) and 

Proof. Let beB with compact support. Suppose that b 

vanishes for t>T, where T is arbitrarily fixed. By the re

marks preceding the theorem, there exists a constant K>0 

such that for any t e J 

ll/TG(t,s)b(s)dsll^ K llbllB. 

However, for any x*e E*f II x* 11^=1, and any t € J 

I /T(b(s),G*(t,s)x*)ds U K J0
TG(t,s)b(s)ds,x*)l 

-illx* Hit Jj G(t,s)b(s)dsll 

£ K II bllB 

and as G*(t,Ox* e L(E*) for t£J, Theorem 22.U of C4J imp

lies that G*(t,Ox*€.B*(E*) for t£j and 

HO*(t,-)x^llalc(E*)^K for t6J. 

Therefore, we obtain, for any tcJ, 

"G<V)«B*(S) - i ^ ( t , o < B ^ , 

= 8upillO« t(t f-)x*HB* (E# ):x*6B* f l | x * | £ l j 

Remark 1* Theorem 1 generalizes the result9 of Coppel 
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[23 for B * COP) and B = L 1 ^ ) , Conti [11 for B * I?(tf*), 

l^p £ co , and Szufla 153 for B = 1.x(E) (Orlicz spaces). 

In particular, the above theorem implies that if (B,C) 

is admissible, then the (Bochner) integral f G(t,s)b(s)ds 

exists for any b£B. 

Theorem 2. Let (B,C) be admissible. If beB, then a 

function x:J—-> E is a bounded solution of (2) if and only 

if 

x(t) = U(t)Px(0) + / G(t,s)b(s)ds. 

Proof. Since the sufficiency is easily seen to hold, 

we will only prove the necessity. So, let x a bounded solu

tion of (2) and let be B. Writing 

y(t) = x(t) - U(t)Px(0) - f G(t,s)b(s)ds, 

it is clear that y is a bounded solution of (1) with 

i.e. y(0)€.E-j. Therefore, y 

y(0) = x(0) - Px(0) + (I-P) / iT^aíbístes, 

4. The Nonlinear Equation. Consider the nonlinear equ

ation (3), where we assume that f :Jx Sfi—> E, 0<a £.00 , ia 

such that 

(fl) f(t,x) is strongly measurable in t for all xeS 

and continuous in x for t e J; 

(f2) f(.,0)£B. 

Let co :JxL0,2a)—> R be such that 

(col) do ( . , r ) eB (R) for all re CO, 2a); 

( o>2) o>(t,r) is continuous nondecreasing in r for t€ J; 

20 



and defining -Q.: 110,2a)—> R by £L(T) = K II co (. ,r)llB(R) (whe

re K as in Theorem 1) we assume 

(o)3) r = 0 is the only fixed point of H in L0,2a)j 

( G M ) for each r &[0,2a), Xl(r)4r. 

Theorem 3. Let (B,C) be admissible. Suppose that f sa

tisfies (fl) and (f2) and that there exists a function o> sa

tisfying (ol)-(oM) such that for any t e J a rd x,yeS 

(4) II f(t,x) - f(t,y)il i. o)(t, II x - y II ). 

Then, if 

(5) l l f ( - , 0 ) l l B < K " 1 ( a - i l ( a ) ) , 

the re e x i s t s , fo r any £ e E such t h a t 

11 £ II < b = S"*1(a - XL (a) - K II f ( . ,0})IB), 

a unique bounded solution x(» ; £ ) of (3) such that x(* ; f ) e S 

and Px(0; £ ) = ̂  . Moreover, the mapping | t—> x(Oj f ) is con

tinuous in F = -££ e E : II f II <b\ and it can be extended to a 

horaeomorohism H of F + E. onto itself which leaves the affine o 1 

subspaces ^ + E, , | e F , invariant. 

Proof. First we remark that if z e .£ , then f(-,z)eB 

and 

II f(. ,z)11B < II Q(',a)« B ( R ) +llf(- ,0)llB. 

Let ^o= a " 1 ( i l ( a ) + K ll f ( - , 0 ) l i B ) < 1. Let f 6 FQ be given 

a r b i t r a r i l y . Clear ly we have 

IIU(. ) f II c ^ S l l f H<Sb -- (1 - p )a . 

Consider the following sequence of successive approxima

tions in C 
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«1(t) » /. G(t,s)f(s,U(s)pds 

zn+1(t) • / G(t,s)f(s,zn(s) + U(s)pds, n = 1,2,... 

Note that the above integrals exist (since (B,C) is admissib

le, according to Theorem 1), provided that they are all well 

defined. Indeed, it can be shown (inductively) that 

Hznllc < p a f n=l,2,... . 

Now we define a sequence irJ in [0,2a) as it follows 

r, = 2ro a 

r n + 1 = ~-Mrn), n = 1,2,... . 

It is easily seen, using (co2) A co3) and (cu4) that lim r^ = 0. 

Moreover, once again by induction it can be shown that 

llan+l " »n
BC 4 rn« n = X'2  

Therefore, -iznl[ is a Cauchy sequence in C and there exists 

zeC, z = lim z . Clearly HzHc £ pa. Consequently, the func

tion x(t;f ) = U(t)f + z(t) would be bounded, since 

II x(*; f )ilc <(1 -<x>)a + p a = a 

and would solve the integral equation 

x(t;f) = U(t)f + / G(t,s)f(s,x(s; p ) d s . 

By a simple differentiation it results that x(*; f ) is a boun

ded solution of (3) and 

Px(0; f > * P( ? - (I - P) / U"1(s)f(s,x(s;f ))ds) 

= Pf = p 

Furthermore, x(# ; p is the unique bounded solution of (3) 

with these properties. Indeed, let x(-;| ) be another bounded 

solution of (3) such that B!f(. ; pll c<a and Px(0;f ) = f 
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and l e t u ( t ) • # ( x ( t ; f ) - x ( t ; g )) for some f ixed fr e ( 0 , 1 ) . 

Clear ly u would solve the fol lowing i n t e g r a l equat ion 

u ( t ) = * J G ( t , s ) { f ( s , x ( s ; f )) - f ( s , # x ( s ; f ) - u ( s ) ) J d s . 

We define a sequence lr"n^ in [0,2a) by r-j = 2i^a, r n + 1 = 

= #.£ (r" ), n = lt2f... . Clearly lim r\ = 0. It is easily n ' ' tn&co n ^ 

seen by induction that II u l c . 4 ? n , n = 1,2,..., which implies 

u = 0. 

Let e > 0 be arbitrarily fixed ( e < a). If f(• ,0) = 0, 

we remark that what we have already shown implies that, for any 
з-l bounded f e E , || f II < S~

x
( 6 --P~(e )), there exists a unique 

solution x(*; f ) of (3) such that II x(* ; f )ll
c
 <<- E, and 

Px(0;f ) = f -

Thus for any 6 > 0 we put cf = S
- 1
( e - J M e, )). Then for 

any f , % e E such that II f - % II 4 cf the function u(t) = 

= x(t; £ ) - x ( t ; ^ ) is a bounded solution of 

u' = A(t)u + g(t,u), 

where g ( t , u ) = f ( t , x ( t ; f )) - f ( t , x ( t ; £ ) - u) s a t i s f i e s (4) 

and g(*,0) = 0. Since II Pu(0) II < <f the above remark impl ies 

t h a t II UHQ < <z> , i . e . 

Hx(0; f ) - X ( 0 ; T 1 ) | | 4 II x ( - , f ) - x ( - ; ^ ) « c <: e , 

which shows the continuity of the mapping f H-> x(0; f ) of ? 0 

into itself. 

Finally, the mapping H defined by 

H(f ) = x(0;Pf ) -»- (I-P)f , 

with the inverse 

H""1( f ) = f - (I-P)x(0;Pf ), 
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extends the mapping £ v—• x(0; f ) to a 1-1 mapping of F + 

+ E. onto itself which le aves the affine subspace £ + E, in

variant and both it and its inverse are continuous. Therefore, 

it is a homeomorphism. 

Remark 2. Theorem 3 is a generalization of the results 

of llassera-Schaffer £33 for cj(t,r) = -y(t)r, *$ e. B(R), 

K ^T , I
B( R)

< 1, and of Szufla L6] for co(t,r) = -y(t)4>(r), <{> (r) 

nondecreasing, <(>(r)^r, y e B(R), K N T ^ R ^ I -

Given any subinterval I of J, we denote by \-r the cha

racteristic function of I, i.e. ^j(t) = 1 for tel and -̂,(t) = 

= 0 for teJ\I. A function Banach space B is called lean (cf. 

C4], p. 48) if for any beP 

Theorem 4. Let (B,C) be admissible and f, <& satisfy 

(fl),(f2),(col)-(co4),(4) and (5). If B is lean and B is not 

stronger than L , then for every bounded solution x of (3) 

lim llx(t)l| = 0. 

Proof. Theorem 3 guarantees the existence of bounded so

lutions of (3). We claim that if x is any bounded solution of 

(3), then x should solve the integral equation 

(6) x(t) = U(t)Px(0) + / G(t,s)f(s,x(s))ds. 

Indeed, writing y(t) = x(t) - U(t)Px(0) - / G(t,s)f(s, 
J 

x(s))ds, it is easy to see that y is a bounded solution of (1) 

such that 

y(0) = x(0) - Px(0) + (I-P) / U"1(s)f(s,x(s))da, 

i.e. y(0)£ E-̂ . Therefore, y = 0, which proves our claim. 
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Since B is lean and f (»,x)eB (as it has been shown in 

the proof of Theorem 3), there exists a t Q£ J, so that for 

any e >• 0 arbitrarily fixed 

llXtt ft?)
f(# »x)NB< e/2K, for t £ T/0. 

On the other hand, the assumption that B is not stron

ger than L implies according to Theorem 62. D of 143 that 

there exist a positive valued function N defined on J and a 

positive constant V such that every solution y of (1) with 

y(0)eE Q satisfies, for all t £ t Q > 0 , 

||y(t)\l^N(t0)e"'
)> " ° ily(t0)ii 

and the fundamental solution U of (1) satisfies 

lU(t)Pil4N(0)e"n, for all t€ J, 

i.e. 

lim )|U(t)Pll = 0. 
•i^co 

Therefore, there exists a ^ . . € J so that 

l\U(t)P,U f{Hx(0)\l + J* °|| U"1(s)f(s,x(s)))\ds}"'1 for t £ X r 

Consequently, (6) implies, for all t^ max-?tfQ, t £ , 

II x(t)H4li U(t)Pll II x(0)ll + II JD G(t,s) ^ 0^.f(s,x(s))ds 

+ J 3
G ^ , s ) ^ u ^)f(s,x(s))dsl| 

4 i lU( t )P l l t tx (0> l l +IIU(t)Pll J0 II U •L(e)f(e, 

x ( s ) ) | | ds 

< f + § - e , 
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i.e. lia. _ lx(t)H * 0. 

Remark 3. If B is stronger than L , the above theorem 

holds if it is in addition assumed that lini )|U(t)P)l= 0. 
X~><flO 

Remark 4. Theorem 4 is a generalization of an analogous 

result of Coppel [23 for B = L^R*
1
), a>(t,r) = yv9 K y < 1. 
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