Commentationes Mathematicae Universitatis Caroline

Patrick Oswald

On a connectedness property of the complements of zeroneighbourhoods in topological vector spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 2, 351--356
Persistent URL: http://dml.cz/dmlcz/106081

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON A CONNECTEDNESS PROPERTY OF THE COMPLEMENTS OF ZERONEIGHBOURHOODS IN TOPOLOGICAL VECTOR SPACES P. OSWALD

Abstract

V. Klee [1] proved that for every topological vector space X there exists a base of zero-neighbourhoods $\{U\}$ whose complements are connected. More exactly, it was shown that, each pair of points $x, y \in X \backslash U$ can be joined by a $8-g$ gon contained in $X \backslash U$. In this note we give the final answer to a related question of V. Klee [1] by showing that in the aboveresult the $8-g n^{\prime} a$ can be replaced by $2-g n^{\prime} s$ for arbitrary X.

Ker mords: Topological linear spaces, connected sets. Classification: 46A15, 28A20

In this note we give the complete answer to a question of V. Klee [1] concerning connectedness properties of the complements of neighbourhoods of zero (nz) in a real separated topological vector space (tvs).

Theorem. Let X be a tvs with dim $X \geqq 2$. Then every $n z$ VCXcontains a nz U satisfying the following property:
(A) Each pair of points x, y belonging to the complement $X \backslash U$ of U can be joined by a 2-gon in $X \backslash U$. More exactly, there exists a point z so that $[x, z] \cup[z, y] \subset X \backslash U$.
(By $[x, y]$ we denote the line segment $\{\alpha x+(I-\alpha) y, \alpha \in[0,1]\}$, and a n-gon is defined as an arc composed of n (or fewer)
line segments.)

If in the formulation of the theorem the 2-gon's are replaced by 8 -gon's we get a known weaker result obtained by V. Klee in 1964 (see [1], Theorem A). In [1] he also asks whether the number 8 can be reduced for general tve. Partial results in this direction were stated by V. Klee [1] for locally convex and locally bounded tvs, and, recently, by T. Riedrich [3] for the space $S(0,1)$ of measurable functions. The above stated theorem improves these known results and, clearly, cannot be sharpened for any tvs X.

Proof of the theorem. Our proof is quite elementary, the reader can find the used facts from the theory of tvs and about convex sets in finite-dimensional tvs, for example, in standard sources like [4] resp. [2].

If $2 \leqq \operatorname{dim} X<\infty$ then X is isomorphic to the Euclidean space $R^{n}\left(X \cong R^{n}\right)$ for some $n \geqq 2$. In this case the assertion of the theorem is obvious.

Let $\operatorname{dim} X=\infty$, and fix an arbitrany 2-dimensional (linear) subspace $E \subset X$. For any given $n z V \subset X$ the set $V \cap E$ is a $n z$. in $E \cong R^{2}$. Therefore, we can find a compact convex $n z$ $C_{0} \subset E$ in E, and a closed $n z V_{0} \subset X$ such that
(1) $E \cap V_{0} \subset C_{0} \subset \mathbf{E} \cap V, V_{0} \subset V$.

Furthermore, let $U_{0} \subset X$ be a starshaped $n z$ with
(2) $U_{0}+U_{0}+U_{0}+U_{0} C V_{0}$.

Now we define the set
(3) $U+C_{0} U\left(F \in \mathcal{G} \overline{\left.\operatorname{conv}\left(U_{0} \cap F\right)\right)}\right.$
where \mathfrak{F}^{\prime} denotes the set of all 3-dimensional subspaces of x containing E (conv A stands for the convex hull of a set A, and \bar{A} for the closure of A). In the following we will prove that U has the properties stated in the formulation of the
theorem.
Step 1. To show that U is a $n z$ in X with $U \subset V$ it is sufficient to verify the inclusions
(4) $U_{0} \subset U \subset V_{0} \cup C_{0}(c V)$.

In virtue of (1), (2) we have $z \in C_{0} \subset U$ for any $z \in U_{0} \cap E$. If $z \in U_{0}$, E then define the 3 -dimensional subspace $F=F(z)$ $=\operatorname{span}(z, E) \in \mathcal{F}$ containing z. We have $z \in F \cap U_{O}$, and (3) implies $z \in U$. Therefore, $U_{0} \subset U$ has been proved.

The inclusion $U \subset V_{0} \cup C_{0}$ will be obtained by demonstrating the relation $\overline{\operatorname{conv}\left(U_{0} \cap F\right)} \subset V_{0}$ for arbitrary $F \in \mathcal{F}$. It is well-known that every point $x \in$ conv M, where M is a set in R^{3}, can be represented by the convex combination of at most 4 points of M (Caratheodory's theorem for R^{3}, see [2], p. 23). Because $F \cap U_{0}$ is a starshaped set in $F \cong R^{3}$, now it follows by (2) that $\overline{\operatorname{conv}\left(U_{0} \cap F\right)} \subset\left(\overline{\left(F \cap U_{0}\right)+\left(F \cap U_{0}\right)+\left(F \cap U_{0}\right)}+\overline{\left(F \cap U_{0}\right)_{c}}\right)$ $c \bar{V}_{0}=V_{0}$.
Thus (4) is completely proved.
Step 2. The following relations are obvious from the construction of the $n z U\left(\right.$ see (1) - (3)): If $F \in \mathcal{F}^{\text {f }}$ then (5) $\quad U \cap F=\overline{\operatorname{conv(U} \cap F)} \cup C_{0}$.

Fur thermore, we have
(6) $U \cap E=C_{0}$.

Step 3. For an arbitrary but fixed point $x \in X \backslash U$ define the set
(7) $A=A(x)=\{z \in E:[x, z] \subset X \backslash U\}(C E)$.

The aim of the considerations of the steps 3 and 4 is to show that there are two linear independent functionals g_{i} belonging to the topological dual space F^{*} of E, and real numbers

β_{i} such that

(8) $\left[g_{i}>\beta_{i}\right]=\left\{\mathrm{z} \in \mathrm{E}: \mathrm{g}_{\mathrm{i}}(\mathrm{z})>\beta_{i}\right\} \subset \mathcal{A}=\Lambda(x), i=1,2$. In this step we corrider the case when $x \dot{\in}(X \backslash U) \cap E$.
From (6) it follows that $x \notin C_{0}$. Because $C_{0} \subset E \cong R^{2}$ is compact and convex, the set

$$
B=\left\{g \in \mathbb{F}^{*}: g(x)>g(y) \text { for all } y \in C_{0}\right\}
$$

is non-empty and open in the topology of $\mathrm{E}^{*}\left(\cong \mathrm{R}^{2} \cdot\right)_{\text {. Therefo- }}$ re we can find two linear independent $g_{i} \in B \subset F^{*}$, and putting $\beta_{i}=g_{i}(x), i=1,2$, we get (8). Indeed, if $z \in\left[g_{i}>\beta_{i}\right]$ then $g_{i}(\alpha z+(1-\alpha) x)=\alpha_{g_{i}}(x)+(1-\alpha) g_{i}(x) \geqq g_{i}(x)>E_{i}(y), \alpha \in[0,1]$, for all y $\in C_{0}(i=1,2)$. Thus, $[x, z] \subset E \backslash C_{0} \subset X \backslash U_{0}$

Step 4. Now let $x \in(X \backslash U) \backslash E$. Consider the subspace $F=$ $F(x)=\operatorname{span}(x, F) \in \mathcal{F}^{\prime}$. Let $f_{0} \in F^{*}$ be the functional satisfying Ker $f_{0}=F$, and $f_{0}(x)=1$. First we show that
(9) $C=\overline{\operatorname{conv}\left(U_{0} \cap F\right)} \cap\left\{y \in F: 0 \leqslant f_{0}(y) \leqslant 1=f_{0}(x)\right\}$
is a compact convex set in F. Obviously, $C \subset F \cong \mathbb{Z}^{3}$ is convex, closed, and starshaped (with respect to zero). If we assume that C is unbounded then it follows immediately from the mentioned properties that C contains a certain half-line beginnimg at sero. According to (9) this half-line belongs to $\overline{\mathrm{F}}=$ $=K e r f_{0}$. Therefore, $C \cap E C C_{0}$ is unbounded, which contradicts the boundedness of C_{0}. Thus, C is bounded (and compact), too.

Now consider the set

$$
\widetilde{B}=\left\{f \in F^{*}: f(x)>f(y) \text { for all } y \in C\right\} \text {. }
$$

Because of the established properties of C the set \widetilde{B} is nonempty and open in the topology of $F^{*} \cong R^{3}$. This yields that one can find three linear independent functionals $f_{j} \in \widetilde{B} \subset F^{*}$, $j=1,2,3$. Therefore, under the functionals $\left.\mathcal{P}_{j}\right|_{\mathbf{E}} \in \mathrm{E}^{*}$ there
are two linear independent on*e which we denote by B_{1} (without loss of generality, assume that $\left.g_{i}=f_{i} \mid \mathbf{E}\right), i=1,2$. Finally, the reals β_{i} will be chosen in such a way that we have $\beta_{i} \geq f_{i}(x)$, and $\beta_{i}>g_{i}(y)$ for all $y \in C_{0}(i=1,2)$.

Hence, $\left[\dot{g}_{i}>\beta_{i}\right] \cap C_{i}=\varnothing$, and analogously to the considerations in step 3 we get $[x, z] \subset F \backslash C$ for all points $z \in$ $\left[g_{i}>\beta_{i}\right], i=1,2$. But from (9) and the relation (5) it becomes clear that for $z \in \mathbb{F}$ whave $[x, z] \subset X \backslash U$ iff $z \& C_{0}$ and $[x, z] \subset P \backslash C$. Therefore, (8) is completely proved.

Step 5. To finish the proof of the theorem we mention that the property (A) is equivalent to the relation $A(x) \cap$ $\cap A(y) \neq \varnothing$, where x, y are arbitrary two points of $X \backslash U$. But this follows at once by (8) and the fact that the intersection of two half-planes $[g>\beta]$ and $[\tilde{G}>\tilde{\beta}]$ is empty, may be, in the case of linear dependent functionals g and \widetilde{g}, only.

Thus, the theorem is proved in full detail.
Remark. As it was pointed out to us by T. Jeroisky, the following statement of, may be, independent interest holds true: Let X be a tve with $\operatorname{dim} X=\infty$, and E be an arbitrary but fixed n-dimensional subspace of $X(n=1,2, \ldots)$. Then there exists a base of zero-neighbourhoods in X whose intersections with every ($n+1$)-dimensional subspace of X containing I are convex sets. To show this it suffices to modify slightIy the construction given above.

Acknowledgment. The author is indebted to T. Riedrich for suggesting him the problem, and, eapecially to T. Jerofsky for the help in finding a simple version of the proof of the theorem.
References
[1] KLEE V.: Connectedness in topological linear spaces, Israel J. of Math. 2(1964), 127-131.
[2] LEICHTWEISS K.: Konvexe Mengen, Deutscher Verlag der Wissenschaften, Berlin 1980.
[3] RIEDRICH T.: On vector-topological properties of zero-neighbourhoods of topological vector spaces,Comment. Math. Univ. Carolinae 21(1980), ll9-129.
[4] SCHAEFER H.: Topological vector spaces, Macmillan, New York/London 1966.
Technische Universitat Dresden
Sektion Mathematik
8027 Dresden, Mommsenstr. 13
D D R

