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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,1 (1982) 

E-RINGS AND DIFFERENTIAL POLYNOMIALS OVER 
UNIVERSAL FIELDS 

Jan TRLIFAJ 

Abstract;: We give a complete description of left noethe-
rian left antisingular E-rings. We show that there is no left 
noetherian E-ring with a zero left socle, but the ring of dif
ferential polynomials of one variable over any universal field 
of characteristic zero has the Ext-oroperty for finitely gene
rated modules. 

Key vyords: Ring, Ext, module, differential. 

Classification: 16A62, 18G15 

Let R be an associative ring with identity and let R-mod 

be the category of unitary left R-modules. Recall that a ring 

R is said to be an E-ring (or, equivalently, to have the Ext-

property) iff Ext/M,N/ I 0 for all M nonprojective and N nonin-

jective R-modules. 

In this note we continue the study of E-rings started in 

the paper i8J. We get a structure theorem for left noetherian 

left nonsingular E-rings (see 1.8). We also show that it may 

happen that a ring R is not an E-ring, but it has the Ext-pro-

perty for Mf N finitely generated R-modules. Namely, there is 

no left noetherian E-ring with a zero left socle (see 1.6), 

but the ring of differential polynomials of one variable over 

any universal field of characteristic zero has the Ext-proper-

ty for finitely generated modules (sec 2.1, resp. 2.2). 
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We shall use the notation as follows. For an R-module N 

let E/N/ be the injective hull of N. If X is a subset of N, 

then Ann/X/ denotes the left annihilator of X in the ring R. 

A left ideal of R is said to be a left annihilator ideal if 

I = Ann/X/ for some X^R. 

Let r be a preradical in R-mod. Then 3"r denotes the 

class of all r-torsion modules. Further r is said to be a ra

dical if r(M/r(M)) = 0 for all M e R-mod and r is said to be 

stable if every injective R-module splits in r. As usual,^ , 
o 

Soc and £6 denote the Jacobson r a d i c a l , the l e f t socle and 

the l e f t s ingu la r p re rad ica l r e s p e c t i v e l y . The prime r a d i c a l 

of a r i n g R i s denoted by rad/R/ and the d i r e c t sum of the 

r i ngs S and T by S S T. 

Further concepts and no ta t ion can be found e . g . in Ll] 

and [ 2 ] . 

1. Left nonsingular E-r ings 

1 .1 . Propos i t ion . Let R be a l e f t noether ian l e f t he r e 

d i t a r y E-r ing with one r e p r e s e n t a t i v e of simple R-modules. 

Then R i s completely r e d u c i b l e . 

Proof. Suppose R i s not completely r e d u c i b l e . Since 

R/^-CR) i s a simple r i n g , R i s Morita equivalent to S = eRe, 

where e i s a p r imi t ive idempotent i n R. Clearly S i s an i n 

t e g r a l domain, Soc/S/ = 0 and there i s a f l a t nonprojectiv® 

S-tnodule A. 

Let D be the l e f t quot ient d i v i s i o n r ing of S, J be a simple 

S-module and P be a proper S-submodule of D containing S. I f 

Soc (D/P) = 0 , then Ext ( J ,P) » 0 and S i s not an E- r ing , a 
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con t r ad i c t i on . Hence Soc (D/P)^=0. Now define S-bimodules B, 

C by B = D/S and C = S. 

Using £3, chapter 6, theorem 3.5 aj we get 

Ext (A,Ext/B,C/J^Ext CTor/B,A/,C) = 0. 

Thus the S-module N = Ext/B,C/ is infective. On the other hand, 

if g is a nonzero S-homomorphi3m from B to D, then Soc (Im g) 4= 

4-0. But D =- E/S/, a contradiction. Hence N = Hom/B,B/ and the 

functor Bom/B<g> ~,B/ is exact• Since the S~module B is an in

fective cogenerator, the functor B€) - is exact. Therefore 

B is a flat right S-module and hence it is torsionfree, a con

tradiction. 

1*2. Lemma. Let R be a left noetherian E-ring which is 

not left hereditary and which is irreducible as R-module. Let 

M be a maximal left annihilator ideal. Then each proper left 

ideal I contains an element x such that M =- Ann/'x/. 

Proof. Obviously M =• Ann/y/ for some y€ R and R/Ry is 

not projective. Hence Ext (R/Ry,l)+0 and consequently 

Hom/RyfI/-t
s0. The rest is clear. 

1.3. Proposition. Let R be a left noetherian E-ring with 

one representative of simple R-modules such that R is not left 

hereditary. Then Soc/R/4=0. 

Proof. Suppose Soc/R/ = 0. Similarly as in the proposi

tion 1.1, R is Morita equivalent to a ring S, whence S is an 

irreducible S-module. Further, by [8, lemma 2.61 #(S), =- 0. 

Let Q = Q/S/ be the maximal left quotient ring of the ring S. 

By [7, § 4.51, Q « E/S/ and Q is a ring direct sum of simple 

completely reducible rings Q^,...,Qm. Suppose m-^2 and put 
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I± * S n Q r Using l.Zwm get / I ^ . . . • I . / ^ =- 0 and £ £ / S / 4 - 0 , 

a contrad ic t ion. Consequently Q = Mn/D/ fbr a natural number 

n*r2 and a d i v i s i o n r ing D. 

Further, using C8, lemma 2 .43 , i t i s easy to s e t that every 

regular element of S i s inver t ib l e and hence Q c ] /S / - S, whe

re ®CT/$/ i s the c l a s s i c a l l e f t quotient ring of S. Thus the 

nilpotency index k of rad /S / i s at l eas t ?, Let 8 be a nonze

ro element of rad /S / . Then there i s an invert ib le matrix 

q£Q such that t » q .s .q i s the Jordan canonical form of the 

matrix a. In part icu lar , t*.. = 0 for a l l i = l , . . . , n , j - = l , . . . , n , 

j4= i+1 and t 1 2 • i . 

Now, define an E-ring T by T » q.S.q . Clearly Q * 

=s Q/T/ «= Mn/D/. Let e be the element of Q with exl - I and 

e.̂ ^ =- 0 otherwise. Put C =* Qe. Clearly C i s a canonical right 

D-module. 

The res t of the proof i s based on the following two lemmas: 

--•4» Lemma. C is an irreducib le in j ec t ive T-module. I f 

a and b are nonzero elements of C such that Ann/a/S Ann/b/, 

then there i s a nonzero element d e D such that b = a.d . 

Proof. The f i r s t assert ion i s obvious. I f Ann/a/^ Ann/b/ 

then there i s a nonzero T-endomorphism f of C such that af =- b . 

Since Q =- E/T/, we have ef = e .d for a nonzero de D. Hence 

ef * eg for some Q-endomorphism g of C. Let h - f - g. I f h+=0, 

then C/Ker h c- fX and by L8, leroma 2,63 Soc/Im h/4=0, a con

trad i c t ion . Thus f -* g. 

1 .5. Lemma. There i s a rad ical r in T-mod such that ^=k 

4=0 and r i s not s t a b l e . 
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Proof. Let I » T n C and let r be the corresponding I-

radical (i.e. r/N/ = I.N for all Nc T-mod) . Put A » rad /T/ 

and let Of-a cA. Since t.A = 0 , we have a2 J = 0 for each j = 

= l,...,n. Further, let 0 4= c f-1. By 1.4, Ann/ / is a maximal 

left annihilator ideal in T. By 1.2, there is some 0 \-a c A 

with Ann/a/ =- Ana'c/. Let b be a nonzero column of the mat

rix a. Then b = c.d for some nonzero df D, by 1.4. In parti

cular, c^, = 0 and consequently O^r/C/i^C and r is not stab

le. Further, suppose I = 0. Then I£rad/T/ and I.t = 0, a 

contradiction. Hence there is some c< I with x = c., f0. Let 

M be the T-submodule of C generated by the matrices c.x , i 

i 2 i-1 
being an integer. Since c#x = c .x , we have I.M = M and 

<rrt-o. 

Now we can f i n i s h the proof of l.»3. Let r be a r a d i c a l 

from 1.5. Using L8, lemma 2 .6 j we see that 'J' i s the c lass 

of completely reduc ib le p ro j ec t ive T-modulcs. Hence 'S = 0 , 

a con t r ad i c t ion . 

1.6. P r o p o s i t i o n . Let R be an E-r ing with Soc/R/ = 0. 

Then R i s a simple l e f t he red i t a ry regu la r r i n g . 

Proof. By 1 .1 , 1.3 and by [ 8 , co ro l l a ry 2 . 7 , lemma 2.3i 

R i s a simple regu la r r ing and a l l simple R-modules are i s o 

morphic. In p a r t i c u l a r , i f e i s a nonzero idempotent in R, 

then S = eRe is Morita equivalent to R and hence R contains 

an i n f i n i t e d i r e c t sum of p ro j ec t ive l e f t i d e a l s . By [ 8 , lem

ma 2 .43 , R i s l e f t he red i t a ry . 

Recall that an E-r ing i s ca l led of type 2 i f f <£0O * 0 

and Soc/R/ i s a d i r e c t summand in R (see [ 8 1 ) . 
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1»7. Corollary. Let R be an E-ring of type 2. Then R « 

== S HB T, where S is a completely reducible ring and T is a 

simple regular left hereditary E-ring. 

1*8. Theorem. Let R be an associative ring with identi

ty such that R is not completely reducible. Then the follow

ing two conditions are equivalent: 

(i) R is a left noetherian E-ring with <<£(R) = 0 

(ii)N R « S tjS T, where S is a completely reducible ring and 

there exists a division ring D such that T is Morita equiva~ 

lent to the ring of upper triangular matrices of degree two 

over D. 

Proof. Use 1.7 and C8, theorem 7.11. 

1.9. Remark. It follows from 1.7 and [8, theorem 7.11 

that if R is an E-ring of type 2 or 3, then every factor ring 

of R is again an E-ring. It is an open problem whether this re

mains true for any E-ring. 

-?• Differential polynomials over universal fields. In 

this section, let k be a universal differential field of cha

racteristic zero with the differentiation D and let R == k[y,Dl 

be the ring of differential polynomials of one variable y over 

the field k (see e.g. L41 andE6!). 

2.1. Proposition. Let M be a finitely generated nonpro-

jective R-module and N be a noninjective R-module. Then 

Ext/M,N/4* 0. 

Proof. It is well-known (see e.g. 141) that R is a simp

le left noetherian left and right PIR such that R is an inte-
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gra l domain with one in fec t ive r ep resen ta t ive of simple R-mo-

dules A. Hence each cyc l ic R-module i s e i t h e r semiaimple or 

isomorphic to R and consequently there are two r e p r e s e n t a t i 

ves of i r r educ ib le in fec t ive R-modules: A and Q, where Q i s 

the quotient d i v i s i o n r i n g of R. Hence M = Soc/M/-l~ M-, , where 

M, i s a f i n i t e l y generated t o r s i o n f r e e R-module and th i s M-̂  

i s f ree and Soc/M/^O. Therefore the abe l ian group Ext/M,N/ 

has a d i r e c t summand isomorphic to Ext/A,N/. F i n a l l y , s ince 

Soc(E(N(/N) a E(N)/N, we have Ext/A,N/-=- Hom( A,E(N)/N)4= 0, 

q . e . d . 

Denoting by r /M/ the reduced rank of the R-module M 

( i . e . r /W i s the c a r d i n a l i t y of any maximal R-independent 

subset of M ' , where M =*- I/M/4- M and I/M/ i s the d i v i s i b l e 

par t of M) we get the following p a r t i a l improvement of 2 .1 

for small un iversa l f i e l d s . 

2 . 2 . P ropos i t i on . Let k be a un iversa l d i f f e r e n t i a l 

f i e l d of c h a r a c t e r i s t i c zero such tha t card k< 2 (see £6, 

chapter 3, sec t ion 7 J ) . Let M be a nonproject ive R-module 

such that r /M/ -< ^ and N be a non in jec t i t e R-module such 

tha t r 0 /N/<: 2 ° . Then Ext/M,N/4*0. 

Proof. We can assume that M and N are reduced and the 

rest is analogous to the proof that every Whitehead group of 

finite rank is free (see 15, vol. 2, § 991). 

2 . 3 . Remark. In the case of k [y,D]-modules the proof 

of 1.1 saya exact ly that there i s a non in ject ive module N 

such that Ext/Q,N/ = 0* Using the terminology familiar in abe

l i a n groups (see 15, vo l . 1, § 38 and § 543), N i s a nonin-
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j ec t i ve cotorsion module. In f a c t , N i s also a lgebraica l ly 

compact, s ince , as i t i s easy to show, cotorsion and a lgebra

i c a l l y compact k Ly,Dj-modules merge. 

The author wishes to thank Professors O.L. GorbaSuk, T. 

Kepka and L. Prochdzka for valuable advice. 
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