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ON BOUNDED SOLUTIONS OF NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS
Moses A. BOUDOURIDES

Abstract: We prove the existence and an asymptotic
property of bounded solutions of the nonlinear differential
equation (in a Banach space E and with the independent vari-
able te [0,0)) |

x” = A(t)x + £(t,x)
under the assumption that the non-homogeneous linear equatiom
x” = A(t)x + b(t)
has at least one bounded solution for each b belonging to a
function Banach space B.

Key words: Ordinary differential equations in Banach
spaces, function spaces, admissibility, successive approxi-
mations,

Classification: 34A34, 34G20, 34Cll

1. Iatroduction. The object of the present article is
the study of the relations between the solutions of the fol-

lowing equations

(1) x’ = A(t)x
(2) x° = A(t)x + b(t)
(3) x” = A(t)x + £(t,x)

where te J =L0,0); x, b, f€E, a real Banach space; A(t),
for every fixed t, is a continuous linear operator (endomor-
phism) of E into itself; A(t), b(t) are locally integrable

(in the Bochner sense).
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In the years 1930-1935, O. Perron, K.P, Persidskii and
I.G, Malkin (cf. [ 4] for references) established (among ot-
her results) the equivalence of the following properties (in
the case dim E< co, A(t) continudus)

(P1) for each bounded continuous b all the solutions
of (2) are bounded;

(P2) for each f continuous, Il £(t,x)Il£p3 , I£(t,x) =
£(t,y)l 27l x=y) , with sufficiently small (3,79 , all the
solutions of (3) with sufficiently small || x(0)l| are bound-
ed;

(P3) there exist positive constants N, » such that for

any solution x of (1) and for any t= t = O we have
-»(t-t )
I x(t) £ Ne o x(t ).

In the years 1958-1959, J.L. Massera and J.J. Schaffer
(ef, [3),[4]) generalized these properties (in the case of
dim E = o and of Carathéodory type conditions), considering

a general category of function spaces.

The purpose of this article is to establish the equiva-
lence of (Pl) and (P2) in the frame of the general function
spaces of [4] and in the case when f is such that | £(t,x) =
- f(t,y) & w(t,ix-yll ), where w(t,*) is an appropriate
non-decreasing function. To this end, we t'irst extend Copbel'a
equivalent criterion to (Pl). Finally, we obtain sufficient
conditions such that for every bounded solutién x of (3)
lim_Ix(6)l = 0. 2

2. Notation and preliminaries. Let X be a generic Banach
space with norm Il - Il y. We denote by X*its dual and by (.,-)

- 16 -



the duality pairing of X and X*; the norm of X* is denoted
again by Il - |l xx - We denote by X the space of continuous
endomorphisms of X and again by |- Il ¢ the norm of X, If A e

~ MUk s .
€ X, we denote by A*e X* its adjoint operator.

For the Banach space E we write |« "E = .l , For any
a>0, we write S, ={xeE; Il xl<at.

By C = C(E) we denote the Banach space of bounded conti-~
nuous functions u:d —> E with the norm \\u“c = sup {lu(s)l:

:s€Jj. For any a>0, we write =, ={ueC: lulg<as.

8y IP = IP(E), 14p< < , we denote the Banach space of
strongly measurable functions u:J —> E such that fj lu(s)\Pas<
< o with the norm Hu“Lp = §f3 llu(s)\lpds}l/p. By L® = L% (E)
we denote the Banach space of strongly measurable functions
u:dJ —> E such that ess sup {lu(s)} :seJi <o with the norm

lull = ess sup {lu(s)ll :se J3.
Lw

By L = L(E) we denote the space of strongly measurable
functions u:J —> E, Bochner integrable in every finite subin-
terval I of J, with the topology of the convergence in the
mean on every such I.

Let B(R) be a Banach space of measurable functions u:J—>
—> R such that

(i) B(R) is stronger than L(R) (cf. [41, p.35);

(ii) if u e L°(R) with compact support, then ue B(R);

(iii) if ue B(R) and v:J —> R measurable and such that

lvi£lul, then veB(R) and "v“B(R) £ “u“B(R)'

By the associate space B¥(R) we denote the Banach space
of all measurable functions v:J—> R such that

sup&f; lu(s)v(e)\d?:ue B(R), Ilu”B(R)-f—1§< o
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with norm Nvlgy gy = sup {fI lu(s)v(s)|ds:ue B(R), IlulB(R) £
€ 13%. According to Theorem 22.M of [4], the following "H&l-
der ‘s Inequality” holds: if ue B(R) and veB*(R), then

lurl € I}(R) ana

fa lu(s)v(s)lds & Hullg gy N vige(gy-

We denote by B = B(E) (B* = B¥*(E)) the Banach space of
all strongly measurable functions u:J —> E such that lull €
e B(R) ( lulle B¥(R)) provided with the norm I\u\lB =

= Mul Mggy (halge=h Tal Wgeeo.

Let A e L(E) and 1let Eo be the set of all points of E
which are values for t = O of bounded solutions of (1).

We assume that E; is closed. Then according to Theorem
4.1 of [3], there exists S>0 such that every bounded solution

x of (1) satisfies the estimate
I\xllcés Ix0)l .

Moreover, we assume that Eo has a closed complement El.
Let P be the projection of E onto E,. Furthermore, let U(t)
be the fundamental solution of (1) such that U(0) = I, For
any te J we define a function G(t,-) < L(E) by

U(t)Pu~L(s) for 0£84t
G(t,s) ={

~U(t) (I-P)U"L(s) for s=t.

3. The Non-homogeneous Linear Equation. The pair of Ba-
nach spaces (B,C) is called admissible (cf. [4], p. 127), if

for every beB there exists at least one bounded solution of

(2). Then by Theorem 51.E of [41 there exists a constant K >0
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such that for every beB the equation (2) has a unique boun-
ded solution x with x(0)€ E, and le||cél( I bllg. Moreover,

by Theorem 52.J of [4] for every be B with compact support
the unique bounded solution x of (2) with x(O)G.E1 and
\\x\lcéK l\b\lB is represented by x(t) = fJ G(t,s)b(s)as.

Theorem 1. Let (B,C) be admissible. Then there exists
a constant K> O such that, for any tedJ, G(t,-)e B¥E) and
NG(t,-) B*(ﬁ)éx'

Proof. Let beB with compact support. Suppose that b
vanishes for t>T, where T is arbitrarily fixed. By the re-
marks preceding the theorem, there exists a constant K>0
such that for any ted

I foTG(t.,s)b(s)ds ek bl

However, for any x*e E¥, [ x*ll £ 1, and any ted

lfoT(b(s),G*(t,s)x*)da 1£1( j:)TG(t,s)b(s)ds,x*H

£hxe L7 G(t,8)b(e)as |
£ Klblg

and as G*(t,+)x*e L(E*) for teJ, Theorem 22.U of [4] imp-
lies that G*(t,-)x*e B¥*(E¥) for teJ and

hG*(t, )x* “B*‘(E*)éK for t €d,

Therefore, we obtain, for any teJ,

llG(t,-)ﬂBx(ﬁ) uc"‘(t,-)ﬂa,‘(gﬁ)

sup $lla*(t,. )x* "B*(E*) :x*e B¥, || x*| £ 1}

£ K.

Remark 1. Theorem 1 generalizes the results of Coppel
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2] for B = C(R*) and B = L*(R"), Conti [1] for B = IP(RY),

14p £ ® , and Szufla [5] for B = L§)(E) (Orlicz spaces).
In particular, the above theorem implies that if (B,C)

is admissible, then the (Bochner) integral @G(t,s)b(s)ds

exists for any be B.

Theorem 2. Let (B,C) be admissible. If be B, then a
function x:J —> E is a bounded solution of (2) if and only
if '

x(t) = U(t)Px(0) + fJ G(t,s)b(s)ds.

Proof. Since the sufficiency is easily seen to hold,

we will only prove the necessity. So, let x a bounded solu-~

tion of (2) and let be B. Writing
y(t) = x(t) - U(t)Px(0) - fJ G(t,s)b(s)ds,

it is clear that y is a bounded solution of (1) with
y(0) = x(0) - Px(0) + (1-P) [ U (s)b(s)as,

i.e. y(0) e E,. Therefore, y = O.

4. The Nonlinear Equation. Consider the nonlinear equ-

ation (3), where we assume that f:J=< S, — E, 0<a £00 , is
such that

(f1) f£(t,x) is strongly measurable in t for all xeSa
and continuous in x for teJ;

(f2) f(.,0)eB,

Let @ :Jx[0,2a)—> R be such that

(wl) w(-,r)eB(R) for all rel0,2a);

(©2) w(t,r) is continuous nondecreasing in r for te J;
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and defining Q: [0,2a) —> R by Q(r) =K “a)(-,r)“B(R) (whe-
re K as in Theorem 1) we assume
(w3) r = 0 is the only fixed point of Q in [0,2a);
(w4) for each rel0,2a), Q(r)&r.

Theorem 3. Let (B,C) be admissible., Suppose that f sa-
tisfies (f1) and (f2) and that there exists a function « sa-

tisfying (w1)-(w4) such that for any ted amd x,ye Sy
(4) N e(t,x) - f(t, )l £w(t, lx - yl).
Then, if
(5) N£¢,0)ig<K ™ a - 0(a)),
there exists, for any ¢ € E, such that
NN < b=5a - Qla) - KIge,0Mp),

a unique bounded solution x(-; € ) of (3) such that x{(+;¢)e = a
and Px(0;§ ) = § . Moreover, the mapping £+ x(05¢ ) is con-
tinuous in F = {f € E: I§ 1l <b} and it can be extended to &
homeomorohism H of Fo + El onto itself which leaves the affine

subspaces § + B, € e Fo» invariant.

Proof. First we remark that if z e Zfa, then f(-,z)eB
and

G,z < lw(,a)lig g + 16,005,

Let @=a (Q(a) + KI£(-,0)lg)<1. Let § e F, be given
arbitrarily. Clearly we have
huG-y ¢ cesligli<sb = (1 - p)a.

Consider the following sequence of successive approxima-

tions in C
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2, (t) = f:l G(t,8)£(s,U(s) € )ds
Zney () = J) O(1,0)f(s,2,(s) + U(s) §)as, n =1,2,...

Note that the above integrals exist (since (B,C) is admissib-
le, according to Theorem 1), provided that they are all well
defined. Indeed, it can be shown (inductively) that
Nz le < ea, n=1,2,... .
Now we define a sequence -irn7; in [0,2a) as it follows
r = 2pa
rpey = 2(rp), n=1,2,... .

It is easily seen, using (w2),(w3) and (©4) that ﬂli.)mm r, = 0.

Moreover, once again by induction it can be shown that
Nz ,y =2z llger,, n=1,2,....

Therefore, {zn’x is a Cauchy sequence in C and there exists
z€C, z = 1lim z,. Clearly llz“c £ oa. Consequently, the func-

tion x(t;¢) = U(t)§ + z(t) would be bounded, since
Nx(e5¢)l,<(1 ~@la+ pa=a
and would solve the integral equation
x(t; §) = U()E + fj G(t,8)f(s,x(s; £))ds.

By a simple differentiation it results that x(-; §) is a boun-

ded solution of (3) and

Px(0; §) = P(f - (I - P) [ UTH(s)f(s,x(s; £ ))as)

P§ =¢.

Furthermore, x(-; §) is the unique bounded solution of (3)

with these properties. Indeed, let X(-; £ ) be another bounded

solution of (3) such that I X(-;¢ )l <a aud PX(0;§) = §
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and let u(t) = $(x(t;§) - X(t;§)) for some fixed $e (0,1).
Clearly u would solve the following integral equation

u(t)

n9-fJ G(t,s){f(s,x(s; §)) - £(s, Dx(s; §) - u(s))ias.

We define a sequence iT.} in [0,2a) by Ty = 2a, T, =

= $Q (Y‘n), n=1,2,... « Clearly lgm?n = 0, It is easily
seen by induction that |l ulcéi‘n, n=1,2,..., which implies
u = 0.

Let ¢ > O be arbitrarily fixed ( e < a). If £(.,0) =0,
we remark that what we have already shown implies that, for any
£ € E,I§ h<s(e-0(e )), there exists a unique bounded
solution x(-; §) of (3) such that I x(-;§)ls < e and
Px(0;¢) = § -

Thus for any & > O we put d = s3(e - D(g)). Then for
any § ,7 € Ej such that g -1 I £d” the function u(t) =

= x(t; £) - x(t;m) is a bounded solution of

u’ = A(t)u + g(t,u),

where g(t,u) = £(t,x(tj¢€)) - £(t,x(t;§) - u) satisfies (4)
and g(+,0) = 0. Since IlPu(0)Ill < o° the above remark implies

that llully < ¢ , i.e.
hx0;¢) - x(O3 )0 & I x(+,¢) =xC5dlg<e

which shows the continuity of the mapping § > x(0; §) of F,

into itself.
Finally, the mapping H defined by
H(E) = x(0;P¢) + (I-P) €,

with the inverse

BHg) = § - (I-P)x(0;P¢),
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extends the mapping g — x(0; g) to a 1-1 mapping of P +
+ El onto itself which le aves the affine subspace g + B in-
variant and both it and its inverse are continuous. Therefore,

it is a homeomorphism,

Remark 2. Theorem 3 is a generalization of the results

of Massera-Schdffer [3] for o(t,r) = ¥ (t)r, 7€ B(R),
K “7"B(R)< 1, and of Szufla [6] for w(t,r) = y (1) (r), ¢(r)
nondecreasing, ¢(r)<r, 3 € B(R), K N’J’HB(R)< 1.

Given any subinterval I of J, we denote by 11 the cha-
racteristic function of I, i.e. Fy(t) =1 for tel and %y(t)=

= 0 for teJNI. A function Banach space B is called lean (cf.
[4], p. 48) if for any beR

. | = .
ln 0% (e,0)® lg =0

Theorem 4. Let (B,C) be admissible and f, «w satisfy
(£1),(£2),(w1)-(w4),(4) and (5), If B is lean and B is not

stronger than Ll, then for every bounded solution x of (3)
lim lx(t)ll = o,
t->00
Proof. Theorem 3 guarantees the existence of bounded so-

lutions of (3). We claim that if x is any bounded solution of

(3), then x should solve the integral equation

(6) x(t) = U(t)Px(0) + fJ G(t,s)f(s,x(s))ds.

Indeed, writing y(t) = x(t) - U(t)Px(0) - fD G(t,s)f(s,
x(s)Jds, it is easy to see that y is a bounded solution of (1)
such that

y(0) = x(0) - Px(0) + (I-P) [, U L(s)r(s,x(s))ds,

i.e. y(0)e E,. Therefore, y = 0, which proves our claim.
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Since B is lean and f(.,x)e B (as it has been shown in
the proof of Theorem 3), there exists a T,€J, 8o that for

any € > O arbitrarily fixed

Il X/[t,m)f(’ yXlg< e /XK, for tz 7.

On the other hand, the assumption that B is not stron-
ger than il implies according to Theorem 62.D of [4] that
there exist a positive valued function N defined on J and a
positive constant v such that every solution y of (1) with

y(0)e E  satisfies, for all tZt 20,
=»(t-t )
Iy & NGt e Oyl

and the fundamental solution U of (1) satisfies

lu(t)Pll & N(0)e™t, for all teJ,

lim JU(L)P} = O,

t>c0
Therefore, there exists a ’tléJ so that

Yo -1 -1
fuct)pl < %{llx(o)\\ + 5‘0 Il u™"(s)£(s,x(s))as} ™" for t 2 Ty
Consequently, (6) implies, for all tZ max{‘uo, v, %,
Ix) &) vl x©@ U+ 1 [ at,e) Ao, (8rx(s))as
+ JJ G(t,8s) %[do,m)f(s,x(s))ds il

’Uc -
21Ul Ix@ I +1U)P ) [N U lis)2(s,

x(s)) |l as

S KUgp, of¢0lp
o

<-§+§=e,
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i.e. lim __"olx(t)\\ = 0,

Remark 3. If B is stronger than I}, the above theorem

holds if it is in addition assumed that nmt_m\lu(t)P II=o.

Remark 4. Theorem 4 is a generalization of an analogous

result of Coppel [2) for B = LY(R"), w(t,r) = yr, Ky < 1.
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