Commentationes Mathematicae Universitatis Carolinae

Ivan Chajda; Jaromír Luda
Finitely generated relations and their applications to permutable and n-permutable varieties

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 1, 41--54

Persistent URL: http://dml.cz/dmlcz/106131

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

FINITELY GENERATED RELATIONS AND THEIR APPLICATIONS TO PERMUTABLE AND n-PERMUTABLE VARIETIES Ivan CHAJDA and Jaromir DUDA

Abstract

The present paper is a continuation of the systeratic study of compatible binary relations. This part deals with finitely generated compatible relations on universal algebras, their relationship and connections with permutability and n-permutability $(n>1)$ of congruences. Various medifications and simplifications of methods frequently used in the theory of Mal cev conditions, polynomial conditinns etc. are derived.

Kex words: Algebraic function, congruence, compatible diagonal relation, Mal cev condition, polynomial, polynomial concition, quasiorder, tolerance, variety of algebras.

Clessification: O8A25

The objective of this paper is to give connections among some recent and old trends in universal glgebra from the point of view of principal congruences. Since various different ways for these investigations are used by many autrors we shall first try to rind a common base for their results by means of a detailed study of compatible binary relations. This approach enables us to obtain also some new characterizations of varieties of algebras.

1. Paraphrases of the Mal'cev lemma. Characterizations of a principal corgruence $\Theta(a, b)$ for scme elements a, b of an algebra $C Z$ play an important role in universal algebra,
in particular in the theory of Mal cev conditions, pulynomial conditions etc. In the original Mal cev description of $\theta(a, b)$, see $[10]$, there appears the set-theoretical condition $\left\{\varphi_{i}(a), \varphi_{i}(b)\right\}=\left\{z_{i}, z_{i+1}\right\}$; however, such condition is not too convenient for purely algebraic purposes, namely for deriving identities. Thus, the aim of this section is to remove the above mentioned set-theoretical equality; it was first done by G. Grätzer [2], further possibilities may be found in [13]. Making full use of the connections among congruences, tolerance and compatible diagonal relations we obtain Grätzer's original result and, further, we give here a new purely algebraic description or $\Theta(a, b)$.

Let $\mathcal{U}=\langle A, F\rangle$ be an algebra. A bingry relation C on is called compatible if it satisfies the Substitution Property with respect to all operations from \mathbb{P}, in other words, \mathbb{C} is a subalgebra of the direct product $C M \times C H$. A binary relation R on is called diagenal relation if $\omega_{A} \cong R$ where $\omega_{A}=\{\langle a, a\rangle ; a \in A\}$. By a tolerance on $C Y$ is meant a compatible diagonal and symmetric binary relation on $C=$. Obviously, all tolerances as well as all compatible diagonal relations on C form complete lattices with respect to the inclusion, see e.g. [5.]. Consequently, for gny $S \equiv A \times A$ ther exist the least compatible diagonal relation or the least tolerance on C containing S, denote it by $R(S)$ or $T(S)$, respectively. Without risk of confusion we will use $R(a, b)$ to denote $R(\{\langle a, b\rangle\})$ and $F\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{b}\right\rangle\right)$ to dencte $R\left(\left\{\left\langle a_{2}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right\}\right)$; analogous l_{y} for $T(a, b)$ and $T\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)$.

We begin with the following two lemmas; they will be useful in the sequel.

Lemma 1. Let U, be an algebra and let x, y, a_{1}, \ldots $\ldots, a_{n}, b_{1}, \ldots, b_{n}$ be elements of $C l$. Then
(a) $\langle x, y\rangle \in R\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)$ if and only if there exists an n-ary algebraic function φ over $C H$ such that $x=\varphi\left(a_{1}, \ldots, a_{n}\right), y=\varphi\left(b_{1}, \ldots, b_{n}\right)($ briefly: $\langle x, y\rangle=$ $\left.=(\varphi \times \varphi)\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)\right) ;$
(b) $\langle x, y\rangle \in T\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)$ if and only if there exists a $2 n$-ary algebraic function ψ over $C \in$ such that $x=\psi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right), y=\psi\left(b_{1}, \ldots, b_{n}, a_{1}, \ldots, a_{b}\right)$ (briefly: $\langle x, y\rangle=(\psi \times \psi)\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle,\left\langle b_{1}, a_{1}\right\rangle \ldots\right.$ $\left.\ldots,\left(b_{n}, a_{n}\right\rangle\right)$.

For the proof', see [5].

Lemma 2. Let \mathcal{C} be an algebra and let a, b be elements of $C($. The following conditions hold:
(a) $\quad \theta(a, b)=\bigcup_{n<\omega} T(a, \underbrace{0 \ldots c T(a, b) ; ~}_{n-t \text { imes }}$
(b) $\quad \theta(a, b)=\bigcup_{n=\omega} R(a, b \underbrace{b R(b, a) c \ldots c R(a, b) \text {, }, ~ ; ~}_{(2 n-1)-\text { times }}$
where o denotes the relational product.
The proof is straightforward and hence omitted.
Theorem 1. Let $C l$ be an algebra and let a, b, x, y be elements of $C l$. The following conditions are equivalent:
(1) $\langle x, y\rangle \in \theta(a, b) ;$
(2) BINARY SCHEME: There exist and integer $n \geq 1$ and binary algebraic functions $\beta_{1}, \ldots, \beta_{n}$ over $C l$ such that

$$
x=\beta_{1}(a, b)
$$

$$
\begin{aligned}
& \hat{r}_{i}(b, a)=\beta_{i+1}(a, b) \text { for } 1 \leqslant i<n \\
& y=\beta_{n}(b, a) ;
\end{aligned}
$$

(3) GRÄTZER SCHEME: There exist an integer $n \geq 1$ and unary algebraic functions $\propto_{0}, \ldots, \propto_{2 n-2}$ over $C \mathcal{s u c h}$ that
$\left.x=\alpha_{0} a\right)$
$\left.\begin{array}{l}\alpha_{2 i}(b)=\alpha_{2 i+1}(b) \\ \alpha_{2 i+1}(a)=\alpha_{2 i+2}(a)\end{array}\right\}$ for $0 \leq i \leq n-2$
$y=\alpha_{2 n-2}(b)$.
Proof. The equivalence (1) \Rightarrow (2) follows directly from Lemma $1(b)$ and Lemma $2(a)$; the equivalence (1) $\Longleftrightarrow(3$. (the original Grätzer's result, see [2; p. 342]) is a consequence of Lemma $1(a)$ and Lemma $2(b)$.

Remark 1. Lemma 2 gives rise to a problem: under which conditions does $T(a, b)=R(a, b) \circ R(b, a)$ follow? The subsequent Theorem 2 gives a solution for varieties of algebras in the form of polynomial conditions.

Theorem 2. Let V be a variety. The following conditions are equivalent:
(1) For each $\quad \pi \in V$ and every two elements a, b of $C l$, $T(a, b)=R(a, b) \circ R(b, a) ;$
(2) For every pair of n-ary polynomials s, t and of $(n+1)$-ary polynomials p, q there exists an $(n+2)$-ary polynomial r such that: if $p\left(t\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)=$ $=q\left(t\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$ then $p\left(s\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)=r\left(s\left(x_{1}, \ldots, x_{n}\right), t\left(x_{1}, \ldots, x_{n}\right)\right.$, $\left.x_{1}, \ldots, x_{n}\right)$

$$
\begin{aligned}
q\left(s\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)= & r\left(t\left(x_{1}, \ldots, x_{n}\right), s\left(x_{1}, \ldots, x_{n}\right),\right. \\
& \left.x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Proof. Clearly $T(a, b) \subseteq R(a, b) \circ R(b, a)$ for every algeb~ ra \mathcal{C} and each a, b of \mathscr{C}. Hence, we shall proceed only to prove the equivalence of (2) with the converse inclusion:
$(1) \Longrightarrow(2)$. Let $c \pi=F_{n}\left(x_{1}, \ldots, x_{n}\right)$ be the free algebra in V with free generators x_{1}, \ldots, x_{n} and let a, b be elements of C. Then there exist n-ary polynomials s, t with $a=$ $=s\left(x_{1}, \ldots, x_{n}\right), b=t\left(x_{1}, \ldots, x_{n}\right)$. Suppose $\left.\ c, d\right\rangle \in R(a, b) \circ R(b, a)$. By Lemma $I(a)$, there exist $(k+1)$-ary polynomials p, q of V such that
$c=p\left(a, u_{1}, \ldots, u_{k}\right)$
$p\left(b, u_{1}, \ldots, u_{k}\right)=q\left(b, v_{1}, \ldots, v_{k}\right)$
$d=q\left(a, v_{1}, \ldots, v_{k}\right)$.
Since $C K=F_{n}\left(x_{1}, \ldots, x_{n}\right)$, we can suppose $k=n$ and $v_{i}=u_{i}=$ $=x_{i}$ for $l \leqslant i \leqslant n$, i.e. we get
$c=p\left(s\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$
$p\left(t\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)=q\left(t\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$
$d=q\left(s\left(x_{1}, \ldots, x_{n}\right), x_{1}, \ldots, x_{n}\right)$.
Further, $\langle c, d\rangle \in T(a, b)$ yields (see Lemma $L(b))$ the existence of a binary algebraic function ρ over $(\mathcal{H}$ with
$c=\rho(a, b), d=\rho(b, a)$.
Consequently, there exists an $(n+2)$-ary polynomial r of V such that $\rho\left(w_{1}, w_{2}\right)=r\left(w_{1}, w_{2}, x_{1}, \ldots, x_{n}\right)$ and, by replacing a, b, c, d by these polynomials, condition (2) immediately follows.
(2): $\because=(1)$. Let M, V, a, b, c, d be elements of K and $\langle c, d\rangle \in R(a, b) \circ R(b, a)$. Then $\langle c, e\rangle \in R(a, b)$ and $\langle e, d\rangle \in R(b, a\rangle$ for some element e of $\mathcal{H}, i . e .$, by Lemma $l(a)$, there exist
polynomials p, q of $C \mathcal{w i t h}$

$$
\begin{aligned}
c & =p\left(a, z_{1}, \ldots, z_{k}\right) \\
e & =p\left(b, z_{1}, \ldots, z_{k}\right)=q\left(b, v_{1}, \ldots, v_{m}\right) \\
d & =q\left(a, v_{1}, \ldots, v_{m}\right) .
\end{aligned}
$$

By applying the hypothesis, we get an (n +2)-ary polynomial r of V such that $n=k+m+2$ and $p\left(a, z_{1}, \ldots, z_{k}\right)=r\left(a, b, a, b, z_{1}, \ldots, z_{k}, v_{1}, \ldots, v_{m}\right)$ $q\left(a, v_{1}, \ldots, \nabla_{k}\right)=r\left(b, a, a, b, z_{1}, \ldots, z_{k}, \nabla_{1}, \ldots, v_{m}\right)$. By Lemma $1(b)$, we conclude $\langle c, d\rangle \in T(a, b)$.

Remark 2. Although the condition (2) from Theorem 2 looks rather hard to be satisfied, it does hold in every permutable variety. This follows directly from the well-known fact that congruences, tolerances and compatible diagonal relations coincide on any algebra in a permutable variety, see [12], $[4]$ and also the following Theorem 3.

2. Einitely generated compatible diagonal relations and

 n-permutable varieties. Several important characterizations of n-permutable varieties ($n>1$) were derived by J. Hagemann and A. Mitschke. Making full use of their results, see [4] or [3], we get the following description of n-permutable varieties in terms of finitely generated relations.Theorem 3. Let $n \geq 1$ be an integer. Then for any variety ∇ the following conditions are equivalent:
(1) V has ($n+1$)-permutable congruences;
(2) For every $c \in V$ and each two elements a, b of u, $\theta(a, b)=R(a, b \underbrace{b \ldots o R(a, b) .}_{n-t i m e s}$

Proof. (1) $\Longrightarrow(2)$. The inclusion $\theta(a, b \backslash \geq R(a, b) \circ \ldots$ $\ldots \circ R(a, b)$ is clear. Prove the converse inclusion. By [4], ($n+1$)-permutability of V implies $R^{-1} \subseteq \underbrace{R \circ \ldots \circ R}_{n-t i m e s}$ and $\underbrace{R \ldots \ldots \circ R} \subseteq R^{R c \ldots c}$ for every comparible diagonal rela($n+1$)-times n-times tion R on $C \tau \in V$. Hence $\underbrace{R e \ldots o R}$ is a congruence relation n-times
on U. In particular, $R(a, b) \circ \ldots \circ R(a, b)$ is a congruence

> n-times
on $u t$ collapsing the pair $\langle a, b\rangle$ thus $\theta(a, b)=$

$(2) \Longrightarrow(1)$. Let $F_{2}(x, y)$ be the free algebra of V with free generators x, y. By hypothesis, $\langle x, y\rangle \in Q(y, x)=$ $=R(y, x) \circ \ldots \underbrace{}_{n-t} \cdot(y, x)$ holds, i.e. there are elements $a_{1}, \ldots, a_{n+1} \in F_{2}(x, y)$ such that $x=a_{1}, y=a_{n+1}$ and $\left\langle a_{i}, a_{i+1}\right\rangle \in R(y, x)$ for $1 \leq i \leq n$. So, by Lemma $l(a)$, there exist unary algebraic functions $\mathscr{G}_{1}, \ldots, \mathscr{F}_{n}$ over $F_{2}(x, y)$ satisfying $\left\langle a_{i}, a_{i+1}\right\rangle=\left(\varsigma_{i} \times \mathcal{G}_{i}\right)(\langle y, x\rangle)$ for $1 \leq i \leq n$. Writing this separately in each variable, we get

$$
\begin{aligned}
& x=\mathscr{G}_{i}(y) \\
& \mathscr{G}_{i}(x)=\mathscr{Y}_{i+1}(y) \text { for } 1 \leqslant 1<n \\
& y=\mathscr{G}_{n}(x) .
\end{aligned}
$$

Since $\mathscr{S}_{2}, \ldots, \mathcal{G}_{n}$ are algebraic functions over $F_{2}(x, y)$, there exist ternary polynomiasl q_{1}, \ldots, q_{n} of with $g_{i}(t)=$ $=q_{1}(x, t, y), 1 \leq i \leq n$, and

$$
x=q_{1}(x, y, y)
$$

$$
q_{i}(x, x, y)=q_{i+1}(x, y, y) \text { for } 1 \leqslant 1<n
$$

$$
y=q_{n}(x, x, y) ;
$$

1.e. we have the Mal cev condition for ($n+1$)-permutable varieties, see [4] or [3], which completes the proof.

By a quasiorder on an algebra C is meant a compatible diagonal relation on $C T$ which is also transitive. Clearly, also all quasiorders on Ch form a complete lattice with respect to the inclusion, see e.g. [5], thus there exists the least one quasiorder on \mathcal{C} containing the pair $\langle a, b\rangle$ of elements of $(7$, ; it will be denoted by $Q(a, b)$. Similarly the symbol $Q\left(\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)$ denotes the least quasiorder on \mathcal{C} containing the pairs $\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle$. It is easily seen that $Q(a, b)=\bigcup_{L<\omega}^{\cup} R(\underbrace{a, b) 0 \ldots 0 R(a, b)}_{n \text {-times }}(=$ the transitive hull of $R(a, b)$ and so, forming the countable disjunctions of equivalent conditions from Theorem 3, we immediately get:

Corollary 1. For a variety V, the following conditions are equivalent:
(1) V is $(n+1)$-permutable for some integer $n \geq 1$;
(2) $\theta(a, b)=Q(a, b)$ for any $a, b \in U \in V$.

Following [6], an algebra $C(i s$ called Principal Tolerence Trivial (briefly: PTT) if $\theta(a, b)=T(a, b)$ for each a, b of Cl .

A variety V is PTT if each $C \mathcal{C} \in V$ has this property. Notice that the PTT varieties form a very important class of varieties because it contains:
(i) all permutable varieties, see [12];
(ii) the variety of all distributive lattices, see [7];
(iii) all varieties of p-algebras, see [9].

The PTT-property is essentially used in the following
Corollary 2 . Let $n \geq 1$ be an integer. Then for any variety V the following conditions are equivalent:
(1) V is PTT and $(n+1)$-permutable;
(2) For each $\mathcal{C} \in V$ and every a, b of $C M$,

$$
T(a, b)=R(\underbrace{a, b) \circ \ldots \circ R(a, b) .}_{n \text {-times }}
$$

Proof. (1) $\Rightarrow(2)$. By Theorem 3, $\theta(a, b)=$ $=R(\underbrace{a, b) \circ \ldots \circ R(a, b) .}_{n-t i \text { mes }}$
Since V is PTT, we have $\theta(a, b)=T(a, b)$ proving (2).
$(2) \Rightarrow(1)$. Take $C \mathcal{L}=F_{2}(x, y) \in V$. Since the tolerance $T(y, x)$ is symmetric, we have $\langle x, y\rangle \in T(y, x)$ and thus, by hypothesis, $\langle x, y\rangle \in R(y, x) \circ \ldots \cdot R(y, x)$. However, as was snown in the proof of Theorem 3, this condition implies the ($n+1$)permutability of V .

Further, by Theorem 3, the ($n+1$)-permutability of V implies $\theta(a, b)=R(\underbrace{a}_{n-t i m e s} \underbrace{}_{n} \circ \ldots \circ R(a, b)$ for every $a, b \in C \in V$. Combining this equality with (2), we get $\theta(a, b)=T(a, b)$, i.e. V is PTT and the proof is complete.

Remark 3. The Principal Tolerance Triviality and the n-permutability ($n \geq 3$) are independent conditions:
(1) As was noted above, the variety \mathbb{D} of distributive lattices is PTT; however, \mathbb{D} is not n-permutable for any $\mathrm{n} \geq 2$; see, e.g. [13, p. 79].
(2) The variety I of implication algebras, see [1]; is 3-permutable; this is shown in [4], [11] or [3; p. 356]. It remains to prove that \mathbb{I} is not PTT: Take the free algebra $F_{2}(a, b) \in I$ with two free generators a, b. Let us recall, see [1], that this algebra is the grupoid $\langle\{1, a, b, a b, b a,(a b) b\}, \cdot\rangle$ with the following operationsl table:

\cdot	1	a	b	$a b$	$b a$	$(a b) b$
1	1	a	b	$a b$	$b a$	$(a b) b$
a	1	1	$a b$	$a b$	1	1
b	1	$b a$	1	1	$b a$	1
$a b$	1	a	$(a b) b$	1	$b a$	$(a b) b$
$b a$	1	$(a b) b$	b	$a b$	1	$(a b) b$
$(a b) b$	1	$b a$	$a b$	$a b$	$b a$	1.

Further, it is well-known, see [1], [11], that any implication algebra $\langle I, \cdot\rangle \in \mathbb{I}$ may be expressed as a join semilatice $\langle I, \vee\rangle$ where $a \vee b:=(a b) b$ and, conversely, $a b=(a \vee b)_{b}^{\prime}(=$ the complement of $a \vee b$ in the principel filter (b) of $\langle I, V\rangle$). In particular, the following diagrem corresponds to the above mentioned implication algebra $P_{2}(a, b)$:

Now, consider the tolerance $T(a, a b)$ on $P_{2}(a, b)$. We ha∇

$$
\begin{aligned}
\langle a, d\rangle \in T(a, a b) \text { since }\langle a, 1\rangle=\langle a b, a\rangle\langle a, a\rangle ; \\
\begin{aligned}
&\langle 1, b\rangle \in T(a, a b) \text { since }\langle a b, b a\rangle=\langle(a b) b,(a b) b\rangle\langle a b, a\rangle, \\
&\langle(a b) b, b\rangle=\langle a b, b a\rangle\langle b, b\rangle, \\
&\langle 1, b\rangle=\langle a, 1\rangle\langle(a b) b, b\rangle .
\end{aligned} \\
\text { Suppose } T(a, a b)=\theta(a, a b) . \text { Then }\langle a, 1\rangle,\langle 1, b\rangle \in T(a, a b)= \\
=\theta(a, a b) \text { implies }\langle a, b\rangle \in \theta(a, a b), \text { 1.e. we get }\langle a, b\rangle \epsilon
\end{aligned}
$$

3. Some characterizations of congruence permutability. As was noted above, the relational equality $\theta(a, b)=T(a, b)$, i.e. the PTY property, is a weaker condition than the permutability of congruences in a variety of algebras. Nevertheless, for two (and more) generating pairs of elements the following Theorem holds:

Theorem 4. For a variety V, the following conditions are equivalent:
(1) V has permutable congruences;
(2) $\theta(\langle a, b\rangle,\langle b, c\rangle)=T(\langle a, b\rangle,\langle b, c\rangle)$ for each $(q \in V$ and every a, b, c of $(c$;
(3) $Q(\langle a, b\rangle,\langle b, c\rangle)=R(\langle a, b\rangle,\langle b, c\rangle)$ for each $u \in V$ and every a, b, c of $U l$.

Proof. $\quad(1) \Rightarrow(2)$ and $(1) \Rightarrow$ (3) follow directly from
H. Werner's Theorem, see [12].
$(2) \Longrightarrow(1)$. Consider the equality $\theta\left(\langle x, y\rangle,\left\langle y, z^{\prime} j\right)=\right.$ $=T(\langle x, y\rangle,\langle y, z\rangle)$ on the free algebra $F_{3}(x, y, z)$ in V. By the tranaitivity of conpruences, we get $\langle x, z\rangle \in T\left(\langle x, y\rangle,\left\langle y, z_{i}\right)\right.$
and thus, by Lemma $1(b)$, there is a 4-ary algebraic function 5 such that $\langle x, z\rangle=(\sigma \times \sigma)(\langle x, y\rangle,\langle y, z\rangle,\langle y, x\rangle,\langle z, y\rangle)$, i.e. $x=\tilde{\delta}(x, y, y, z)$ and $z=\sigma(y, z, x, y)$. Since $\bar{\sigma}$ is an algebraic function over the free algebra $F_{3}(x, y, z)$, we get a 7-ary polynomial s of V with

$$
\begin{aligned}
& x=s(x, y, y, z, x, y, z) \\
& z=s(y, z, x, y, x, y, z)
\end{aligned}
$$

But $p(x, y, z):=s(x, z, y, y, x, y, z)$ is the well-known Mal cev polynomial $(x=p(x, z, z), z=p(x, x, z)$, see [10]), provirg the permutability of congruences.
$(3) \Rightarrow(1)$. Analogously, the equality $Q(\langle x, y\rangle,\langle y, z\rangle)=$ $=R(\langle x, y\rangle,\langle y, z\rangle)$ on the free algebra $F_{3}(x, y, z)$ yields $\langle x, z\rangle \in R(\langle x, y\rangle,\langle y, z\rangle)$, and so $\langle x, z\rangle=(\tau \lambda \tau)(\langle x, y\rangle,\langle y, z\rangle)$ for some binary algebraic function τ over $F_{3}(x, y, z)$. So we have a 5-ary polynomial t of V with

$$
\begin{aligned}
& x=t(x, y, x, y, z) \\
& z=t(y, z, x, y, z)
\end{aligned}
$$

Putting $p(x, y, z):=t(x, z, x, y, z)$, we again obtain the Mal'cev polynomial and (1) is thus proved.

Remark 4. The original strong Mal'cev condition characterizing permutable varieties, see ${ }^{\top} 10^{-}$, is very simple and useful for proving purposes if a given variety is permatable. However, if we proceed to prove the contrary, this condition is not too convenient. More suitable conditions for such a case are those of the foregoing Theorem 4.

References
[1] J.C. ABBOTT: Semi-boolean algebra, Mat. Vestnik 4(19) (1y67), 177-198.
[2] G. GRÄTZER: Two Mal'cev-type theorems in universal algebra, J. Combinatorial Theory 8(1970), 334-342.
[3] G. GRÂTZER: Universal Algebra, Second Expanded Edition, Springer-Verlag, Berlin, Heidelberg and New York, 1979.
[4] J. HAGEMANN and A. MITSCHKE: On n-permutable congruences, Algebra Universalis 3(1973), 8-12.
[5] I. CHAJDA: Lattices of compatible relations, Archivum Math. (Brno) 13(1977), 89-96.
[6] I. CHAJDA: Recent results and trends in tolerances on algebras and varieties, Colloq. Math. (Szeged), Vol. 28, Finite algebras and multiple-valued logic, (1981), 69-95.
[7] I. CHAJDA and B. ZELINKA: Minimal compatible tolerances on lattices, Czech. Math. J. 27(1977), 452-459.
[8] J. JEŻEK: Universal Algebra and Model Theory (in Czech), SNTL, Praha 1976.
[9] T. KATRIŇÁK: Congruence lattices of distributive p-algebras, Algebra Universalis 7(1977), 265-271.
[10] A.I. MAL'CEV : On the general theory of algebraic systems (in Russian), Math. Sbornik N.S. 35(77) (1954), 3-20.
[11] A. MITSCHKE: Implication algebras are 3-permutable and 3-distributive, Algebra Universalis 1(1971), 182-186.
[12] H. WERNER: A Mal cev condition for admissible relations, Algebra Universalis 3(1973), 263.
[13] R. WILLE: Kongruenzklassengeometrien, Lecture Notes in Mathematics No. 113, Springer-Verlag, Berlin,1970.

75000 Přerov	61600 Brno 16
Tř1da LM 22	Kroftova 21
Ceskoslovensko	Československo

(Oblatum 3.4. 1981)

