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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,1 (1982) 

ON MAXIMAL MATCH1NGS IN Q6 AND A CONJECTURE 
OF R. FORCADE 

Ivan HAVEL and Mirko KRIVANEK 

Abstract: It is proved that every maximal matching in the 
cube Qg contains at least 24 edges. This fact disproves a con­
jecture by R. Forcade. The same result has been published by 
J.M. Laborde ([3]), who disproved the conjecture using a com­
puter. Our proof is independent and does not use a computer. 

Key word8: n-dimensional cube, maximal matching. 

AMS: 05C70, 05C75 Ref. 2.: 8.83 

1. Introduction. In [l] a conjecture concerning the number 

of edges of the smallest maximal matching in the graph of the 

n-dimensional cube Qn is formulated.According to the conjecture, 

there should exist a maximal matching in Qg containing 23 edges. 

In this paper, which is a modified version of [2] , we prove that 

any maximal matching in Qg contains at least 24 edges; this fact 

disproves Forcade 's conjecture. The same assertion was among 

other results published in [3] ; the author announced in [3] that 

he had disproved Forcade's conjecture using a computer. The 

results contained in [2! were obtained independently of (3] and 

without help of a computer. We believe therefore that they 

could be of interest especially from the point of view 

of further progress in solving the difficult problem of obtain-
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ing better estimates or determining the card inal i ty of the small­

e s t maximal matching in Qn# 

2. Def in i t ions . Statement of r e s u l t s . We deal with f i n i t e 

undirected graphs without loops and multip le edges. I f G = (V(G), 

E(G)) i s such a graph, then M ̂ E(G) i s ca l led a matching in G, 

i f no two edges of M are adjacent. A matching M i s a maximal 

matching in G, i f M£M* holds for no matching M'in G. 

For U^V (G) we put NQ( U ) = (vc-V(G); J\x(z IT such that 

(u fv)€ E(G)} and write frequently N( U) instead of NQ( U ) and 

N(u) instead of N ( { u | ) . 

An n-dimensional cube (^ i s a graph (^ = (V(Qn)f E(Qn)), where 

7(Qn> " /< V - ' V * «i^{Ofl]t i s !>•••>*}» E(Qn) = { < u , v ) ; 

u,veV (Q n ) f u and v d i f f e r in exactly one coord inate) . Clearly, 

QJJ i s a b ipart i te graph for any n. 

Define further V 0 ^ ) = ^u = ( u l f . . . f u^) c- V(Qn); £ u ; = Kmod 2 ) ) , 

y 6 ( Q n ) = V ( Q n ) • v C r ( Q n ) # V e aa* t h a t u» v eV<Qn> a r « of t h e *m<* 
par i ty , i f e i ther ^u f v} £ V°'(Qn) or (u ,v ) £ Ve(Qn). Put 0 = 1, 

1 = 0 and for U6V(Qn), u = (u- , , . . . ,*^) put u = ( U p . . . , ^ ) . 

Let m(Qn) = minj|Mlf M i s a maximal matching in Q ^ . The 

following assert ions are proved in [ l ] : 

Assertion 1 . P o r n > l , mCOn^) ^ 2m(Qn). 

Assertion 2 . Por n>/l, m(Qn) > 2 n .n / (3n - 1 ) . 

Assertion 3. lim m (Q_)/2n *- 1/3. 

The following conjecture is also stated in /lj: 

Conjecture* Por n >, 1, m ^ ) =3 2n.n/(3n - 1)C. 

It follows from the trivial identity m(Q»») = 3 via Assertion 1 

that m(Qg) £ 24, whereas Assertion 2 gives m(Qg) ̂  23.According 

to the conjecture there should be m(Qg) s 23; our intention 
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is to prove m(Qg) = 24* 

For any matching M in ^ we define "the set X(M) of odd 

vertices not belonging to M" as follows: 

X(M) = £ueV°(Q n); u is an end-vertex of no edge of Mj. 

Theorem 1. If M is a maximal matching in Qn, then 

(1) |X(M)I = 2 n -1 - IMI, 

(2) |N(X(M)| < IMI, 

(3) u€Ve(Qn)=>N(u) r»(V
cr(Qn) - X(M)) * 0, 

(4) u,v6V e(Q n), u 4 v, lN(u)nX(M)l = lN(v) n X(M)I = 

= n - l=£N(u) - X(M) f N(v) - X(M)0 

Proof. (1) Obviously \"Vcr(Qn)\-- l"v*
e<Qxl)f = 211""1 holds and 

further, the end-vertices of any edge in Qn are not of the same 

parity. Since no two edges of M are adjacent,(1) follows* 

(2) Let U€X(M)t(u,v)6E(0n)•Suppose v to b*< an end-vertex <f 

no edge of M; then Mu|(u,v)} is again a matching which a> ntrg-

dicts the maximality of M. Hence u€X(M), v&N(u)~^=i> v is an 

end-vertex of an edge of M, and (2) follows immediatelyo 

(3) can be proved similarly - it follows from N(u) ;.-=- X(M) 

for some u eVe(Qn) that M cannot be maximal - if we choose an 

arbitrary vfc'N(u), then Mu [(u,v)} is again a matching. 

(4) Let N(u) - X(M) = ju'^N(v) . X(M) = { v'j** the edges 

(u,u'), (v,v') belong to M and therefore u' £ v', q.e.d. 

The following theorem disproves the conjecture from [ljo 

Theorem 2* For any maximal matching M in Qg , |Ml>>24. 

Proof. Let M be a maximal matching in Q^; according to 

Assertion 2, I Ml > 23* Assume IMI = 23. Then we obtain for 

X(M) according to Theorem 1 that IX(M)I = 9 and (2) - (4) of 

Theorem 1 hold as well. However, we shall show in Theorem 3 

that this is impossible. 

Theorem 3. Let X g V ^ Q g ) , Ixl = 9. 
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Then either 

(1) |N(X)I > 23, or 

(2) there is u€V*(Q6) such that N(u) £ Xf or 

(3) there are u ^ s V ^ Q g ) such that u * v, |N(u)nXl * !N(v)nXl « 

« 5 and N(u) - X « N(v) - X. 

Proof of Theorem 3 is given in Part 3 of this paper. 

3» The proof of Theorem 3. The proof essentially utilizes 

a well-known fact that Qg is a Cartesian produet of Q4 and Q2* 

Let us denote 

A * |(ulfu2fu3,u4fOfOJ; (ulfu2fu3,u4)cr V(Q4)}f 

B » [(ulfu2fu3fu4flf0); (ulfu2fu3,u4)e V(Q4)|, 

C * {(u1#u2,u3,u4,0,l); (u1,u2,u3,u4)£V(Q4)]l 

D « { ( u l f u 2 f u 3 f u 4 , l f l } ; ( u l f u 2 f u 3 f u 4 ) € V(Q4)}. 

Then obviously V(Qg) * AuBuCuD and Ul = )Bl « /Cl * iDl « 

= 16; the subgraphs of Qg induced by any one of the sets A,B,C,D 

are isomorphic to Q4 and there are exactly 16 vertex-disjoint 

c ircuits of the length 4 in Q6, such that each of them contains 

exactly one vertex of each of the sets A,B,C and D. Let us de­

note th i s set of 16 c ircuits by 15 • The sets of vertices 

A,B,C,D are joined in Qg only by edges belonging to c ircui ts 

of L ( e .g . there are 16 edges joining A with B, no edge 

between A and D, e t c . ) . 

For ueV(Qg), u = (u l f u 2 l u 3 f u 4 f u,- f u 6 ) put 7Z(u) » u-^.23 + * 

+ u 2 .2 2 + Uy2 + u4; obviously It maps V(Qg) onto [o ,15] • For 

U £ V(Q6) put nr(U) = (^(u); \xev}. If i £ [0 ,15] , denote by 

a 1 ( b l f c i , d i ) the vertex of A (BfC,Df respectively) with 

7z(a*) = i and put al - a 1 5 - i » (The f i r s t four coordinates of 
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ai are complements of those of a.^; the fifth and sixth coordinates 

of a^ and &^ coincide). Define similarly b.,, c^, d^ for 

ie [0,15]. 

Let us no t i ce t h a t the following ho lds : for i , j f c { 0 , 1 5 ] , 

(a±>&^)e E(Q6)£=4 ( b i , b ^ ) € E ( Q 6 ) .*=-> (c.pC.j)* E(Q6) ^ > ( d t , d ^ ) € E(Q6). 

From t h i s we have e . g . 7£(Nn ( a . ) A A) = 7f(Nn ( b 4 ) n B ) = 
Q6 1 ^6 

= . . . = ?t(Nn ( d J r t D ) . Similar r e l a t i o n s , which e a s i l y follow 
^6 

from the s t r u c t u r e of Q6 and i t s decomposition i n to four Q4 

joined toge ther by 16 c i r c u i t s , w i l l be used in the sequel wi th ­

out spec ia l r e f e r e n c e s . 

The next lemma (with an obvious proof) desc r ibes some s t r u c t u r ­

a l p r o p e r t i e s of \ ^ . 

Lemma 1 . (1) For any u e V 0 ^ ) ( V ^ Q ^ ) there i s j u s t one 

v £ V (y(Q.)(Ve(Q4), r e spec t i ve ly ) such t h a t NQ ( u M N Q (v) = 0 . 
w 4 w 4 

(2) For 0 -£ t ̂ =8 define y>(t) by the following table: 

t 1 |0 1 2 3 4 5 6 7 8 

y(t)J 0 4 6 7 7 8 8 8 8 

Then for any U ^ V°(Q4)(V
e(Q4), respectively), lNQ (U)| >,f{ lUl )• 

4 ' 
If 0 = t * 8 , then there is Ut £ V

cr(Q4)(V
e(Q4), respectively) 

such that lutl = t and lNQ (Ut)l = c/>(|Ut|}. 

Notation. In the sequel we shall denote by X always a sub­

set of V°(Q6) consisting of 9 elements, i.e. X Q V°"(Q6)t 

IXI = 9. For U Q V(Q.), N(U) denotes Nn (U). 
Q 6 

Let X £ V°(Q6), Ixl = 9. A c h a r a c t e r i s t i c vector V(X) of 

X i s a vec tor of 9 components, \ (X) = ( r - , , . . . , ^ ) , where 

• r-L = lx iAl , r 2 = | X ' . B l , r 3 = | X n C ) , r 4 = IXnDl , r 5 = /N(X)r.Al f 
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rg = |N(X)oB|, r? = IN(X) rtCl, r8 = |N(X)n.DI and rg = !N(X)I . 

The set of all characteristic vectors is denoted by R, hence 

R = |/(X); X £ V°(Q6)f IXI = 9}. 

For r€R, r = (r.,,...,r9) the following relations obviously 

hold: 

(a) vt £ 8, i = 1,...,8, 

(b) rx + r2 * r3 • r4 = 9, 

(c) r5 * r6 • r? • r8 = r9. 

Taking into account the obvious automorphisms of Qn and (1) 

of Theorem 3* we conclude that in order to prove Theorem 3 it 

suffices to show that (2) or (3) of Theorem 3 holds for any X 

such that r = JC (X)t R, where r meets all the following con­

ditions (d) - (j): 

(d) T^>/ max (r2,r3,r4), 

(e) if r-̂  = r4, then r5 >/ rQ, 

(f) if r-̂  = r2, then r3 ̂  r4, 

(g) r2 >/ r3, 

(h) if r2 = r3, then r6 >/ r7, 

(i) r9 £ 23. 

Let RQ be the set of vectors from R fulfilling conditions 

(d) - (i); it is easy to see that for re RQ the following con­

dition holds as well: 

(J) r5 ^ y^(r1)# r 6^ max(y (r2), r1), r?> max( y (r3),r1), 

rQ ̂  max ( f(r4), max(r2,r3)), 

y' being defined in Lemma 1. The validity of (j) follows from 

an obvious identity M(X)nA = N(Xn A) r\ A uN(X r>B) a A oN(XnC) n A 
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and the similar ones for N(X)nB, N(X) o C and N(X)nD. 

Let B be the set of vectors (r^,...,^) whose components 

are nonnegative integers such that (a) - (j) hold* R is 

easy to construct by an elementary combinatorial argument; 

Rx = { j^,..., f 22}$ where j^,*.-, f-^ are listed below. 

j>< 7 1 1 0 8 7 7 1 23 

yL 6 2 1 0 8 6 6 2 22 

/ i 6 2 1 0 8 7 6 2 23 

f% 6 2 1 0 8 6 7 2 23 

fy 6 2 1 0 8 6 6 3 23 

f* 5 3 1 0 8 7 5 3 23 

^ 5 2 2 0 8 6 6 2 22 

fif 5 2 2 0 8 7 6 2 23 

^ 5 2 2 0 8 6 6 3 23 

ffc 5 2 1 1 8 6 5 4 23 

/ v 4 4 1 0 7 7 4 4 22' 

^ 4 4 1 0 8 7 4 4 23 

?,-i 4 4 1 0 7 8 4 4 23 

y /y 4 4 1 0 7 7 5 4 23 

^ - 4 4 1 0 7 7 4 5 23 

/ ^ 4 3 2 0 7 7 6 3 23 

/ „ 4 3 1 1 7 7 4 4 22 

f44 4 3 1 1 8 7 4 4 23 

yh 4 3 1 1 7 8 4 4 23 

/ i t 4 3 1 1 7 7 5 4 23 

^ , 4 3 1 1 7 7 4 5 23 

^ 4 2 2 1 7 6 6 4 23 

yu 4 2 1 2 7 6 4 6 23 

„ 4 1 1 3 7 4 4 7 22 
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A»- 4 1 1 3 8 4 4 7 23 

Pic 4 1 1 3 7 5 4 7 23 

/ i j . 4 1 1 3 7 4 4 8 23 

fi2 4 1 0 4 7 4 4 7 22 

A* 4 1 0 4 8 4 4 7 23 

P30 4 1 0 4 7 5 4 7 23 

&t 4 1 0 4 7 4 5 7 23 

Obviously RQ £ Rx; as the next step in the proof, the e l e ­

ments of RQ w i l l be found. But f i r s t we prove some auxi l iary 

statements. 

tea-ma 2 . Let jCU) « r e R x , r = ( r - , , . . . , ^ ) . 

(a) I f r x = 4 and r.. = 7, then N(a±) r)A = XnA for some 

i € [ 0 , 1 5 ] . 

(b) I f r 2 ^ 1 and r^ = ^ or r . ^ 1 and r« = r-,, then 

N ( a i ) n A ^ XnA for some i £ { p , 1 5 ] « 

Proof, (a) From r x = 4 and r . - 7 we have iN(XnA) nAl = 7. 

As N(XftA)nA £ ^(Qg) nA and IV^CQg) nAl = 8, a j £ (V e(Q6)nA) -

- (N(XnA)nA) for some j 6 (0,15],. Further, N ( a J n ( X n A ) = 0 

and i f we put a^ = a.,, then N(a.,) nA = XnA. 

(b) Assume b , 6 X n B for some j e [o,15] and at the same time 

l e t N ( b J nB £ N(XnA)nB not hold . Then we should have 

!N(X)ABl > | x t ) A | , hence rg > r-̂  . Therefore, r 2 ^ l and rg = r-̂  

imply that b±€ XnB for some i e [0,15] and N (b i )n B £ N (XnA)nB. 

Hence e a s i l y N f a ^ n A - XOA. Similarly, such an i i s to be found 

also in the case r-> > 1, r^ = r-,. 

Remark, (a) of Lemma 2 w i l l be used below also for s e t s 

B,C,D; e .g . i f r g = 4, r 6 = 7, then N f b ^ B = XnB for some 

i<? [0,15J etc. 
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In the sequel we s h a l l always deno te by k (X being f ixed) 

the number of c i r c u i t s from (5 , which have a ve r t ex in common 

with both XflB and XftC. 

Lemma 3 . Let TT<X) = r € R x » r^ = 0 . Then k = r 2 + r-. - r Q . 

Proof. Prom r 4 = 0 we have N(X)ft D = (N(XA B)n D) V (N(X/| On D), 

t hus lN(XnD)| = |N(Xf>B)nD| • | N ( X < I O A . D | - |(N(XnB) AB)i1 

A (N(XAC) A D)| , there fo re r 8
 s r« + r - - k, q . e . d . 

-aa-m^. R0 £ i ?<> ?.., ?», ?*, ?» , ft, ?<0> $>„. f „t> 

<?«> ?1»i ?Z<> ? " , ? U , S>M, $Z-?}. 
Proof. The proof will proceed in several steps. 

(a) none of the vectors fy9 $̂r; 9$, ffyy belongs to RQ. Sup­

pose on the contrary v (X) € {fy, 0^f fyf Pf*? for some X. 

According to Lemma 3, in these cases the number k of circuits 

from p having a vertex in common with both XflB and XOC is 

given by k = r2 + r3 - rQ. Further, the following holds: 

(a.l) k = r2 x=$ r6 = r? (since k = r2 s£ k = r3fhence 3F(XftB) = 

= 3T(XAC), 5T(N(X)nB) = 3T(N(X)/|C) and r6 = r ?). 

(a .2 ) k = r 3 wt>r7 & r 6 ( s ince k = r 3 e * 3T*(XnC) £ 3r(Xr>B), 

hence S W x ) r t O £ W ( X ) l ) B ) and r ? & r g ) . 

( a .3 ) k < r ^ , r-» = r-^ « ^ ^ ^ r 2 * ^ - r 6 (s ince fo r some 

j € [0 ,15] c , €XAC, b j ^ X n B ; from r ? = r^ we have 

N(c,)H C £ N(XA A)AC, hence N ( b . ) n B £ N(Xft A)flB and 

N ( J b A u X A B ) £ N(X)rtB, the re fo re ^ ( r 2 + 1) £ r 6 ) . To prove 

(a) no t i ce t ha t r = f*, ff, ff and jpfj. c o n t r a d i c t s ( a . 2 ) , 

( a . 3 ) , ( a . l ) and ( a . 3 ) , r e s p e c t i v e l y . 

(b) none of the vec to r s f t t , fii, flfyftf belongs to RQ. 

Suppose -V (X) € { f f i , ?1*f ?**> fll} f 0 r s o m e Xm I n t h e s e 

cases r , = 4, r-. = 8 and fu r the r e i t h e r r g = 1, r 6 = 4 and 
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Tj c 8 or r^ = l f r „ = 4 and r 6 < 8. F i r s t we d i scuss 

the cases r = p ^ and r = Pz? , when r 2 = 1 and r 6 = 4 . Let X 

be such t h a t ft (x) = r . Then XnB = [b±\ f o r some i < - [ 0 , 1 5 j ; 
r l = r 6 = 4 y l e : x-ds N(XnA)n B = N ( b i ) n B and Xf>A = N(a t ) r> A. 

Thushci ther a^c N(X n A) n A nor a^ eN(X n B) n A; since r-- = 8, 

i t has to be a i € N ( X ) n A, hence c ^ e X n C , N(XnA)n C = N( f t i )n Oc 

C N ( X ) n C , N ( c i ) A C c N(X)r>C, the re fo r e r ? = 8, which i s a 

c o n t r a d i c t i o n . In a s imi la r manner we proceed i f r = f^ or 

r = 5« -
(c) ^ ^ R O # If ^ ( x ) = (4,4,1,0,7,7,5,4,23) for some X, 

then from r-j = 4, r5 = 7 according to Lemma 2(a) we obtain 

that there is i€ [b,15] such that N(ai)o A = XnA. From XnC = 

= {CJJ we should have r̂  = 4 (since r, =5 0), but r^ = 5 ; if 

XnC = (cA for some j 4 i, we should have N(X)nC = 

= N^ ici,c.jP n c» therefore r6 £ 6, which is a contradiction. 

(<-0 \^q j RQ» Assume on the contrary that %(%) = 

= (4,3,1,1,7,8,4,4,23) for some X. From rx = 4, r^ = 7 we ob­

tain according to Lemma 2(a) that N(ai)f|A = XaA for some 

ie [0,15]. Further, from r-, = 1, r™ = 4 we have XnC = ^cA 

and XnD = [d^, where j * [°*--5] , 6^6 N(dj)fl D. rQ = 4 yields 

N(XriB)nD £N(d.)nD; let us show that *b. $N(X)/> B. From 
i\f t\* 

bj€N(XnB)n B it would necessarily follow that b.*, b* would 

have a common neighbour in XnB, which is impossible^ Since 

obviously b^N(XnD)nB = [b,} , it would have to be 
b,€N(XnA)nB, hence a,eN(ai) n A, contradicting di€N(dj). 

<e> i-.ti Ro* L e t on t h e contrary j(x) -(4,3,1,1,7,7,5,4,23) 

for some X. Lemma 2 (a) gives then N(ai)nA = XnA for some 

i€ [0,15]* From r.-, = 5 we have XnC = [c^ (otherwise r« £ 6) 
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and it has to be X n D = [&A for some j € £0,15} such that 

(d i faJ4 E(Q6) (if this were not trtie, we should have |N(X)nc| = 

= 4). Hut then (d^ u (N(dj) n D) c N(X) n D, hence rQ^ 5, which 

is a contraaic 11 J;I . 

(f) ^fc ^ RQ. If on the contrary ^ (X) = (4,1,1,3,7,5,4,7,23) 

for some X, then from r^ = 4 and r~ = 7 according to Lemma 2 (a) 

N(ai)n A = XnA for some i€ [p,15j and since r§ *• 6 and r7 * 4f 

then necessarily X n B = [b^ , XnC = icA and further N(X)n B = 

= N(b i)nBuN(XnD)nB, N(X) n C = N(CjL) n C uN(Xn D) n C, hence 

r6 = r 7 f w n i c n i s a contradiction. 

(g) ^ $ RQ. If on the contrary -^00 = (4,1,1,3,7,4,4,8,23) 

for some X, then N(a.^)nA = XnA for some i£ [0,15] according 

to Lemma 2 (a); the identities r2 = r-* = 1 and rg = r~ = 4 

imply X n B = [b^ , XnC = {c±\, X n D £ N(d1) n D, therefore 

|N(X)n D| £.N(X)n A|, which is a contradiction. 

(h) neither L ^ n o r ^.y. Del°nfi to RQ* Assume on the contrary 

that for some X either A(X) = V^c or ^(X) = {^ . Then r.̂  = 

= r. = 4, r2 = 1, r-, = 0 and r,- = 7. According to Lemma 2 (a) 

N(ai)nA = XnA for some i€ [0,15]. If JT(XnA) = Jr(XnD), 

then r? = 4 and r6 f 5, since N(X) nC = (N(X n A) u N(X nD) )n C 

and further either r^ = 4 or r^ ̂  6 (depending on whether 

XnC = [c^ or XnC 4 {ci^> which is a contradiction. In the 

case Sf(Xnk) 4 JX(XnD) we have r^ > 4 and r«7 4, which again 

is a contradiction. 

From (a) - (h) the desired inclusion follows. It is possible 

to show by constructing suitable sets X that the converse in­

clusion and therefore the equality R = \ Ot ?z 9.^,9$, '"> C^ii 

holds as well. 

Now we proceed to the proof of the main assertion: 
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If tf(X) = r£R Q , then X f u l f i l s (2) or (3 ) of Theorem 3 . 

We f i r s t d i s cu s s separately three cases : 

(1) Let ft (X) = r e l f ? / f y ] , i . e . e i ther r = ( 5 , 2 , 2 , 0 , 8 , 

6 ,6 ,2 ,22) or r = ( 5 , 2 , 2 , 0 , 8 , 6 , 6 , 3 , 2 3 ) . Two p o s s i b i l i t i e s are to 

be considered: ( l . a ) Assume N ( a J n A £ XnA, b±€ Xn B, c . e X D C 

for some i € [ 0 , 1 5 ] . Then, of course, N(a^) £ X and (2) of 

theorem 3 i s f u l f i l l e d , ( l . b ) Let d o a ) not hold; since according 

to Lemma 3 the number k of c i r c u i t s from t s a t i s f i e s k ^ 1, 

then b.^ XnB, c±€ Xn C for some i € U°>15]. But N ( a i ) n A £ Xn A 

does not hold , hence (N (b i )nB) - (N(XoA)nB) i 0 . Prom r-̂  = 5, 

r 6 = 6 we obtain | ( N ( b t ) n B ) - (N(XnA)nB)| = 1 . Since r g = 2, 

l e t je [ 0 , 15 ] be such that j f i and b^c XnB. Prom r 6 = 6 we 

have N (b,)n B c N({b1} u XnA) n B . Further, 3MH{b±] u Xn A)n B) «-

= :Jr(N( [c±\ u XnA)n C) = 3T((N(XnC)uN(XnA))nC), and, s ince 

r-* = 2, a lso c ^ e X n C . Hence k ^ 2, end consequently the case 

( l . b ) cannot occur for r = Cy • Since necessari ly | N ( a i ) n N(a.) o A| '• 

= 2, we obtain (Nta^n N(a .) n (X nA) | = 1 and a* e N(a i ) n N ( a , ) , 

a^ $ Xn A for some Z € [ 0 ,15 j . Further | (N(a i )n A) n (X n A) | = 

= UN(a^) nA) n(Xn A) I = 3 , hence |N(a j [)n X| = |N(aj ) f lX| = 5 

and at the same time (a^ta*), (a.,,ag) £E(Qg); X f u l f i l s (3) of 

Theorem 3 , q .e .d . 

(2) Let j^(X) = r e {<^? / ^^} , i . e . e i ther r = ( 4 , 3 , 1 , 1 , 

7 , 7 , 4 , 4 , 2 2 ) , or r = ( 4 , 3 , 1 , 1 , 7 , 7 , 4 , 5 , 2 3 ) . According to Lemma 

Zfa), N ^ a i ) n A = XnA for some i € [0 ,15 ] ; r^ = 1 and Tj = 4 

necessari ly imply XnC = {c.,} • b ^ XnB would mean N(a i) c X 

and (2) of Theorem 3 would be f u l f i l l e d . Assume therefore 

b ^ X n B , Let XnD * {d^}; j 4 i (because (c±fd±) € E(Q6)). 

I t has to be d , € N ( d i ) - otherwise |N(X)n C I > 5 - and there­

fore also a, e N ( a i ) , a .€ X. Further, | X n B o { b . J | = 4, 

134 



|N(XnB u {b.j] ) n Bl = 7. In a similar manner as in the proof 

of Lemma 2 (a) we can show that N(bg)n B = X n B u {b^l for 

some l e [ 0 , 1 5 ] . I t must be i = j ( I* j would imply 

| N ( X ) n D | ^ 6 , since N (^d , ,dg] )nB £ N ( X ) n D , contrad ict ing 

r 8 € {4 ,5}) . But then |N(X)n D| = 4 and therefore i t i s 

suf f ic ient to consider the case r = (&-;• Then XnB = N ( b . ) n B -

- {b^, therefore lN(ajL)n Xl = |N(b^)n X | = 5; ( a ^ ) , 

( b , , b i ) € E ( Q 6 ) . X f u l f i l s (3 ) of Theorem 3, q .e .d . 

(3 ) Let j^(X) = r = £2& , i . e . r = ( 4 , 1 , 0 , 4 , 7 , 4 , 4 , 7 , 2 2 ) . 

According to Lemma 2 ( a ) , N(a 1 )nA = XnA, N(d , ) o D = XnD 

for some i , j € [ 0 , 1 5 ] . As r 2 = 1 and |N(X)n B| = r g « 4 , we 

have i = j and XnB = [b^ , therefore i N U ^ n x i « | N ( d i ) n X | = 

= 5 and at the same time c i 4 Xf ( a i t c i ) t (c^d^) € E(Qg); X f u l ­

f i l s (3 ) of Theorem 3 , q . e .d . 

The remaining cases are covered by the next two proposi t ions: 

Lemma 5. Let ^ (X) = r 6RQ - ( c ? / j>9 j , r = ( r l f . . . , r 9 ) . 

I f u?(r2 + 1) > r 6 and ip(r.j + 1) > r„ f then N(a t ) c x for 

some i € [0,15] and X f u l f i l s (2) of Theorem 3 . 

Proof. Obviously r meets the assumptions of (a) or (b) 

of Lemma 2; therefore N ( a i ) n A £ X n A for some i £ [ 0 , 1 5 ] . Then, 

however, N ( b t ) n B c N(XnA) n B, hence N({b i }u ( X n B ) ) n B c 

C N(X)nB . From b ^ X i t would fo l low (p(r2 + 1 )£ ^ ( { b ^ u 

U (XnB ) )n B | £ |N(X)n B | = r g , which i s a contradict ion. 

Therefore b^GX, in a s imilar way c ^ X, hence N(a i ) £ X ,q .e .d . 

Lemma 6. Let T W ~ r€RQ - { ^ , 9 ^ $ , r = ( r l f . . . , r 9 ) . 

If r 4 = 0, then N(ajl) c X for some i € [0 ,15] and X f u l f i l s 

(2) of Theorem 3 . 

Proof. Let X be such that T(x) S r€R Q - { c ^ fyj , r .=0 . 

This means r € [\^t ^z, ^3 ^c, £"/Y'^ F'^] a n d i n t n e s e c a s e s 
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k * r^ according to Lemma 3 and f u r t h e r 1 £ k < 3 , r» = 

= max(r l f <p( r . j ) ) . According to Lemma 2, N(a jL)oA £ XnA. Let 

f i r s t r ^ y ^ , then *S = 1 and assume $e \P^^] be such t h a t 

XoC - { c j } . I f N(«-j) n A - X n A f 0, then i # j and a l so 

N(c . )OC - N (Xf)A)ft C H ; t h i s g ives r ? > r± + 1 . From 

N(c j . )nC £ N ( X n A ) n C we obta in r~ >̂ u?(r~> + 1 ) , c o n t r a d i c t i n g 

r™ = max (r-,, W(v^)). 

For r = L7e s ( 4 , 3 , 2 , 0 , 7 , 7 , 6 , 3 , 2 3 ) we proceed as fo l lows: i f 

C j ^ X n C , then |N(X0C u \cA ) n C | = 6 and a t the same time 

IXnCu {c±} I - 3 , con t r ad i c t i ng w(3) = 7 . Hence c±eXf)C and 

since k = r-^, we conclude t h a t b*€ XOB holds as wel l , the re fore 

Nta.^) c X, q . e . d . 

This completes the proof of Theorem 3 . 

R e f e r e n c e s 

[1] FORCADE, R: Smallest Maximal Matchings in the Graph of the 

d-Dimensional Cube, J.Comb.Th.B, 14, 153-156 (1973). 

[2] KfilvXNEK, M.: The s t r u c t u r e of edge-bases in n-dimensional 

cubes, M.Sc.Thesis, Prague (1979). 

[3] LABORDE, J .M. : Une Question d'Algebre du Boole sur l e s 

Fonct ions I r r ^ d u c t i b l e s e t l e Couplage Min-max du 

n-Cube, N° - 260 - Problemes Combinatoires e t Th^orie 

des Grephes, 259-263, Ed i t ions du CNRS, 15, P a r i s , ( 1 9 7 8 ) . 

Matematick^ dstav 5SAV Vttl.IS 

iitnA 25 Loretanske* nam. 3 

115 67 Praha 1 110 00 Praha 1 

Ceskoslovensko Ceskoslovensko 
(Oblstum 10 .7 . 1981) 

- 136 


		webmaster@dml.cz
	2012-04-28T07:51:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




