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COMMENTATIONES MATHEMATICAE DNIVERSITATIS CAROLiNAE 

22,3 (1981) 

ON BIREGULAR AND REGULAR RINGS 
Roger YUE CHI MING 

Abstract: A generalization of in jec t iv i ty ? noted Tp-
in jec t iv i ty , i s introduced to study biregular rxnga and von 
Neumann regular r ings . 

Key words: Biregular, von Neumann regular , Tp-injeetiva, 
p- inject ive, V-rings. 

Classif icat ion: 16A15, 16A30, 16A32, 16A52 

Throughout, A represents an associative ring with iden

t i t y and A-modules are unitary. A le f t A-module M i s called 

p-injective if, for any principal l e f t ideal P of A and any 

lef t A-homcroorphism g:F—>M, there exis ts yeM such that 

g(b) = by for a l l b e P . In U03 through £141, l e f t p- in jec

t ive rings and p-injective modules are considered. Semi-group 

analogues of ring resu l t s on inject iv i ty and p- in jec t iv i ty 

are investigated in C63 and L73. Since a few years , biregular 

r ings , regular r ings , V-rings and thei r generalizations are 

studied by various authors (cf. for example, the bibliography 

of [31,£4)) . The purpose of this note i s to study biregular 

and regular V-rings in terms of the following generalization 

of in jec t iv i ty : 

Definition. A lef t A-module M is called Tp-injective 
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(two-aided ideal p*injective) if, for any ideal I of A, me A, 

any left A-homomorphiam g:Im—>M, there exists yeM such 

that g(ta) » tmy for all tel. (An ideal of A will alwmya me

an a two-sided ideal*) 

Obviouslyt Tjo-injectivity implies p - in : jec t iv i ty . Rota 

that if A is a simple ring, then a left A-module is Tp-injac

tive iff it is p-injeetive. (Simple self-infective regular 

rings need not be Artinian (K.R. Ooodearl).) 

Writs* *A aatisfiea (# )* if every proper ideal of A is 

a Tp-injective left A-module. Recall that A is biregular if, 

for any aeA, the ideal AaA is generated by a central idempo-

tent. As usual, 

(O A is called a left V-ring if every simple left A-module 

is infective; 

(2) A is fully left idempotent if every left ideal is idem-

potent; 

(3) A is reduced if it contains no nonzero nilpotent element. 

(4) A is BLT(MB.UT) if every essential (maximal essential) 

left ideal is an ideal of A CI21. 

We first derive a few properties of rings satisfying (* ). 

Proposition 1. Let A satisfy (# ) # Then 

(t) For any factor ring B of A, every ideal of B is ge

nerated by a central idempotent. In particular. A ia a bire

gular fully right idempotent rings 

(2) Any prime factor ring of A is simple. 

Proof. (1) Por the first part, it is sufficient to pro

ve that every ideal T of A is generated by a central idempo

tent. If i:T—>» T ia the identical map, there exists usT 
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such that i(t) = tu for all tc T. In particular, u « i ( u ) • 
2 

« u and T * Au. Thus the left singular ideal and the Jacob-

son radical of A are both zero. Therefore A is aemi-prime 

which implies that u is a central idempotent, whence A is bi-

regular. How for any aeA, if AaA = A, then meCaA) • If 

AaA4-A, j:Aa—>-AaA "the canonical injection, then there ex- . 

iats be AaA such that a = j(a) » ab * (aA)* again, which pro

ves that A is fully right idempotent. 

(2) follows from the fact that any non-xero ideal in a 

prime ring is left and right essential. 

Corollary 1.1. If A satisfies (* ) f the centre of A is 

•on Neumann regular. 

Applying LI, Theorem 11 to Proposition 1, we get 

Corollary 1.2. I£ A is a P»I. ring satisfying C * ) t then 

A io a regular left and right V-ring. 

Corollary 1.3. I£ A is an indecomposable ring satisfy

ing (*), then A is simple. 

. Corollary 1.4. Let A satisfy (* ) t Then (1) A is regu

lar iff every primitive factor ring of A is regular: (2) If 

every primitive factor ring of A is MK/T. then A is a unit-

regular left and right V-ring whose prime factor rings are 

Artinian. 

Proof. (1) Apply l4» Theorem 1.28J to Proposition 1(2). 

(2) Every prime factor ring of A is MELT simple and hence 

Artinian. Then A is regular by (1) which implies A unit-regu

lar t4f Theorem 6.101. A is a left and right V-ring by I 3f 

Theorem 141. 
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Corollary 1.5. Let A be a directly finite left self-

injective ring satisfying (;fc). Then every prine factor ring 

of A, is simple left 8 elf-infective. 

(Apply £4, Theorem 9.323.) 

Since a biregular ring is fully idempotent and any fac

tor ring of a MELT ring is MELT, [4, Theorem t.18 and Theo

rem 6.10] imply 

Proposition 2. Let A be a MELT biregular ring. Then A 

is a unit-regular left and right V-ring whose prime factor 

rings are Artinian. 

Corollary 2.1. If A is an ELT fully idempotent ring who

se primitive factor rings are biregular. then A is a unit-re

gular left and right V-ring. 

Proof. Any prime factor ring B of A is ELT fully idempo

tent which implies B primitive and hence Artinian by Proposi

tion 2. 

Rings whose left ideals are quasi-injective (called left 

q-rings) may be characterized as ELT left self-infective 

rings C5, Theorem 2.3]. For left self-infective rings in ge

neral, non-zero ideals need not contain non-zero central idem-

potents. However, we have 

Remark 1. Let A be a left or right self-infective regu

lar ring such that any prime factor ring is MELT. Then A is 

left and right self-injective biregular. Consequently, semi-

prime left q-rings are right self-injective biregular. 

Remark 2. A left and right V-ring whose prime factor 

rings are MELT is a unit-regular ring such that the maximal 
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l e f t quotient r ing coincides with the r ight one. 

Let us now characterize rings whose l e f t modules are Tp-

inject ive . Following ESJ, a l e f t A-module M is called serai-

simple if the intersect ion of a l l maximal le f t submodules i s 

zero. A i s semi-simple Artinian i f f every semi-simple l e f t A-

module i s infective C8, Theorem 3.23. 

Theorem 3 . The following conditions are equivalent for 

a ring A: 

(1) Every le f t A-module i s Tp-injective; 

(2) Every semi-simple lef t A-module_i3 Tp-injective; 

(3) Every essent ia l l e f t ideal of A is Tp-injactive; 

(4) A is a regular r ing satisfying (* . ) . 

Proofs Obviously, (t) implies (2). 

Assume (2) . Then every semi-simple lef t A-module i s p -

iiijective which implies that A is vcn IvYumarm regular, whence 

every le f t ideal of A i s semi-siraple. Therefore (2) implies 

(3). 

Assume (3). Since every essent ial le f t ideal i s p- injec-

t ive , then A is regular . I f I is a proper ideal of A, there 

exists a complement lef t ideal C such that I © C is an essen

t i a l l e f t idea l . Since a d i rect summand of a Tp-infective le f t 

A-module is Tp-injective, then *I i s Tp-injective and (3) im

pl ies (4) . 

Assume (4). Every ideal of A i s a principal le f t ideal 

by Proposition t . Then every le f t A-module, being p- in ject ive , 

i s Tp-injective which shows that (4) implies (1) . 

Corollary 3 . 1 . If every ideal of A i s generated by an 

element« then A is regular biregular i f f every le f t A-module 

i s Tp-injective. 
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Rings whose l e f t ideals not isomorphic to Â are qua-

s i - inject ive (resp. p- inject ive) , noted wq (reap. IP) rings, 

are studied in £91 and E131. How eal l A a WTP ring (weak Tp-

injective) i f every le f t ideal not isomorphic to Â i s Tp-

injective. Simple regular rings and le f t principal ideal do

mains (written PID) are example a of WTP rings. 

Since any ideal which i s a Tp-injective le f t A-module 

i s a direct summand of ^A, the next lemma then follows from 

L139 Lemma 1.11. 

Lemma 4. If A i s a TCP ring, then A i s semi-prime with 

p-in.iective l e f t socle such that any f ini te ly generated l e f t 

ideal or ideal of A ia a principal projective le f t ideal. 

Applying the proof of 1.13, Proposition 1.93, Propositi

on 1, Theorem 3 and Lemma 4, we get 

Proposition 5. Jtet A be a tTP ring satisfying any one 

of the following conditions: 

(1) * contains a central gero-diviaor: 

(2) There exists a proper ideal,I such that A/1 i s a 

regular ring; 

(3) A i s a direct sum of two le f t ideals which are of 

infinite l e f t Qoldie dimension. 

Then A ia a regular ring whoae l e f t A-modulea are Tp-

injective. 

Proposition 6. The following conditions are equivalent: 

(1) A i s either m l e f t duo l e f t PIP or semi-simple Ar-

tinian: 

t2) * i s ** gLT- VTP *in*« 
Proof. Obviously, (1) implies (2) . 
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Assume (2). By Lemma 4, every essential left ideal is 

principal which implies that A is a principal left ideal ring. 

Then any left ideal not isomorphic to .A is infective. In par

ticular, A is a wq-ring which implies that A is either a left 

PID or strongly regular left self-infective or has non-zero 

socle t93. If A is a left PID, then any non-zero left ideal 

is essential which implies A left duo. If A is left self-in

fective, then every left ideal is infective which implies A 

semi-simple Artinian. Finally, if A has non-zero socle, then 

A is Artinian by C9, Lemma 1.5J. 2hus (2) implies (1). 

After considering regular rings satisfying (* ), we now 

look at WP-rimgs satisfying (*). 

Proposition 7. Let A he a WP-ring satisfying (#. ). Then 

A is a WTP ring which is either simple or regular. 

Proof. Apply L13, Lemma 1.33 to Proposition f and Corol

lary 1.3. 

If A is fully right idempotent, then ̂ A/T is flat for aany 

ideal T of A. Lemma 4 then implies 

Remark 3. If A is a WEB fully right idempotent ring, then 

every ideal of A is generated by a central idempotent. In par

ticular, A is biregular. 

We now characterize semi-simple Artinian ringa in terms 

of WTP rings and rings satisfying (,* )• ALB (almost left duo) 

rings are studied in Cnl and C143. 

Theorem 8. The following conditions are equivalent: 

(1) A is semi-simple Artinian; 

(2) Every essential left ideal of A is quasi-in.iective and 
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Tp^nJectiye ; 

(3) A ia a left 0-r in .g aatiafying (j*h 

(4) A ia a MiLT rime aatiafying (# )j 

(5) A I,81 yr|> *****£ with eaaential Heft aocle: 

(6) A is a MBLTt WTP fully right idempotent ring; 

(7) A ia an ALD«, WT? ring with non-zero aocle* 

Proof- (1) implies (2) and (5) evidently* 

Assume (2)« Thi»r aî y left ideal (being a direct aummand 

of an eaaential left ideal) ia quaai-injective and Tp-injecti* 

ve which ahuwa that (2) impliea (3)« 

(3) implies (4) by t5, Theorem 2,35* 

Aasume (4)* If L is a proper eaaential Heft ideal, M a ma

ximal loft ideal containing L, then .14 ia Tp-injective which 

irnplia* *M a direct aummand cf *A. Thia contradiction proves 

that any left ideal ia a direct aummand of *A and (4) impli#a 

(O, 

4«-aume (!?)» Let S be the left socle of A. Tf ii^A- ai*ir# 

3 H m idealP 8 ia a direct aummand of ̂ A which contradict* 

S essential. Thua S » A and (5) impHt,-* (6). 

(6) implied (7) by Remark 3# 

(7) impliea (1) by [14, Lemma t.O» Lemma 4 and Theorem 

TO below, ' 

Call A left Tp-injective if .A ia Tp-injective# 

Theorem 9. The following conditionsare equivalents 

(1) A ia a left and right aelf-infective atrongly regu

lar rim; 

(2) A ia a left non-aingular 3eft Tp*»iniective ring auch 

Mat every complement left ideal ,ie an ideal % 
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(3) A ia a reduced left Tp-in.iective ring. 

Proof. (1) implies (2) obviously. 

(2) implies (3) by L10, Lemma 13. 

Assume (3). Since A ia reduced left p-injective, then A 

ia strongly regular by 110, Theorem 13. Therefore A ia left 

a elf-infective and since A ia strongly regular, then A ia right 

aelf-infective. Thus (3) impliea (1). 

114, Lemma l.t] then impliea 

Corollary 9.1. The following conditions are equivalent: 

(1) A ia either semi-simple Artinian or left and right self-

infective atrongly regular: 

(2) A ia a semi-prime ALP left Tp-infective ring; 

(3) A ia a semi-prime ALP right Tp-in.iective ring. 

Theorem 10. The following conditions are equivalent: 

(1) A ia a finite direct sum of division ringas 

(2) Every ideal of A ia a Tp-»in.iective left A-modula and eve* 

ry complement left ideal ia an ideal; 

(3) A ia a reduced WTP ring with non-zero aocle: 

(4) A ia a reduced WTP ring containing a non-aero p-in.iective 

left ideal. 

Proof. (1) impliea (2) evidently. 

Assume (2). By Proposition 1 and Theorem 9, A ia strongly 

regular. Then every left ideal ia infective which impliea A 

semi-simple Artinian. Since A ia reduced, then (2) impliea (3). 

(3) impliea (4) by [13, Propoeitiom 1.4J. 

(4) impliea (1) by £.13, Corollary 1.61 and Remark 3. 

We now consider Tp-injectivity in connection with conti-

nuoua regular and Baer regular rings. Recall that (1) A ia 
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left continuous (in the sense of T. Utumi) if (a) every left 

ideal isomorphic to a direct summand of ̂ A is itself a direct 

summand of .A and (b) every complement left ideal is a direct 

summand of *A; (2) A is a Baer ring if every left annihila-

tor ideal is a direct summand of jA; (3) A is quasi-Baer if 

the right annihilator of every ideal is a direct summand of 

A A -

Proposi tion 11. (1) If A is a semi-prime BLT ring whose 

complement left ideals are Tp-injective. then A is left conti

nuous regular; 

(2) If A is an BLT ring whose left annihilator ideals 

are Tp-infective, then A is a Baer regular ring. 

Proof. (1) If C is a complement left ideal of A, 1) a 

left ideal such that L - G $ D is an essential left ideal, h: 

:L—> C the natural projection, then there exists ceC such 

that h(u) -« uc for all ueL. In particular, c * h(c) * c and 

C » Ac is a direct summand of »A. Since A is left p-injective, 

then any left ideal isomorphic to a direct summand of »A is 

principal p-injective and therefore a direct summand of ̂A. 

T:his proves A left continuous • Now A semi-prime BLT implies 

A left non-singular whence A is left continuous regular. 

(2) is similarly proved. 

The proof of Propo8ition 11 yields 

Remark 4. If A i s a semi-prime BLT ring whose proper 

complement l e f t ideals are Tp-injective, then A i s either a 

l e f t duo l e f t Ore domain or a l e f t continuous regular ring. 

Looking baok at Proposition 1, we see that a ring sa t i s 

fying ( # ) i s quasi-Baer. Also, i f A sat i s f ies ( # ) and A * 
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* B ® C, where B, C are ideala of A, then any ideal of B ia 

generated by a central idempotent. t2, Theorem 33 and CIO, The

orem II then yield 

Propoaition 12. If A ia a left or right p-infiective ring 

satiafying (.* ), then A = B ® C, where B is a finite direct aum 

of diviaion rings and C ia the minimal direct aummand of .A con

taining the nilpotent elements of A. 

Our last remark will follow from [9, Theorem 2.73 and The

orem 8. 

Remark 5. A wq-ring aatiafying (* ) is either semi-eimple 

Artinian or a eimple left PID. 
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