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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,2 (1981) 

ON EXTENDING TRANSITIVE HOMEOMORPHISMS FROM 
THE CANTOR SET TO THE PRODUCT OF TWO CANTOR SETS 

Ryszard FRANKIEWICZ and Andrzej GUTEK 

Abstract: We prove the following theorem: Let f be a 
transitive homeoaorphism from the Cantor set C onto itself. 
Then there exists a hoaeomorphism g from C onto itself such 
that g(x) = x for some point x of C and the hoaeomorphism 
gx f :C>< C — > C^C is transitive. More precisely, if the se-
miorbit it^iy) m-lt2f... 1 is dense in C, then the homeoraor-
phism g can be defined in such a way that for some point 2 
of C the semiorbit Kgn(z),fn(y)>tn=l,2.,.,j is dense in C^ C 

Key words and phrases: Transitive homeoaorphism, Cantor 
set, cartesian product. 

Classification: 54C10, 54C20. 

There is a number of papers in which possibilities of 

extending homeoaorphisms are investigated. One can list pa

pers of Knaster and Reichbach [33, J. Pollard C7J, R.S. Pier

ce 161 f J.W. Baker E13 and J. van Mill L"43 • A possibility of 

extension to a transitive homeomorphism is studied in C2J. 

Let us remind that a homeomorphism h from the space X 

onto itself is said to be transitive if and only if there ex

ists a point x whose orbit ih (x): n is an integer $ is dense 

in X. We shall use the following property of transitive ho

meoaorphisms : 

Lemma (Oxtoby [5], p. 70). Let X be a complete, sepa-
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rable metric space without isolated points, and let h be a 

transitive homeomorphism ftrom X onto itself. Then those 

points whose positive semiorbit is dense constitute a resi

dual set in X. 

A set is said to be residual iff it is the complement 

of a set of first category. A positive semiorbit of a point 

x is the set {hn(x): n=lf2,...I. 

Theorem. Let f be a transitive homeomorphism from the 

Cantor set C onto itself. Then there exists a homeomorphism 

g from C onto itself such that g(x) = x for some point x of 

C and the homeomorphism g x f i C x C — > C x C is transitive. Mo

re precisely, if the semiorbit if^iy): n=l,2,...l is dense 

in C, then the homeomorphism g can be defined in such a way 

that for some point z .of C the semiorbit £<gn(z)jf^y)?: n= . 

=1,2,...] is dense in C x C 

Proof. Let us assume that the Cantor set C is given by 

the usual ternary expansion, and let 33 denote the basis de

fined by this expansion, i.e. it is a family of closed-open 

subsets of C, and if I , J e $ , then Is J or J si or In J « 

= 0 and diam I = 31* diam J for some integer i. 

For every two subsets A and B of C put A<B if and only 

if a<b for eyery aeA and b e B. For every set B of the ba

sis &> and for every positive integer k consider a partition 

•fB(mfk): m=l,...,k? of B into k disjoint subsets belonging to 

{ft diameters of which are less or equal to k * diam B and 

such that B(m,k)< B(p,k) for m<p^k. If k is equal to 2J for 

some positive integer jf then we require diameters of any two 

such subsets to be equal one to another. 
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Let B, ,Bp,...,Bn>... be defined by B^ = [ — -i-rln C. 

Let the semiorbit if (y): n=l,2,...} of a point y be dense in 

C. Such a ooint exists in virtue of the lemma. 

The homeomorphism g is defined by induction. 

The first step, g«< is the linear and order preserving 

mapping from B. (1,2) onto B,(2,2). 

Put z equal to ** and consider the point < ^9y?» 

Thus we have obtained a chain consisting of the sets 

K l = Bi^t 2 ) and A2 = Bx(2,2), and g1(A1Cm,2
k)) = A;!;(m,2k) 

k for every positive integer k and for m=l,...,2 . 

The n-th step (n?2). Suppose we have constructed a chain 

A n ,...jA^ of closed-open segments of C such that 

U-lA^1: j=l,...,k$ =UiB j : j=l,...,n-li and A
n"1,An~1£ B ^ , 

and a function gn„T defined on U{An"* : j=l,...,k-l? such 

that gn--.l A
1?"" is linear and order preserving mapping from 

Aj~ onto A1?', for j=l,...,k-l. For each segment A*-"" let us 

consider cartesian products P̂ "" (t,i) = A1]*" x C(t,2n""1), whe-

re t=l,...,2n*" , and i is such a positive integer that A1!"" s, 
J 

£B.. Let N be the number of sets P1?"* (t,i), where i=l,... 

... ,n-l and j=l,...,k and t=l,...,2 "* . Order these sets, put-

ting the first one this set,which contains the point < •»r,y>. 

Denote the s-th set in this ordering by P_, and put n (P^) = 
s s 

= k-j and n""(Pe) = j if and only if Pa = P^Ct-i) for some 
S S J 

j, t and i. We define for each set P0 numbers n_ and &"«. We 
o S S 

put n, = 0 and m, = 1. Suppose we have defined TL and nL for 
r< s. We put n to be such a positive integer that n - n , -s s S—x 
- n~(Ps) - n (Ps-1) = m9 is a positive integer, and such that 
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f S(y)€ C d . , ^ " 1 ) , where t and i are such that Ps * A*?"
1 x 

xCft^ 1 1" 1), Such a positive integer n exists, because the 

positive semiorbit of the point y is dense in C 

Put ML = m, + 5p +...+ m™ + 1. Let us consider a par

tition {B (niyM^): m=l,...,MVl of B into 1&. disjoint subsets 

belonging to Ji diameters of which are less or equal to M"* • 

•diam B . Let the sets A-̂"" (s,Nn), where 8=1,...,Nn, consti-

tute the similar partition of A,~ into N disjoint and non-

void subsets. This partition induces partitions of the sets 

A**""1, where j=2,...,k, if we put Aj'^s,^) = 

Observe that if jeAj" 1, then | eAn"1(l,Nn). Let mfl = m-, +... 

...+ mfl for s=l,...,NR. 

We define g^ as followsi 

gnlB^tm,!^) is a linear and order preserving mapping from 

Bn(m,Mn) onto A
n" (s,Nn) iff m = mQ for some s, and onto 

B (m+1, N ) otherwise, 

gn|A?~ (
s»**n̂  *8 a 1:^near a n d order preserving mapping 

from A£ (SfNn) onto
 B

n(
a
s +i»M n), where mN + 1 = M^ and 

gniU-tBj: j=l,...,n-l}\A^"*
1 = grl-1. 

Put An = Bn(l,Mn) and A
n
+ 1 = gn(A^) for j»l, ...,1^+k N^-l. 

Thus, ^ is defined on u * B j : j=l,... ,n}\ Bn(Mn,Mn) and 

is continuous and one-to-one. Let us observe that 

( g ^ f ) S <|,y>*P 8 ?or 8=1,...,Nn, and A J . A J ^ . ^ S \ . *he 

mapping g:C —L> C defined by g|B = Sn+il B n
 a n d g(0) = 0 is a 

homeomorphism from C onto itself, and the positive semiorbit 
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of the point ̂ -.y) is dense in CxC, 
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