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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

23,1 (1982)

ON MAXIMAL MATCHINGS IN Qs AND A CONJECTURE
OF R. FORCADE
Ivan HAVEL and Mirko KRIVANEK

Abstract: It is proved that every maximal metching in the
cube Q. conteins at least 24 edges. This fact disproves a con=-

jecture by R. Forcade. The same result has been published by
J.M. Laborde ([3]), who disproved the conjecture using a com-
puter. Our proof is independent and does not use a computer.

Key words: n-dimensional cube, maximal matching.
AMS: 05C70, 05C75 Ref. Z.: 8.83

1. Introduction. In [1] a conjecture concerning the number

of edges of the smallest maximal matching in the graph of the
n-dimensional cube Q is formulated.According to the conjecture,
there should exist a maeximal matching in Q6 containing 23 edges.
In this paper, which is a modified version of [2], we prove that
any maximel matching in Q6 contains at least 24 edges; this fact
disproves Forcade ‘s conjecture. The same assertion was emong
other results published in [}]; the author announced in Eﬂ that
he had disproved Forcade s conjecture using a computer. The
results contained in [2] were obtained independently of [3] an4
without help of a computer. We believe therefore that they

could be of interest especially from the point of view

of further progress in solving the difficult problem of obtain-
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ing better estimates or determining the cardinality of the small-

est maximal matching in Qj.
2. Definitions. Statement of results. We deal with finite

undirected graphs without loops and multiple edges. If G = (V(G),
E(G)) is such a greph, then M & E(G) is called a matching in G,
if no two edges of M are adjacent. A matching M is a maximal
matching in G, if MgM‘ holde for no matching M in G.

For U<=V(G) we put N5(U) = {veV(G); Jue U such that
(4,v)e E(G)} end write frequently N(U) instead of Ny(U) end
N(u) instead of N({uf).

An n-dimensionsal cube Q, is & graph Q, = (V(Q,), E(Q,)), where
v(Q,) = [((ul,...,un); uie‘{o,l}, is= 1,...,n}, E(Q,) ={(u,v);
u,v&‘V(Qn), u and v differ in exactly one coordinate}. Cleerly,
Q, is a bipartite graph for any n. n

Define further VO(Q)) = {u = (uj,e..,uy) € V(Q); 12_—_1;.;5 1(mod 2)f,

Ve(Qn) = Q) - VU(Qn). We sey that u, ve V(Q,) ere of the same
perity, if either {u,v}< v%(Q ) or {u,v} € V8(Q ). Put 0 = 1,
1 =0 and for ue V(Qy), u = (ugyece,uy) put G = (Ty,eee,Ty).

Let n(Q) = min {iil, M is & maximal matching in Q}. The

following assertions are proved in |1]:
Asgertion 1. Por N>1, m(Q.,,) < 2m(Q,).
Asgertion 2, For n»l, m(Q,) % 2%.n/(3n - 1).

Assertion 3. lim m (Qn)/Z“ =1/3,

n-ou
The following conjecture is also stated in [1]:
Conjecture. For n > 1, m(Q,) =12%n/(3n - 1.
It follows from the trivial identity m(Q3) = 3 via Assertion 1

that m(Qg) < 24, whereas Assertion 2 gives m(Qg) 2 23.According

to the conjecture there should be m(Q5) = 23; our intention
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is to prove m(Qg) = 24.

For any matching M in Q, we define "the set X(M) of odd
vertices not belonging to M" as follows:

X(M) = {ueVd(Qn); u is an end-vertex of no edge of M}.
Theorem 1. If M is a maximal matching in Q,, then

(W) Ixanl = 2® 1 ul,

(2) IN(X(M) £ IMl,

(3) wev(Q) =N A(V7(Q) - X(M)) # 2,

(4) u,vev®(Q), ut v, IN(WAXMI = IN(V) AXODI =
=n - 1=>N(u) - X(M) # N(v) - X(M).

Broof. (1) Obviously |Vt )}= |v®(q)| = 21 holds ena
further, the end-vertices of any edge in Qn are not of the same
parity. Since no two edges of M are adjacent, (1) follows.

(2) Let weX(M),(u,v)€E(T, ).Suppose v to br an end-vertex cf
no edge of M; then Mu{(u,v)} is again a matching which o ntrg-
dicts the maximality of M. Hence u&X(M), ve N(u) —» v is an
end-vertex of an edge of M, and (2) follows immediately.

(3) can be proved similarly - it follows from N(u) < X(M)
for some u eVe(Q,n) that M cannot be maeximal - if we choose an
arbitrary véN(u), then Mv ’_(u,v)} is again a matching.

(4) Let N(u) - X(M) = {u’b N(v) - X(M) ={v; the edges
(u,u’), (v,v’) belong to M and therefore u’ % v’, g.e.d.

The following theorem disproves the conjecture from [1]»

Theorem 2. For eny maximel matching M in Q¢ , I ml > 24,

Proof, Let M be a maximal matching in Qg; according to
Assertion 2, |M| > 23, Assume /M| = 23. Then we obtain for
X(M) according to Theorem 1 that [X(M)! = 9 and (2) = (4) of
Theorem 1 hold as well. However, we shell show in Theorem 3
that this is impossible.

Theorem 3. Let X€Vo(Qq), X} = 9.
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Then either
(1) IN(X)I > 23, or
(2) there is ueVe(Qs) such that N(u) € X, or
(3) there are u,véV‘(Qs) such that u # v, |IN(u)n X| = IN(V)n XI] =
= 5 and N(u) = X = N(v) - X.
Proof of Theorem 3 is given in Part 3 of this paper.
3. The proof of Theorem 3. The proof essentially utilizes
a well-known fact that Q¢ 1s a Cartesien produet of Q4 and Q,.
Let us denote

A= {(ul,uz,u3,u4,0,0}; (ul,uz,u3,u4)e V(Q4)},

w
[}

{(ult Uy, u3,u4!1,0}; (“1)“23 U3, u4) € V(Q4)},

Q
[

= {(ul,uz,u3,u4,0,l}; (“19“2:“3:‘14)EV(Q4)},
D= {(ul,uz,uyuul,l); (ul,uz,u3,u4)€V(Q4)}.

IBl = Icl = ID] =

Then obviously V(Qg) = A VB vCuD and 1Al
= 16; the subgraphs of Q6 induced by any one of the sets A,B,C,D
are isomorphic to Q4 and there are exactly 16 vertex-disjoint
circuits of the length 4 in Q6, such that each of them contains
exactly one vertex of each of the gets A,B,C and D. Let us de-
note this set of 16 circuits by e « The sets of vertices
A,B,C,D are joined in Q6 only by edges belonging to circuits
of f (e.g. there are 16 edges joining A with B, no edge
between A and D, etc.).

For ueV(QG), u= (ul,uz,u3,u4,u5,u6) put Z(u) = u1.23 +
+ uz.22 + U302 + uy; obviously 7 maps V(Qs) onto [0,15] « For

U & V(Qg) put w(U) = {@(u); uev]. Ir 1€ [0,15], denote by
ai(bi’ci’di) the vertex of A (B,C,D, respectively) with

m(ay) = 1 end put &; = a5 ;. (The first four coordinates of
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3’1 are complements of those of a;; the fifth and sixth coordinates
of 3’1 and a; coincide). Define similarly B'i, f:vi, 3;_ for
i¢ {0,15].
Let us notice that the following holds: for 1,J ¢ |0,15],
(31’33)6 E(Q) & (bi,bj) EE(Qg) & (ci’cj)e E(Qg) <= (di,dd)e E(Qs).

From this we have e.g. 7K(NQ6 (ag)na) = 7Z’(NQs(bi)h B) =

= ... = !T(NQ (d;) nD). Similer relations, which easily follow
6

from the structure of Qg end its decomposition into four Q4
joined together by 16 circuits, will be used in the sequel with-
out specisal references.
The next lemma (with an obvious proof) describes some structur-
al properties of Q‘a'
Lemma 1. (1) For any UEVU(Q4) (Ve(Q4)) there is just one

v e VIR, (Ve(¢ ), respectively) such that N, (u)AN, (v) = @ ,

(2) For 0 =t =< 8 define ,/9(1:) by the following table:

tj[012345678

y/(t)“;46778888
Then for any U< VU(Q4)(Ve(Q4), respectively), INQ (wl >/f( lul).
4

If 0 £t =8, then there is U, & VV(Q4)(V8(Q4), respectively)
such that IU.J = t end lnq4(ut)l = ¢ (lUyle

Notation. In the sequel we shall denote by X always & sub-

set of Vd(Qs) consisting of 9 elements, i.e. X & V’(QG),
I1X] = 9. For U & V(Qg), N(U) denotes NQS(U).

Let X = V%Qs), 1X1 = 9. A characteristic vector X (X) of

X is a vector of 9 components, \(X) = (rl""'rQ)’ where

Ty = Ix 1al, r, = [x1Bl, ry = Ixnc), r, = |xnpl, rg = IN(X) n A,
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rg = IN(X) nBI, rq = IN(X)nCl, rg = IN(X)n DI end rg = IN(X) .

The set of all characteristic vectors is denoted by R, hence
R= {X(0); X = Vag, IXI = 9},
(rl,...,rg) the following relations obviously

"

For réR, r
hold:

(a) ris 8, 1=1,...,8,
(b) r1+r2*r3+r4=9,
(c) r5+r6+r7+r8=r9.
Taking into account the obvious automorphisms of Q  end (1)
of Theorem 3, we conclude that in order to prove Theorem 3 it

suffices to show that (2) or (3) of Theorem 3 holds for any X

such that r = X (X) ¢ R, where r meets all the following con-
ditions (d) = (j):

(d) r; > max (rz,r3,r4),

(e) if ry = ry, then rg 7 rg
(£) if ry = ry, then ry 2 Th
(g) ry 2 ryy

(h) if ry, = rs, then T 7 Ty
(1) rg £ 23.

Let Ro be the set of vectors from R fulfilling conditions

(d) - (1); it is easy to see that for re Rj the following con-
dition holds as well:

(J) r5 7 y(ry), rg2 max(‘/‘(rz), ry), To Y max( y (r3),r1),
rg 2 max (§(r,), max(rz,r3)),

4" being defined in Lemma 1. The velidity of (j§) follows from
an obvious identity N(X)nA = N(XNnA)NnAuN(XnB)n AuN(XnC)n A
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end the similar ones for N(X)nB, N(X)nC and N(X)n D.

Let Rx be the set of vectors (rl,...,rg) whose components
are nonnegative integers such that (a) - (j) hold. R, 1is
easy to construct by an elementary combinatorial argument;

Rx = {Pll"',y31}’ where fl’ eeny F31 are listed below.

Py 87
S
S
$u
Pe
Fe
Py

23
22
23
23
23
23
22
23
23
23
22
23
23
23
23
23
22
23
23
23
23
23
23
22

@®
o

LI B - W SR R R T - AU N B U S A L - N - R R B O A T - T |

£
Fu
Py

"
fae

Y

el

X

b~
F U A N Y . R U N O G U S S IEEC BERC REEC REEV Y- S S S K|
F NN W WWWWWSE & &2 8 800D RO WDND DO DO
T S R R I R I R = = = R T Y X ST R S R SR S R S R W
W MM K M KHF KM M KH O O OOOOUH®M® O O O O 0 0 0O 0O O
NN N N N9 NN N NN 9o 2o Mmoo 0 ™
& 00 NN 0NN NN 0NN 0N =
N A VA A DR WU A A A s e WN RN WWNDRNRN R

Say

'
—
N
0

]



P 4113844723
£ 4113754723
£724113744823
Fie 41047 447 22
£54104844723
£10 4104754723
P11 4104745723

Obviously R, € Rx; as the next step in the proof, the ele-
ments of R, will be found. But first we prove some auxiliary
statements.

Lemma 2. Let X'(X) = reRy, r= (rl,...,rg).
(a) If r; = 4 and rg = T, then N(ay) NA = XnA for some
1€ o,15].
(b) If r, > 1 and rg = r) or r3) 1 and ry = ry, then
N(e;)n A< XnA for some i€ |0,15].

Proof. (a) From r, = 4 and r5 = 7 we have IN(XnA) nAl = 7,
As N(XNnA)NA < Ve(Q5)nA and |V(Qg) nal = 8, aj€ (Vé(Qg) n4) -

- (N(XNnA)nA) for some j ¢|0,15). Further, N(aj)n(XnA) =g
and if we put a; = &j, then N(a;) 04 = XnA.

(b) Assume by€&XnB for some j& [0,15] ena at the seme time
let N(bd) NB & N(X nA)NB not hold. Then we should have
IN(X)nBl > |XnA], hence rg> r . Therefore, r,> 1 end rg = ry

imply that b; € X nB for some 1€ [0,15] and N(b;)nB & N(XnA)n B.
Hence easily N(a;) nA < XnNA. Similerly, such an i is to be found
also in the case r3 >1, Tq = 1.

Remark. (a) of Lemma 2 will be used below also for sets
B,C,D; e.g. if r, = 4, rg = 7, then N(bi)nB = XnB for some
1€[0,15] ete.
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In the sequel we shall always denote by k (X being fixed)
the number of circuits from 8 » which have a vertex in common
with both XAB and XnC.
lemng 3. Let RK(X) = ré&Ry, ry = 0. Then K=r, + ry - rg.
Proof, From r, = O we have N(X)n D = (N(XnB)n D)V (N(XnC)a D),
thus [N(xaD)| = |N(XaB)aD| + [N(XaC)aD| - |(N(XaB)AD)a
n (N(XaC)aD)|, therefore rg = T, + r3 - k, g.e.d.

Lemma 4. R, € {?n €1, €3, €6, €3, 9, €10, Paay @4,)
O, 919, 24, Q2e, 923, 924, Q221%.

Proof. The proof will proceed in severel steps.
(a) none of the vectors @« Qs, 92, P& belongs to Ry. Sup-

pose on the contrary X (x) € {9,,, 95, Pe, p,,} for some X.
According to Lemma 3, in these cases the number k of circuits

from c having a vertex in common with both XAB and XAC is
given by k = ry + ry = rg Further, the following holds:

(ael) k =r, =p rg =y (eince k = r,=p k = ry,hence R (xnB) =
= M(xncC), I(N(X)aB) = M(N(X)AC) and rg = rq)e

(a.2) k = ry B Iy 4rg (since k = ry = M(XnC) g W(XnB),
hence (N(X)AaC) € I{N(X)nB) and rq érs).
(a.3) k €ryy rq =1 =) pir, + 1) & rg (since for some
j€ [0,15] cj€xnc, bJQXAB; from ry = ry we have
N(cd)n C ¢ N(Xn A)AC, hence N(bJ)nB € N(XnA)aB and
N({bj}anB) & N(X)nB, therefore ?(rz + 1) £rg). To prove
(e) notice that r = Qy, Py, fip and Pgp contradicts (a.2),
(a.3), (a.1) and (a.3), respectively.

(b) none of the vectors @1, Pug, P15, P29 belongs to Ry.
Suppose 7\‘ (X) € {?ﬂ-; P18, P26, 9”} for some X. In these

cases ry = 4, rg = 8 and further either r, = 1, rg = 4 and
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Ty < 8 or r3 =1, rp = 4 and Te < 8., Pirst we discuss

the cases r = 0, and r = @9, when r, = 1 end rg = 4. Let X
be such that «(X) = r. Then XnB = §b;} for some 1¢[0,15];
r) = rg = 4 ylelds N(XaA)nB = N(b;)nB and XpA = N(ag)n 4.

Thus heither ravie N(XnA)n A nor aNieN(XnB)n A; since ry = 8,
it has to be 'z‘a’ie N(X)n A, hence ¢; €XnC, N(XnA)n C = N(gg)n Ce
€ N(X)n C, N(S'i)n Cc N(X)n C, therefore r, = 8, which is a
contradiction. In a similar wanner we proceed if r = P, or
T =S

(e) ¢4 ¢ Ry If Alx) = (4,4,1,0,7,7,5,4,23) for some X,
then from r; = 4, rg = T according to Lenma 2(a) we obtain

that there is 1€ [0,15] such that N(a;)n A = XnA. From XnC =

n

{ci} we should have rg = 4 (since r4=0), but rg = 5 ; if
XnC = {cj} for some j # i, we should have N(X) nC =

N( {ci,cj}) nC, therefore rg 2 6, which is a contradiction.

(@) y49 4 Rye hssume on the contrary thet x(X) =

(4,3,1,1,7,8,4,4,23) for some X. From ry = 4, rg = 7 we ob-

tain eccording to Lemma 2(a) that N(ai)r\ A = XaA for some

1€ [0,15]. Further, from ry =1, ry = 4 we have XaC = {ci}
and XnD = {_dj}, where j6 [0,15], d4;6 N(a;)AD. ry = 4 yields
N(XnB)ND £N(a,)nD; let us show that B; ¢ N(X)n B. From

%’de N(XaB)a B it would necessarily follow that by, 'G'J would
have a common neighbour in X nB, which is impossiblee Since
obviously 't\)lJ¢ N(XaD)nB = {bd}, it would have to be

gJGN(Xn A)n B, hence S'Je N(a;) n A, contredicting dieN(dJ).

(e) ., ¢ Ry. Let on the contrery _ﬁ(x) =(4,3,1,1,7,7,5,4,23)
for some X. Lemma 2 (a) gives then N(ai)nA = XnA for some
ie [0,15]., From rq = 5 we have XnC = {cﬁ (otherwise r; > 6)
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and it has to be XnD = {dj} for some je [0,15] such that
(di.dam E(Qg) (if this were not true, we should have IN(X) A ¢ =
= 4). But then {dﬁ U (N(dj)nD) < N(X) a D, hence rg 2z 5 which
is a contraaicc¢uai.

(£) €20 ¢ R, If on the contrary K (X) = (4,1,1,3,7,5,4,7,23)
for some X, then from r; = 4 and rg = 7 according to Lemma 2 (g)
N(ay)nA = XnA for some 1€ [0,15] and since rg < 6 end rq = 4,
then necessarily XnB = {bi}, XnC = &ci} and further N(X)n B =
= N(bi)n BuN(XnD)nB, N(X) qC = N(c;) ACuN(XnD)nC, hence
Tg = Ty which is a contradiction,

() ¢:3 § Ryo If on the contrery ;(Qg) = (4,1,1,3,7,4,4,8,23)
for some X, then N(a;)nA = XaA for some i€ [0,15] according
to Lemma 2 (a); the identities Ty =y = 1 and rg = rq = 4
imply XnB = {b}, XaC = {e;}, XaD ¢ N(4;)n D, therefore
IN(X)a D} ¢IN(X)n A|, which is a contradiction.

(h) neither {3 mor K1 belong to R,. Assume on the contrary
that for some X either MX(X) =3 or ‘N(X) =31+ Then ry =
=r, = 4, r, =1, ry = 0 and rg = 7. According to Lemma 2 (a)
N(aj)na = XnA for some i€ [0,15]. If J1(XnA) = Jr(XnD),
then ry = 4 end rg $# 5, since N(X)nC = (N(XnA)uN(XnaD))nC
and further either rg = 4 or rg > 6 (depending on whether
XnC = {ciﬁ or XnC # {ciﬂ), which is a contradiction. In the
case JS(XnA) # NX(XnD) we have r6>4 and r774, which again
is a contradiction.

From (&) -~ (h) the desired inclusion follows. It is possible
to show by constructing suitable sets X that the converse in-
clusion and therefore the equality Ry = { 00 P2 05,9, 17, 523}
holds as well.

Now we proceed to the proof of the main assertion:
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If ]g(x) = r€R,, then X fulfils (2) or (3) of Theorem 3.
We first discuss separately three cases:
(1) Let 7(‘(2() =re i?’h?q}’ i.e. either r = (5,2,2,0,8,
6,6,2,22) or r = (5,2,2,0,8,6,6,3,23). Two possibilities are to
be considered: (l.a) Assume N(ai)n A € XpA, Dj€XnB, cse XnC
for some ic [0,15]. Then, of course, N(a;) € X and (2) of
Theorem 3 is fulfilled. (l.b) Let (l.a) not hold; since according
to Lemma 3 the number k of circuits from t satisfies k >1,
then bje XnB, c;€ XnC for some i€ [0,15]. But N(aj)n A € Xn A
does not hold, hence (N(bi)nB) - (N(XnA)nB) # #. From ry = 5,
rg = 6 we obtain [(N(b;)nB) - (N(XnA)nB)l = 1. Since r, = 2,
let je [0,15] be such that j # 1 end bje XnB. From rg = 6 we
have N(b;)n B ¢ N({b;} v Xn A) n B. Further, T(N({bjju XnA)nB) =
= Iy (N( {cﬂ vXnA)nC) = JI((N(XNnC)uN(XnA))nC), and, since
ry = 2, also cJeXnC. Hence k 2 2, and consequently the case
(1.b) cannot occur for r = (, . Since necessarily [N(ag)n N(aJ)nA{=
= 2, we obtain |N(eg;)n N(aj) n (Xna)] =1 end 8p € N(ai)nN(aj),
ap ¢ Xn A for eome £ e [0,15]. Further I(N(ai)n An(XnA)| =
= |(N(a) nA) n(XnA)| = 3, hence |N(ay)nX|= |N(aj)nX]| =5
and at the same time (ai,ac), (QJ’EB)GE(QS); X fulfils (3) of
Theorem 3, g.e.d.
(2) Let j((x)
T7,7,4,4,22), or r

r € {Gr3, 624) ,iee. edther r = (4,3,1,1,
(4)3,1,1,7’7)4,5,23)0 According to Lemma

2(a), N(aj)n A = XA for some 1€ [0,15] ; ry=1lendrg=4
necessarily imply XnC = {c;}. b;€ XnB would mean N(ay) € X
and (2) of Theorem 3 would be fulfilled. Assume therefore
bi¢ XnB. Let XD = {dd}; J # 1 (beceuse (cy,d;) € E(Qq)).
It has to be dJeN(di) - otherwise |N(X)n C| > 5 - and there-
fore also a;e N(a;), aj€ X, Further, IxnB o {bs}l = 4,
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IN(XnaBu{b;})nBl = 7. In & similer manner as in the proof
of Lemma 2 (a) we can show that N(bp)nB = XnBu{b,} for
some L€ [0,15]. It must be £ =j (€4 J would imply
|N(X)nD| > 6, since N({dj,de})an c N(X)n D, contradicting
rg € {4,5}). But then |N(X)n D| = 4 and therefore it is
sufficient to consider the case r = 35'4;. Then XnNB = N(b.‘l)n B -
- {bj}, therefore IN(a;)n X | = |N(bs)n X| = 5; (g4dy),
(bJ,bi)eE(Qs). X fulfils (3) of Theorem 3, q.e.d.
(3) Let  R(X) == ¢y, leee © = (4,1,0,4,7,4,4,7,22).
According to Lemma 2 (a), N(aj)nA = XnA, N(dj)n D=XaD
for some 1,J€ [0,15]. As r, =1 and IN(X)nB| = rg = 4, we
have 1 = j end XaB = {b;}, therefore |N(e;)nX| = [N(d4)n X|=
= 5 and at the seme time c; ¢ X, (ay,c3), (cgd;) €B(Qg); X ful-
fils (3) of Theorem 3, q.e.d.
The remaining cases are covered by the next two propositions:
Lemma 5. Let % (X) = reR, - {63, P}, T = (ryseeerTg).
If %7(:?2 +1) > rg and gF(r3 +1) > Tqs then N(ai) c X for
some 1 € [0,15] end X fulfils (2) of Theorem 3.
Proof. Obviously r meets the assumptions of (a) or (b)
of Lemma 2; therefore N(e;)nA € XnA for some i€ [0,15]. Then,
however, N(b,)nB € N(XnA)n B, hence N({b,Ju (XnB))nB<
€ N(X) nB. From by ¢ X it would follow ((r, + 1)< |N({bs}u
v (XnB))nB|<|N(X)nB| = rg, which is a contradiction.
Therefore b, € X, in a similar way ¢, € X, hence N(ay) € X,q.e.d.
Lemmg 6. Let x(x) =reR, - {\;»;,?q} » T = (Pyyeee,Tg)e
4 = O, then N(a;y) ¢ X for some 1 €[0,15] and X fulfils
(2) of Theorem 3.

If r

Proof. Let X be such that f((x) = r€R, - 162, %q) » r,=0.

This meens r € i\‘m §2, €5 S, §a1, §13, g,s} end in these cases
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k = ry according to Lemma 3 end further 1 £ k <3, r, =
= max(ry, y>(r3))- According to Lemma 2, N(84)nA € XnA. Let
firet r 4 Pig, then ry = 1 and assume j€ [0,15) be such that
XaC = {cj}. Ir N(ad)nA - XnA %@, then 1 ¥ j and also

N(cJ)ﬂ C-N(XNnA)nC # @ ; this gives rqe > vy + 1. From
N(c;)nC S N(XnA)nC we obtain ry % g‘e(r3 + 1), contrasdicting
r, = max (rl, %(rJ)).

For r = ¢, = (4,3,2,0,7,7,6,3,23) we proceed as follows: if
¢4 XaC, then IN(XnC vicy{)nC| =6 and at the same time
IXncu feyf | = 3, contradicting (p(3) = 7. Hence c;€ XnC and
since k = rq, we conclude that b;é€ XnB holds as well, therefore
N(ai) c X, qee.de

This completes the proof of Theorem 3.
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