Commentationes Mathematicae Universitatis Caroline

Vítězslav Švejdar

A sentence that is difficult to interpret

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 4, 661--666

Persistent URL:
http://dml.cz/dmlcz/106109

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A SENTENCE THAT IS DIFFICULT TO INTERPRET Vitèzslav SUEJDAR

```
    Abstract: A ZF-sentence }\varphi\mathrm{ is found such that (ZF + }\varphi\mathrm{ )
is not interpretable in ZF, (GB + ) ) is not interpretable
in GB, but ( }2F+\varphi)\mathrm{ is interpretable in GB.
    Key words: Relative interpretability, set theory.
    Classification: Primary 03F25
                            Secondary 03E99
```

Introduction. In 1972 Hájkova and Hajek constructed an arithmetical sentence φ such that $(Z F+\varphi)$ is relatively interpretable in $Z F$ but $(G B+\varphi)$ is not relatively interpretable in $G B$ ([2]). If we denote $I_{Z F}$ and $I_{G B}$ the sets of all sentences φ such that $(Z F+\varphi)$ is relatively interpretable in $Z F$ and $(G B+\varphi)$ is relatively interpretable in $G B$ respectively, the result in [2] shows that $I_{Z F}-I_{G B}$ is nonempty. In 1976 Solovay proved that also $I_{G B}-I_{Z F}$ is nonempty ([4]). The relation between $I_{Z F}$ and $I_{G B}$ is further analysed in [1]. In the present paper we shall use the methods of [2] and [4] to obtain the following result.

Theorem. There exists a sentence φ such that $\varphi \notin I_{Z F} \cup I_{G B}$ but $(Z F+\varphi)$ is relatively interpretable in $G B$.

Preliminaries and Solovay's provability predicates. We deal with metamathematics formalized within Peano arithmetic. Formulas and terms are identified with their GOdel numbers. Con (τ) is the usual consistency statement for a formula $\tau(x)$, Intp (z, x) expresses that z is a sentence and x is an interpretation of $(G B+z)$ in $G B$, where interpretation includes both translations of atomic formulas and proofs (in $G B$) of translated axioms (of $(G B+z)$), see [1] and [2]. ZF「n is the finite set of all axioms of $Z F$ which are less than n. In arithmetic, $\mathbf{z f}$ is the natural definition of all formal axioms of ZF , in other words, $\mathrm{zf}(\mathrm{x})$ is the natural binumeration of ZF .

For a theory T in a language L let T_{c} be the conservative Henkin extension of T formulated in L_{c}. Let $\Delta(L)$ be the set of all closed instances (in L_{c}) of logical axioms, of axioms of identity and equality and of Henkin axioms ([3]). A sentence φ of L is provable in T if.and only if it is a tautological consequence of $\Delta(L) \cup T$ (see [3], p. 49). In the present paper L is the language of ZF while T is ZF or the predicate calculus for L.

A function s associating 0 or 1 with every L_{c}-sentence less than n is a generalized satisfactory sequence on n if
(1) s preserves logical connectives
(2) $s(\varphi)=1$ for every $\varphi \in \Delta(L)$.

A function s is a satisfactory sequence on n if, in addition,
(3) $s(\varphi)=1$ for every $\varphi \in 2 F$.

The notion of satisfactory sequence is immediately formalized in arithmetic. Now let us define the formalized Solovay's provability predicates as follows:
$\operatorname{Prf}_{0}(\varphi, x) \equiv \varphi<x$ and $s(\varphi)=1$ for every generalized satisfactory sequence s on x
$\operatorname{Prf}(\varphi, x) \equiv \varphi<\mathbf{x}$ and $s(\varphi)=1$ for every satisfactory sequence s on x
$\operatorname{Pr}_{0}(\varphi) \equiv \exists x \operatorname{Prf}_{0}(\varphi, x)$
$\operatorname{Pr}(\varphi) \equiv \exists \times \operatorname{Pr} f(\varphi, x)$.
We read $\operatorname{Prf}(\varphi, x)$ as " φ is provable on level x ". The provability predicates have the expected properties:

Lemma. Let φ be a sentence in 1 . Then
(i) $H_{0}(\varphi)$ iff φ is provable in the predicate calculus. (ii) $\operatorname{Pr}(\varphi)$ iff \oint is proveble in zf.

Satisfaction relations. In $G B+V=L$ we are able to define the partial satisfaction relations for formulas in I_{c}. The axiom $V=L$ is required for the definition of values of Henkin constants. For a more detailed treatment of satisfaction relations see [4] or [1].

A class Z is a satisfaction relation on j (in symbols $\operatorname{Tr}(Z, j)$) if Z is a function defined on all pairs $\langle a, u\rangle$ where $u: \omega \rightarrow V$ is an evaluation of variables and a is a term or a formula in $L_{c}, a<j$. If a is a term, Z associates with it its "correct" value under u, if a is a formula, Z associates with it its truth value 0 or 1 . The inductive (Tarski's) conditions determine the values of Z uniquely. A number j is occupable (in symbols Ocp(j)) if there exists a satisfaction relation on j. Satisfaction relations have the following properties:

Lemma $(G B+V=L$). (i) If $\operatorname{Ocp}(j)$, then the satisfaction relation on j is unique.
(ii) $\{j ; \operatorname{Ocp}(j)\}$ is a cut, i.e. it is closed under $<$ and +1 but $\{j ; \operatorname{Ocp}(j)\}=\omega$ is unprovable.
(iii) If φ is a sentence of L then
$\vdash \operatorname{Tr}(Z, j) \& \bar{\varphi}<j \rightarrow(\varphi \equiv Z(\bar{\varphi}, \cdot)=1)$.
(iv) If $\operatorname{Tr}(Z, j)$ then Z restricted to pairs $\langle a, u\rangle$ where a is a sentence gives a satisfactory sequence on j.

The construction. We are now ready to define our sentence φ and prove its properties. φ is defined using the self-reference theorem as follows:
$\vdash \varphi \equiv \forall x, y(\operatorname{Intp}(\overline{\mathcal{G}}, x) \& \operatorname{Prf}(\overline{\bar{f}}, y) \&(\&(z f \upharpoonright x) \rightarrow \overline{\bar{\top}})<y \rightarrow$

$$
\left.\rightarrow \operatorname{Prf}_{0}(\&(z f \upharpoonright x) \rightarrow \mp \mathscr{\mp}, y)\right) .
$$

First, let us prove that ($G B+\varphi$) is not interpretable in GB. Assume the contrary. Then $\operatorname{Intp}(\bar{\varphi}, x)$ has some standard witness $\overline{\mathrm{m}}$. Let us denote $\overline{\mathrm{d}}=\&(\mathrm{zf} \overline{\mathrm{T}}) \rightarrow \overline{\overline{\mathrm{T}})}$. Then $(*) \vdash \varphi \longrightarrow \forall y\left(\operatorname{Prf}(\bar{\varphi}, y) \& \bar{d}<y \rightarrow \operatorname{PrP}_{0}(\&(z f \upharpoonright \overline{\mathrm{I}}) \rightarrow \overline{\bar{\top}}, \mathrm{y})\right)$. By the essential reflexivity we have

$$
\vdash \varphi \rightarrow \operatorname{Con}(z f r \bar{m}+\bar{\varphi}) .
$$

That means, by (i) of our first lemma,
$(* *) \vdash \varphi \rightarrow \neg \operatorname{Pr}_{0}\left(\&(z f 「 \overline{\text { II }}) \rightarrow \overline{\nabla_{\varphi}}\right)$.
By $(*)$ and $(* *)$ we have

$$
\vdash \varphi \rightarrow \forall y(\bar{d}<y \rightarrow \neg \operatorname{Prf}(\bar{\varphi}, y)) .
$$

But if $\bar{\varphi}$ is not provable on any level greater than \bar{d}, it is not provable at all. Hence by (ii) of the lemma

$$
\begin{aligned}
& \vdash \varphi \rightarrow \operatorname{Con}(z f+\overline{\neg \varphi}) \\
& \vdash \varphi \longrightarrow \operatorname{Con}(\mathbf{z f}) .
\end{aligned}
$$

Hence φ implies Con(zf) which (being equivalent to Con(GB)) is not an element of $I_{G B}$. This is a contradiction with
$\varphi \in I_{G B}$.
For $\varphi \notin I_{\text {ZF }}$ notice that the provability predicates are primitive recursive and $\varphi \in \Pi_{1}$. Since φ is unprovable, ($\mathrm{ZF}+\varphi$) is not interpretable in ZF .

To interpret ($Z F+\varphi$) in $G B$ it suffices to interpret $(\mathrm{ZF}+\varphi)$ in $(\mathrm{GB}+\mathrm{V}=\mathrm{L}+\neg \varphi)$. Let us proceed in the last theory. We have

$$
\begin{gathered}
\exists \mathrm{x}, \mathrm{y}(\operatorname{Intp}(\bar{\varphi}, \mathrm{x}) \& \operatorname{Prf}(\bar{\varphi}, \mathrm{y}) \&(\&(\mathrm{zf} \boldsymbol{x}) \rightarrow \overline{7 \varphi})<y \& \\
\left.\& \neg \operatorname{Prf}_{0}(\&(\mathrm{ff} \mathrm{x}) \rightarrow \overline{\neg \varphi}, \mathrm{y})\right) .
\end{gathered}
$$

As $\neg \varphi$, by (iii) and (iv) of our second lemma, for every occupable j there exists a satisfactory sequence s on j such that $s(\bar{\varphi})=0$. Hence

$$
\forall j(\operatorname{Ocp}(j) \longrightarrow \neg \operatorname{Prf}(\bar{\varphi}, j))
$$

and our y is nonoccupable. Also, since $\operatorname{Intp}(\bar{\varphi}, \cdot)$ has no standard witness, x is nonstandard.

Since $\neg \operatorname{Prf} f_{0}(\&(z f \upharpoonright x) \longrightarrow \overline{\bar{\rho}}, y)$, by the definition of Prfore there exists a generalized satisfactory sequence s on j such that $s(\&(z f \Gamma x) \longrightarrow \overline{7 \varphi})=0$. By the Solovay's construction (see [4] or [1] for details) we can use s to construct an interpretation $*$ of the languege L such that for every sentence ψ in L

$$
\vdash \psi^{*} \equiv s(\bar{\psi})=1
$$

But by the nonstandardness of x we have $s(\bar{\psi})=1$ for every $\psi \in Z F$ and also $s(\bar{\varphi})=1$ for our constructed φ. This concludes our proof.

References
[1] P. HAJEK: On interpretability in theories containing arithmetic II, to appear.

```
[2] M. HAJKOVA, P. HAJEX: On interpretability in theories
        containing arithmetic, Fund. Math. 76(1972),
        131-137.
[3] J.R. SHOENFIELD : Mathematical Logic, Addison Wesley 1967
[4] R. SOLOVAY: Interpretability in set theories, in preparation
Matematický ústav ČSAV, Žitná 25, 11000 Praha 1, Československo
```

