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FOR ORDINARY DIFFERENTIAL EQUATIONS 
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Abstract: The paper contains the discussions of re la 
tions among some c r i t e r i a of uniqueness of solutions of ordi
nary differential equations. Some generalizations of ear l ier 
resul ts of several authors are given. 
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!• Introduction. We wil l consider an ordinary differen

t i a l equation 

(1) x ' = f ( t , x ) 

with the i n i t i a l condition 

(2) x(0) = xQ , 

where we assume that the function f(t,x) is given and defined 

on the Cartesian product of the interval <0,T> and the set 

-0. c R11 and taking values in the space R11. 

The problem of uniqueness of solution of (l)-(2) is one 

of the basic problems in the theory of ordinary differential 

equations along with such problems as existence, continuation 

of solutions, convergence of successive approximations, for ex

ample (cf. t 53,173,t!53). This problem has been discussed in 
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several works and, roughly speaking, it was initiated by Kamke 

t 8], among others. 

It is worth to mention that several criteria sufficient 

for uniqueness of (l)-(2) are known (cf. [43,[15]). It seems 

that the most convenient criteria of uniqueness are these of 

Kamke type. In order to their formulation let us consider a 

real function 6>(t,u), (t,u) e<0,T>x<0, + oo) (or (t,u) e (0,T>x 

.><<0,+ (p)) and denote by Ixi one of the norms in the Euclide

an space RF1. A function a>(t,u) will be called the Kamke com

parison function if the inequality 

(3) |f(t,x) - f(t,y)|^cj(t, x-y|) 

along with some additional conditions guarantees uniqueness of 

solution of the Cauchy problem (l)-(2). 

Obviously, the claa3 of Kamke comparison functions comp-

ri3ee the well known criteria of Lipschitz, Nagumo, Osgood, 

Coddington and Levinson, for in3tance [15-U 

The aim of thia paper is to discuss relations between so

me classes of Kamke comparison functions. Some considerations 

of such type may be found in a lot of works ([43,[10],[133 ,[143, 

[15]). In this paper we will give some generalizations of tho

se results. 

2. Some classes of Kamke comparison functions. For simp

licity of considerations denote by J the interval <0,T> and by 

JQ the interval (0,T>. Moreover, let R+ = <0,+ co). We will exa

mine the following classes of Kamke comparison functions. 

Class Ji . This class contains all functions co:JxR _>• 

—"> R such that 6>(t,0) = 0, o)(t,u) is continuous and 
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u(t)sO is the only continuous and differentiable on J function 

which satisfies on J the equation 

u' = cj(t,u) 

and the condition u(0) = 0. 

Class CR> . A function o):J xB +— * > R+ belongs to the class 

Ji provided it is continous, o>(t) = 0 and u ( t ) ~ 0 is the on

ly differentiable on J and continuous on J function such that 

u' = co(t,u), t e J , 

lim Mill = lim u ( t) = o. 
t~>0 t i -* 0 

Class <t? . c*>(t,u) = cJ:Jx.R+—> R+ belongs to the class 

<•£ if it satisfies the Carath^odory conditions i.e. it is Le-

besgue measurable with respect to t for any fixed u and conti

nuous with respect to u for any fixed t. Moreover, co(t,u) is 

locally Lebesgue integrable, which means that for any t e J 

and u > 0 there exists a Lebesgue integrable on the interval 

<tQ,T> function h(t) such that &>(t,u)-^ h(t) for (t,u)€ < t Q , T > . x 

?<•< 0,u >. Further we assume that c o ( t , 0 ) = 0 and u(t).sO is the 

only absolutely continuous function which satisfies the equa

tion 

u* = <a(t,u) for almost all teJ, 

and the condition 

lim 4 ^ = u(o) = o. 
t—>0 t 

Class S) . This class comprises all functions cu(t,u) = 

= a) - J Q ^ R + — * R+> co(t,0) = 0 which are continuous and for 

which the only continuous on J function satisfying the inte

gral inequality 
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u(t) ̂  f co(s,u(s))ds, teJ 
0 

and the conditions 

lim S-4--1 = lim u(t) = 0 
t -> 0 t t -> o 

i3 the function u(t)sO. 

Cla33 % . CJ e <i if and only if o):J^R+-> R^, o(t,0) = 

= 0 and similarly as in the class <€ it satisfies the Carath^o-

dory conditions and is locally Lebesgue integrable. Besides 

u(t)sO is the only absolutely continuous on J function for 

which 

u(t) £ J co (s,u(s))ds, teJ, 

and 

lim 4- 1 = u (0) = 0. 

Clas3 & • This class contains functions W ; J K R + — > R+J 

o>(t,0) = 0 which similarly to those from the class °£ satisfy 

the Carath^odory conditions and are locally integrable. Furt

hermore, we as3ume that the only continuous on J function which 

satiafie3 the inequality 

A -
u(T) - u(t) <L j co (s,u(3))d3, O^t^-t^T, 

t 

and such that ,lim UJ ' = u(0) = 0, is the function u(t)~0. 
t —>0 «• 

•f + +• 
In what follows, let U9 denote by Jl f 3>> ,..., $ the sub-

cla39e3 of the classe3 Jt,33,...,3^ , re3pectively, consi3t-

ing of all functions co(t,u) which are increasing with respect 

to u. 

Notice that we may also consider more general classes,for 

instance 
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Class 4Q -cOe AQ provided cd tJxR+ ~> R+ is continuous, 

cu(t,0) = 0 and for every a . s ( 0 , T ) , the function u(t)==0 is 

the only differentiable on<0,a> function which satisfies the 

equation u' = co ( t ,u) for t€<0,a> and the initial condition 

u(O) = 0. 

In the same way we may define the classes A , 33 ,... 

..., $ 0* 

Notice first that each of the classes J£,.ft,...,^ is 

the Kamke class i.e. if the inequality (3) is satisfied with 

some function cae A ,..., co e & , respectively, then the Cau-

chy problem (l)-(2) admits at least one solution. Such theo

rems with respect to the class A have been proved by Perron 

[12] and with respect to % by Kamke [8]. The theorem that the 

class ̂  is sufficient for uniqueness is due to Coddington and 

Levinson [43. By this regard that 3) C 5i , % a <€ (see Theo

rem 1 below) the classes *3) and *£ are also sufficient for u-

niqueness. Moreover, the class 3 is equal to the class <£ (see 

[1]) so that $ is also sufficient for uniqueness. 

Notice also that owing to Walter results [143 we have the 

following equalities 

A = A0, 3= a0,..., $ = r0 . 
Moreover, let us remark that if the right side of the e-

quation (1) is continuous then the classes ^1,3,^ are equiva

lent in some sense. This result was first proved by Olech [103 

(cf. also [143). 

Notice now that we have the following inclusions 

A*c A , a+c= ft ,...,#+c y 
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and generally these inclusions are strong i.e. it may happen 

that the function f aatiafiea the inequality (3) with some 

function o>(t,u) which belongs to JB , for example, but the

re do not exist any functions from class (ft such that the in

equality (3) ia satisfied. The examples of such type may be 

found in [11]. 

On the other hand if we want to obtain a theorem about 

convergence of successive approximation to a solution then we 

generally have to a8aume the classes A ,...,y (El0jffll3). 

Further let us mention that at first the uniqueneaa criterion 

of Kamke type waa investigated by Bompiani 12]. Namely, he haa 

conaidered the claa8 Jl . The classes similar to 3) and *£ we

re investigated by Coddington and Levinson [4], Walter [15], 

Kiayiiaki [ 93., Ooebel and Rzymowakl £63. 

3. Relations among Kamke classes. In this section we 

are going to discuss some relatione among the introduced 

classes of Kamke comparison functions. At first we prove the 

following simple theorem. 

Theorem 1. Q c Q , % <=- ^ . 

Proof. We prove, for example, the second inclusion (the 

proof of the first one ia aimilar). To do it let ua suppose 

that the function u(t), t€J, ia absolutely continuoua and 

such that 

(4) u' * <y(t,u) for almost all teJ, 

and 

45) lim * 4 ^ = u(0) = 0, 
• -*0 x 
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Because of absolute continuity of the function u(t) from (4) 

we obtain 

f u'(s)ds = u(t) - u(0) * f <i>(s,u(s))ds. 

Thus in view of the assumption that co e t and (5) we have that 

u ( t ) . s O and the proof is complete. 

Now we prove the main theorem of this paper* 

Theorem 2. Let < .u ( t f u)e <t? and let there exist a func

tion 2S(tfu) e ¥ such that cc>(tfu) -<- £>(tfu) for all te J and 

ueR +, Then <i>(tfu) e % . 

Proof. Suppose that u(t) satisfies the integral inequali

ty 

(6) u(t) * jf a>(sfu(s))ds 

and is absolutely continuous and satisfies (5). Then with res

pect to the assumptions, we obtain 

(7) u(t) * f* 2>(s,u(s))ds. 

Let us suppose that u(t) does not vanish identically on the in

terval J so that there exists t-̂ 6 J such that u(t-^) -*cc> 0. 

Now consider the following differential equation on J: 

(8) g' « #(t,g) 

with the initial condition g(T) * oo . 

Let g(t) be the minimal solution (from T to left) of this 

equation. Obviously g(t) is increas ing . , because of the function 

£>(t,u) being nonnegative. Hence 

(9) g(t1)^u(t1) • «> • 

Prom (7) we obtain 
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-t 
u(t) ̂  oo + j £> (s,u(s))ds. 

Now taking the interval <0,t-̂ > into consideration and 

using the well known theorems on integral and differential 

inequalities (see for example [15], p. 43 or 13]) we obtain 

from (9) that 

g(t)^.u(t) for t€<0,t1>. 

Finally, we obtain that g(t) is the solution of (8) which do

es not vanish identically on J and such that lim &>• 1 * g(0)= 

= 0, which contradicts the fact that £>(t,u) s <jf+* Thus the 

proof is complete. 

Corollary 1. <t+ = <€*. 

Indeed, Theorem 2 implies that <£ c % . The converse in

clusion follows easily from Theorem 1. 

Next, for an arbitrary Kamke comparison function o)(t,u), 

denote by o>*(t,u) its smallest majorant which is increasing 

with respect to u, i.e. 

co*(t,u) = sup Eoj(t,v):0^: y ^ u ] . 

Thus we have 

Corollary 2. If for a function o>(t,u) e <tf the function 

o>*(t,u) e t + then <i>(t,u) e % . 

In a similar way as in the proof of Theorem 2, we may pro

ve the next theorem. 

Theorem 3. 3$ = 35 • 

Now we return to the Cauchy problem (l)-(2). Let us assu

me that the function f(t,x) is defined and continuous on the 

set JxP, where P = Cx eR11: |x-x I £ b] t b > 0 , b = const. Then 
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we have 

Theorem 4. If the function f satisfies the Kamke compa

rison condition (3) for all (t,x), (t,y)e J x P and if co(t,u)€ 

€ 3) (or a>(t,u)et€) then there exists a function h(t,u) e 

6 Jl such that 

i f(t,x) - f(t,y)U h(t,|x-yl), for (t,x),(t,y)e J x P . 

Proof. Let, for example, the function o(t,u) belong to 

the class SD . Then, by virtue of Theorem 1, this function be

longs to the class 33 . Thus the existence of the desired func

tion h(t,u) follows immediately from Olech theorem £10]. The 

proof of the second part of our theorem is the same. 

In view of the above theorem, in the case when the right 

side of the equation (1) is continuous, the classes 3J,*€,3f 

^b are in some sense equivalent to that of Perron (i.e. Jl)• 

4. Examples and final remarks. In this section we shall 

show that the classes J3 and <£ are generally essentially wi

der than the classes 2> and % . 

Example 1. Consider a decreasing sequence t ,t,,tp,.•• 

such that t e<0,T> and t^ = T. lim t, = 0. Let us take a se-n ' o » ^^op n 

quence r,,r2,.*. such that 

0<rn* J min [ V l - tn, tn - tn+1, t ^ - t*. t* - t ^ 

for n = 1,2,... . Furthermore, denote by 

ft = i l a - - ? £(t - t n ) 2 + ( t 2 - 1 2 ) 2 ] ) d t r x , 

*» rn 

where Z n = [t:(t-tn)
2 + (t2 - t 2 ) 2 ^ r 2] and n = 1,2,... . 

Finally, let us define the function o>(t,u) as follows: 
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/3n(l - -5 £(t - t n )
2 + (u - t*)2.1) if 

for some n = 1,2,... 

0 if (t,u)c JxR^^§ fK((t n,t2),r n) 

where K((t-aftn)frn)
 d e n o t e a tne circle on the plane IT cente-

2 
red at the point (tn>tn) and with radius rn. 

It is easy to check that the function o>(t,u), defined 

above, is continuous on the set JxR+ - -£(0,0)$ and <i)(t,0) « 

* 0. Moreover, it belongs to the class (h and consequently to 

*t because the function u(t) = 0 is the only function which 

satisfies the equation u' = o>(t,u) and the initial condition 

u(0) = 0. Indeed, if the function u ~ u(t), t€J, satisfies 

the equation u' - c^(t,u), then in the case if C(t,u(t)):t e 
co 2 

t J] o \j K((t^ft.~)tr ) =- 0, it must be constant so that the /»t*yf n* n * n ' 
initial condition u(0) = 0 implies that u(t)~0. In the con-

2 
verse case the curve u * u(t) meets some circle K((tnttn),r ) 

and it must be constant in some interval <a,T^>, a > 0 which 

lies on the left of the point tR. Because of continuity of the 

function u(t) we have that a * 0, so that the initial conditi

on u(0) » 0 again implies that u(t) = 0. On the other hand, for 

the function $p(t) =- t we obtain 

$>(t) «£ f co(af 9?(s))đs = • oo 
*0 

for any te J . 

The above example shows that the following theorem is true. 

Theorem 5. There exists a function *a>(t,u) such that 

o>(t,u)€^J and o(t,u) e <€ but o(t,u)4 2> and o>(t,u)£^-
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In the example below we show that the assumption of mo

no tonicity in the Theorem 2 is not necessary. 

Example 2. Let us consider the function ci):JQx R + — > R+, 

defined by the formula 

u 
o>(t,u) * » . 

t + u* 

It is easy to check that &>(t,u) belongs to the classes 3S and 

3) simultaneously and it is not increasing with respect to u. 
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