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THE EPIS OF POS (Z)
A. PASZTOR

t : In [4)and (5] J. Meseguer conjectured that
in POS(w ) epis are exactly the dense maps. In [3) D, Lehmann
and A. Pasztor gave an example of an epi which is not dense.
This S)aper provides the exact characterization of all epis of
POS(Z), for arbitrary Z.

Key words: Epimorphism, Z-complete poset.
Classification: 06410, 18A20, 18B99, 68A05

1. Introduction. For an arbitrary subset system Z (see
[1)) let POS(Z) bve the category of Z-complete posets (i.e. po-
gets in which any Z-set has a sup) and Z-continuous maps (i.e.
maps preserving the sups of Z-seta). If XsP and Pe | POS(Z))
then cl(X) is the least subset Y of P which contains X and in
which every Z-set has its sup (which has to exist in P) in Y.
A map £:P—> Q eMor POS(Z) is dense if Q = cl (£(P). In [4]
and [51 J. Meseguer conjectured that in POS(w ) epis are ex-
actly the dense maps (and hence extremal monos coincide with
full monos). In [3) D. Lehmann and myself gave a counterexamp-
le to this conjecture by constructing an epi which is not e-
ven dense. What makes it to be an epi?
In order to answer this question let us consider the follow—
ing domain D of figure 1, described in Meseguer [4]. Then let

B:= {bn:n € ¥ . Meseguer proved that for any
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@5y iD—> PeMorP0S(w), if @} B = y ! B, then glay,) =
= y(ay,) (since e.ge glagy)z (b)) = y(b)z y(a)
Ynew and hence by y(ay ) = sup(y(a )) . we get
9(ay, ) Z y(ay ) But notice that a4 cl (B).

figure 1: domain D

This leads to the counterexample, which is an embedding i of
B:= {(w,b):w € &'} into the domain E of figure 2. Since eve-
ry element of E~B plays the role of the a, of figure 1, we
get that for any ¢,y :E—>P, @!)B = B implies 9= v,
which makes i to be an epi in PCS(w), although it is not

dense!
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figure 2: domain E

My aim is to generalize the properties of i in order to get an
exact characterization of all epis of POS(Z), for arbitrary
subgset system Z. Note throughout the paper that the presence
of a 'bottom 1 would not change any of the results. Thus eve-

ry result holds for POSJ_(Z), too. Here I would like to thank
J.Reiterman for helpful converséag%ons on the topic of this paper.



2. A new clogure operator
Notgtion: O©Ord denotes the class of all ordinals.

Definition 1: Let Pe|P0S(Z)l, X&P, a,beP and « ¢ Ord
be arbitrary. Then "a is «=connected with b through X" - in
symbols a }-i"-'-'—é- b - if

1) For x=0
3YbQP:bec1(Yb) & VyeY, BxyeX:azx zy, and
2) For >0

3Y sP:becll,) & VyeY, Sb’eP Joyelrd:

X
& & a 5 .
Jeby & L <x &8 1= by

Remark: Note that in the case of the counterexample in
{31 for every ac(E\B) a ‘_0_.?_ a holds!

For the illustration of Definition 1 see the figure 3 at the
end of this paragraph.

The following Lemmas 1-5 give some of the most important
propertiea of the relation "to be connected through X" defin-
ed in Definition 1.

Lemmg 1: For any P elP0S(Z)], XsP, a,beP and «x,f €
cOrd, 1f w < then a 15X b implies a X v,

Proof: If =0 then evident.

Let 3> O. Then let Y, = ib}. Since becl (Y,) and
Vyer, 3p,=a<@ 3b, =bePibyzy & ailyk by,

a ._&vl b.

Lepma 2: For any P € |POS(Z)), X,Y<P, x e Ord and
a,b€P, if XSY then a +%:X b implies a +52 b,

Proof: by transfinite induction. A

=]
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If = O then a1%:X b means 3Y,eP:becl (Yb) &

& VyeYy Bxye XcY: azx zy. Hence a Yy,
Let o« > O and suppose that V(3 < o the Lemma holds.

Then a \-°—‘—’x—- b means 3 Y, cP:becl (Ybl & VyeY, 3 byeP

3egy60rd: ccy< < & byZy & a |i‘-y-¢—)i by. Since by the induc-

tion hypothesis VyeY,: a Py Y by, we get by Definition 1

a‘&"—y‘bo a

Lemmg 3: For any P elP0S(2)|, X<P, a,b,ceP and « ¢

€ Ord, if azb and b +*%:X ¢ then a 122X ¢

Progf: by transfinite induction on o« .
If c = 0 then b }—"—‘L-)Lc means that 3Y¥ cPicecl (Yc) &
VyeY, 3 xyeX:bzxyZy. Since azb, Verc:anyz ¥
hence a F‘f—'—)s-c.
Let o> O and suppose that V3 < o the Lemma holds. Then
X

b =22 ¢ peans that 3Y,eP:cecl (Yc) & VyeX, 3.,cyc0rd

3byeP: %y < o & byzy &b }i‘gﬁ(— bye Then by induction hy-
pothesis VyeY :a ,_g‘_,,.’_(_by hence by Definition 1 a g..°_"_)f_c,
o

Lemmn 4: For any Pel|PoS(2)l, XcP, a,b,ceP and
« €ord, 1f a +*2X b and bzc, then a X+hX o,
Proof: Let Y, ={c}. Then cecl (Yc) & Vstc

3°cy=oceOrd 3by=beP:oc<oc+1&byzy&

y

& a b X by Hence by Definition 1 a (2 /2.9 a

Lemma 53: For any Pe|POS(Z)l, for any XS P and for any
aecl (X): ar—g’—x-a.
Proof: Let Y := {xeX:azx}t. Then aecl (Ya) &

& Vyc‘!a a xy(w)e X:azx Zy. Hence by Definition 1
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a)—g—,iao D

Remember that our aim essentially is to find the co-congruen-
ce relation of maps of POS(Z). In the following we will see
how the relation "To be connected through X" leads to this
aim.

Proposition 1: For any P e \POS(Z)|, X=P, a,beP,

« € Ord and @,y :P —>QeMor POS(Z), if a+°5—x- b and @ X=

¥ X, then ¢g(a) Z y(b) and y(a) = @ (b).
Proof: by transfinite induction on « .

If o = O then a ¥%2X b means 3Y,cPibecl (1)) &

&

VycY, 3xyeX:a_>.xyzy. Then VyeY, ?(a)?.?(xy) =

‘ql(xy)Z y(y) resp. ¥(a)z '»f'(xy) = ?(xy)?_ @ (y). Since

becl (Y) implies w(b)e cl (y(Y,)) resp. g(blecl (g(¥,))
(since ¢ and y are Z-continuous), we get @ (a)Z y(b) resp.
y(a) Z ¢(b).

Let o > O and suppose that V(3 < o« the proposition is true.

Then a }ﬁf-z(-b means that BYbsP:bscl (Yb) & VyeX

b
3¢y¢:0rd BbyeP ocy<uc& by?_y & a}—"i*'}—by. By
the induction hypothesis

Vye¥: ty(a)Z'Ay‘(by) resp. -q/(a)ch(by).
Then VyeY,: @(a) 'qf(by) Z y(y) resp. y(a) Zg,(by)z @ (y)
end since y(b)ecl (¥(Y)) resp. @(b)ecl (@ (X)), we get

@(a) Z ¥(b) resp. y(a) Z@(b). O

Corollary 1l: For any P €|P0S(2)|, X€P, a,beP and « €

e ord, at%R b implies azb.

Proof: Let @ = = idp. .

- 290 -



O ry 2: For any P ¢|P0S(Z)l, X€P, aeP, o € Ord
and @,y :P —>QeMor POS(Z), if 215X 4 ana @MX = yIX
then g(a) = y(a) !

Definition 2: Let P €|POS(Z)| and XS P be arbitrary.
Then CL(X):={a€eP| 3« € Ord: a &5-'-&- at.

Having arrived at this point we know that CL(X) is con-
tained in the co-congruence relation of any map of POS(Z)
with image X (see Cor. 3 of Prop. 2).

Now let us prove some properties of CL(X).

Lepma 6: For any P ¢ |POS(Z)| end XEP, cl(X)e CL(X).
Proof: by Lemma 5. O

Corollary: For any Pe |POS(Z)| and XeP, X& CL(X).

Proposition 2: For any PelP0S(Z)!, XEP, a,be P and

« ¢ Ord, awbgsﬁsmd: 5,_@_2ib,

Proof: by transfinite induction on «.
Let cv = 0. Then becl (Y) & VyeY 3 xysCL(X):az XyZ y.

Since X, € CL(X) Becye Crd: Xy y-‘-’-‘-wl(-xy. Then by Lemma 3
o, X .
8 = X Now becl (Y,) & Vstb BxyeP Se(.yeOrd.
= =, ( s & x,zy & armly, D -
°‘y<(3 y 2y, <, 1) X Zy & a—¥=x, Then by Defini

tion 1 a 22X p,

Let o > O and suppose that for any 6’<oo the proposi-

tion holds. Then a yeCEX) y heang thet 3y, eP:ibecl (Y) &

& Vyey, 3 byEP _:lccyeOrd: ocy<oc& byZy & a M b
but then by induction hypothesis Vchb B(AyeOrd:

:ay-."iwl‘—by.
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Then by Definition 1 for ﬂ:=y§/ (By + 1) arleXy, O
&

Corpllary 1: For any P e|P0S(Z)| and XE€P:CL(CL(X)) =
= CL(X).

Proof: by Corollary of Lemma 6 and by Proposition 2 for
a = b. D

Corollary 2: For any Pe |POS(Z)| the operator CL: P(P)—
——> P (P), which assigns to each X&P CL(X), is a closure o—
perator.

Proof: By Corollary of Lemma 6 X&CL(X), by Lemma 2 if
XEY then CL(X) < CL(Y) and by the above Corollary 1
CL(CL(X)) = CL(X).

Corollary 3: For any Pe |POS(Z)], XSP and @, v:P—>Qec
€ Mor P0S(Z), if @lX = %X then @PMCL(X) = w MCL(X).
Proof: by Corollary 2 of Proposition 1l.

For o= 0 and for Z = @
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Further on we shall symbolize b ecl (Yb) by

i.e. for <= 0 the figure looks like that: a

For &« > O we illustrate then Definition 1 by:

figure 3: Illustration of Definition 1.

3. The epis of POS(Z). Now we are ready to give the ex-
act characterization of epis in POS(Z):

Theorep: Any £:P—>Q eMor POS(Z) is an epi iff
CL(r(P)) = Q.

Proof: If CL(£(P)) = Q then f epi follows immediately
from Corollary 3 of Proposition 2.

Let £:P —>QeMor PPS(Z) be an epi in POS(Z). Denote
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CL(f(P)) = Q, and suppose Q - Q¥ P. Then we construct
§r¥:9—>ReMor POS(Z) with §-r = & . £ but § + ¢ which
contradicts the epiness of f. First we define the maps ¢ and
Y Damely @ := idy and yi= 1dQnL'J;o y where @:Q - Q <»>imp
is a bijection (Q - QF @) with im ¢ ﬂ(Q—Qo) = 0. Let the
set R:= QU im @ -
We sre going to define on R the relation 4p¢ Let a,beR,then
A aéQ b if a,beqQ,

aey b ise B: go:i(a) 4330'i(b) if a,beinp,

C: © “(b) —>—"a for an xe Ord if a€Q,be im,
D: b r—°—‘—'—-—q—°-go_l(a) for an oce Ord if aseimp, beqQ.

In the following we shall prove that £p is o partial or-

der.

1) reflexive: YaeR:aeQ = a £, 8 _—A=>a £p a and
acgim @ =» gb-l(a) £, gonl(a) > e £p a.

2) antisymmetric: let a £ b and b £p a. Then

a) a,bEQ?a=b
b) a,beimp = SD_l(a) =§o-l(b)=¢a =b

-1 <, , &,
c) esQ’beimP—‘é‘?? (b) a0 g gnd

, -1 -1 -1
a1 X282 o (D) == (1) o= aand 8 o= e (D=
Peof. 4
==?q>"l(b) = a

a€Q-Q . But a = gv-l(b), i—iﬁh’—c‘l?— a implies

o5 @
ae CL(QO) = Q, which 1s a contradiction. Thig means:
aeQ,beimp=>T(agp b & b<y a).
d) For aeim@e , beQ we get the same.
3) trensitive: let a £gp b %y c. Then:

a) a,b,ceQ =>a<g c-
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b) a,b,ceimso? aép c

c) aeQ,bceim@ﬁ?@-l(b)w_‘_& a and

Q)-l(b) ‘A‘Q gb-l(c) fﬁs@'—l(c) ;."_('_!_99— a -_=C_—.¢ a £g ¢.

d) For a eimpe,b,ceQ dually by D and A.

e) a,ceimp,beQ ?? b )-oi‘ﬁ—Q—g-gD “L(a) and

Q_l(c) ‘.-c—‘i‘e”Q° b “l(e) —-—B—foaéR Ce

-1
Guiof § (MRaPAe
Do, 4

£) For a,ce€Q, beimp dually by C,D and A.

gl a,b,eQ, ceim§o==)a £, b and
o+, Qg

go (c)\-———b——__—_zfgo “Le ) | =—r"e a=—_>a £p ce

h) For a,bcimp, ceQ dually by B and D.

Next we shall prove that ¢ and 4 are Z-continuous. For
this let Y be an arbitrary Z-set in Q with a = sx_;__pR Y.

First we show that @(a) = su;_)‘_ch(Y). By A (of the definition
of <5) it is clear that a g2y VyeY and that YbeQ, if
y£g b YV yeY, then also a< £p b holds. Let be im@ with
y4g b YyeY. Then by C @ “L(v) }——"-C—P—Q’—Q— y VyeY, which
by Definition 1 implies Qb-l(b). 1< 8o a, where

& 1= \J;Z.y (oL, + 1). Again by C we get a<p b.

Now we are going to prove that y(a) = sur_:_‘Rqr(Y).

1. Suppose aeQ  (and hence w(a)=a). By A y<ga
Vye¥NQ, and by D e(y)<ga Vye¥N(Q-Q ) since for these
y-s a NI y.-Hence z4pa Vz ey (Y).Let z £pb Vz ey (Y).

a) if beQ thenby &4 z£,5Dd Vzeqf(Y)ﬂQo and by D
and Corollary 1 of Proposition 1 gD-l(z) “Qb Yz e yw(YIN in@.
This means y éQb VyeY, hence a éqb and hence by A & &pb.
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b) Suppose beimpE . Then by B go_l(z) <q g:-l(b)
Vze V(Y)ﬂimgb and by C and Corollary 1 of Proposition 1
z £ @-l(b) Vz e y(YINQ,, i.e. z £q go-l(b)f Vy eY. This im-
plies a <, gfl(b). Since ae€Q, we can write So-l(b) 0, Qo a,
hence by C a<pb.

2. Let aeQ-Q, (and hence y(a) = @(a)). By B
z<p pla) Vz ey(Y)Nimp and by C also z<p e(a) Vz'ey (YIN
NQ, since for these z-s a 12280 5 Now let z£pb Vzey(Y)

a) If beQ then by D b %z» %o @1z Vzewy()n
Nime end by A and the above remark b 80 5 yag ey (N
NQy. Applying Definition 1 we get b l—"LL—Q—Q— a, where
o¢ 1= 2 (o +1), which by D means ((a)<gb.

26y (YiNime

b) If be imp then by B “L(2) £q Q-l(b)

Vzey(Y) ﬂimso and by C and Corollary 1 of Proposition 1
-1 -1
Zq@ (b) Yye¥nq,, i.e. Yeq@ (b) YyeY, hence
aZy go_‘L(b) .By B this means @(a) £gb.
By Banaschewski-Nelson [2]or Meseguer [6] POS(Z) is (full-mono)-
reflective in ZPOS - the category of posets and Z-continuous maps.
Let 7y denote the (Z-continuous) POS(Z)-reflection of R:=(R, £p)
. A
and let ¥ := MR Y and & := Mg F - Then y * €> since @ +V
and ‘n’i\rofac?- f since Y- £ =@ f.

4. Some congequences
Corollary 1: An m:P—>QeMor POS(Z) is an extremal mong

ife it is full (i.e. m(a) £ w(b) iff a=£,d Va,beP) and
CL(w(P)) = m(P).
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Proof: 1) Let m be an extremal mono and let m=f.e, with
e:¥—>R, Ri= CL(n(P)), <p:= éQr\R2 and e:=m and f:R —Q,
£:= 1dg. Since by Lemma 6 cl (R) = cl (CL(n(P))) = CL(m(P)) =
= R, Re |P0S(Z)1, thus e,fe Mor POS(Z). By the Theorem e is an
epi, hence e is an isomorphism. This implies m(P)=e(P)=R=

2 _ .2 - _ 2 _
=CL(m(P)) and n' (é.P) =e (eP) = &p = £,NR° = £, N

Nn(m(e))?.

2) Let m be full and let CL(m(P)) = m(P). Suppose m =
= f+e with e:P —>R, f:R—>Qe Mor POS(Z) and e epi. We have
to show that e is an isomorphism.

By the Theorem we know that CL(e(P)) = R. Then f(R) =
= £(CL(e(P))). By the Corollary of the following Lemma 7
£(cL(e(P))) e cLif(e(P))) = CL(m(P)) = m(P).

Before going on let us prove the

Lemmg 7: For any £:P —> Q eMor POS(Z), XEP, «ce Ord and
x, £(X)

a,beP, 1f a F2X b then £(a) 12 FX) o(y),

Proof: By transfinite induction.

For =0 3Y cP:ibecl (Y}) & YyeYy BxyeX:anyZy
hence £(a)z £(x_ )= £(y). Since £(b) e cl (£(Y)) we get by De-
finition 1 £(a) 225CX) o(y),

Let « > O and suppose that for any (3 < < the Lemma holds.

Then a 12X means that 3Y,cPibecl (V) & VyeY, 3peP

aocye()rd: a(,y< < & byZy & a }_i‘(;.y.:_é. b.y hence

£(b. 32 £(y) & £(a) Py FOX) £(b ). Again, since £(b) €
€cl (£(¥,)), we then get f(a) (—-°—‘-’-i—QQ £(b).

O Lemma 7.
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Corollary: For any f:P——>QeMor POS(Z) and X< P,
f(cL(X))e cL(r(x)).
Let us continue the proof. We have got that £(CL(e(P)))<c m(P).
Then if we knew that e-m *

that CL(e(P)) = e(P), i.e. that e 1s gurjective, since

.fe Mor POS(Z) then we would get

e.m-l- P=idp (since e is epi and e.m_l-f-e = e-m-lom = e-idp =
= 1dg-e) and so VaeCL(e(P)) e(m  (£(a))) = a, i.e. ace(P),

1

But even m — . £e Mor POS(Z) since for any Z-set A<R with

a = sup (A), £(A) is a Z-set and f(a) = sugaf(A) and since

P(R)E m(P) and m 1g full m L(£(A)) is a Z-set in P, so it
must have a supremum and this is wl(r(a)). Since Ya,be P
e(a)<e(b) = rle(a)) «r(e(b)) => m(a)<m(b) => a<db e is
also full. Thus e is full and surjective, i.e. an isomorphism
and hence m is an extremal mono.

O Corollary 1.

Corollary 2: POS(Z) is co-(well-powered).
Proof: It is enough to prove the following

Lemma 8: For any Pe |POS(Z)| and XeP, CL(X) =¥, where
X is the join-closure of X in P, i.e. X = {sup S:SXi.

Proof: We are going to prove by transfinite induction
on « that a}fﬁ-’_)& a implies a = sup Xa, where Xa ={xeX:azx3.
Therefore let bzx VxeX, for some beP. If o« = 0 then

3Y cPiaccl (Ya) & VyeY, BxyeX:a?_x >y, which immedia-

¥
tely implies bZ a.

Now suppose o > O and that for any (3 < « the statement holds.

Then 3Y cPiacecl (Ya) & Vye¥, Secy < & :Z!bye P:by_>y &
& a+Xy1X b . Since by Cor. 1 of Prop. 1 Vye¥, X, X,
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by induction hypothesis we get that Vera bz by. Then byZy

and aecl (Ya) imply b= a.

1]

[2]

[4]

[5]

£6l

J.

Je

J.

O Lemma 8 and Corollary 2
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