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COMMENTATIONES MATHEMATICAE UNIVERSITATIS‘CAROLINAE

24,1 (1983)

LOCALLY NICE SPACES UNDER MARTIN'S AXIOM
Zoltan BALOGH

Abstract. The starting point of the paper is a " ¢~
discrete extension" of Szentmiklossy s theorem that under Ma+
+ 7CH, a countably tight compact T, space has no hereditarily
separable, non-Lindelof subspaces.“Then a parallelism (under
MA+ - CH, again) is established between the theory of trees of
height @, and cardinality < 2% and the theory of locally
compact, “locally countable spaces of cardinality <,2"° e AB
epplications in infinite combinatorics, Baumgartner s theorem
on Aronszejn trees and a result of Wage on almost disjoint
counteble sets are deduced., It is proved under MA+ 1CH that
in a "locally nice"™ space hereditarily collectionwise T, imp-
lies paracompact iff the space does not contain a perfegt pre-
image of the ordinal space w,. Moreover, conditions are given
under which "hereditarily" c be omitted. These results imp-
rove a set of results of M,E. Rudin, D. Lane and G, Gruenhage
among which the first was an affirmative answer under MA+-CH,
to the Alexandroff’s old conjecture that a perfectly normal
manifold is metrizable,

Key words and phrases: Countably tight spaces, tree,
collecfionwise Ta, ordinal space <y, nommeirizable manifold.
Clessification: Primary 54A35, 54D30
Secondary 54D45, S4B35

Introduction. The aim of the present paper is perfect-
ly expressed by the title: we are going to give a strustural
analysis of some locally nice (locally countable, locally he-
reditarily Lindelof, locally compact etc.) spaces assuming
Martin s Axiom plus the negation of the Continuum Hypothesis
(abbreviated, as usual, Ma + —\CH). .

The econtent of the paper is arranged in four seections.

In the first section we prove an extension of Szentmik-
10133"! theorem that countably tight ocompact 1'2 spaces contain
no S subspaces. This extension (Theorem l1l.l) will then be a
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starting point in our further investigations. (For the his-
tory, see the beginning of the section and the Acknowl e¢dge-
ment.,)

In the seeond section locally compact, locally countab~
le spaces are dealt with, Theorem 2.2 is a strengthening of
a result (Corollery 2.4) of Gruenhage [9]. It shows that once
"the tree has no aﬁfbrunch" is substituted by "the space con-
tains no perfect preimage of the ordinal space q&ﬁ there is
a surprising parallelism (under MA + 1CH) between the theory
of trees of height Wy and cardinality < 2% and the more ge-
neral theory of locally compact, locally countable spaces of
eardinality < 2‘° + This parallelism is, in one direction, ex-
plained by the (known) fact that certain combinatorial struc-
tures admit a natural locally compact topology. We shall il-
lustrate this point by deducing a couple of familiar theorems
from infinite combinatorics: Baumgartner s theorem on Arons-
zajn trees and & result of Wage on almost disjoint sets.

The third section mainly concerns hereditarily collecti-
onwise Ta, locally hereditarily Lindelof, locally compact
spaces., The reader should recall at this point that the long
line, the most common example of a nonparacompact manifold
and the (nonparacompact) ordinal space w, are such spaces,
Now one of thg meain results of this section says that if we
exclude from the subspaces the perfect preimages of the ordi-
nal space Wy then, under MA +-CH, such spaces are paracom-
pact. Purther results show that although "hereditarily col-
lectionwise TZ" cannot be weakened to just "collectionwise
!2' in general, it can be weakened so if the space is either

of Lindelof degree < 2@ or connected and hereditarily nor-
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mal. A set of results of Rudin, Lane and Gruenhage concerning
perfectly normal, locally compact spaces follows, Another

(new) consequence concerns locally compact spaces with a Gy~
diagonal. At the end of this section we explain, with the aid

of known examples, why there is little room to improve our

results.

The fourth (and last) section is simply a specislization
of the results of the third section to manifolds (more gene-
rally, to locally compact, locally connected spaces). At the
end of this section we point out how there might be much room
to improve our results if we restrict ourselves to manifolds.

Throughout the paper we use the terminology and notation
of the ocurrent set theory and set-theoretic topology (es used
in Kunen [13] and Engelking [ 5], for example). If 2 1is a car-
dinal, A is a set, then by definition [A]%®=§A c As |A = 2},
A®= {A"c Az|A‘l < 2} . A1l spaces are meant to be topolo-
gical and regular '.El. Some deviation from the standard usage
is that like FPremlin [6], we say "X is countably tight" inste-
ad of "X has countable tightness", A always denotes the closu-
re of A in the space X, whatever spa.c;a the letter X denotes
in that context.

1. Locally countable spaces in countably tight compact

spaces
In 1981 the author observed that the proof of Szentmik-

1688y ‘s famous result [21) on the non-existence, under MA +
+1CH, of S subspaces of countably tight compact spaces al so
applies to prove, more generally,

Theorem =~ (MA( cal)). Bverv locally countable subspace
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of c-rdinality ) in a countably tight compact space is the
union of countably many discrete subspaces.

He then proved a number of consequences which form part
of this paper.

The proof of Theorem =~ relied on the order type of
w4, a8 did Szentmikléssy ‘s proof. However, having been in-
formed on the proof of Theorem =", D, Fremlin [6] was able
to get rid of this restriction and proved

Theorem = (MA +"1CH). Every loceally countable subspace
of cardinality < 2“ ina countably tight compact space is
the union of countably many discrete subspaces.

In some of the resulis of this paper the following more
general version of Theorem = will be extremely useful:

Theorem 1,1 (MA +CH), Let X be a countably tight com-
pact space, Z be a locally countable subspace of X with
[21<2%, and 7V be a temily of < 2 open subsets of X such
that

(a) Z c UV

(b) PFor every Ve ¥ there is an open subset IJv of X
such that Vc Uy and \Uvnz l=2 ©.

Then Z = Uneo‘n such that each A, is a closed disore-
te subset of the subspace Y = UV".

To prove Theorem 1.1 we need the following two results.

Lenma 1,2 (Szentmikléuy [21], in essence). Suppose that
{Kgx fe @} 18 a family of pairwise disjoint finite sets and
%5 1is a family of sets such that

(a) B is closed under finite unions

(v) Por every Be H , IBn( UfGﬂle)l £ @3

(¢) There is a sequence {Bc: (e - 3¢ B such that forx
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every 7 < § =< <y we have Bfn K,z* g

@
Then there is & set De[U?Glegj 17 . and a seqience
®

{BE: fe @y} such that for every Cc[D] ' there is an
e Wy with {G§U{B§: fe o -o¢ ¢ centered,

Lemma 1,3 (Galvin and Hajnel). Suppose MA holds, P is a
c.c.0. poset of cardinality < 2% and & 1s a family of < 2%
dense subsets of P, Then P = Unec) G, such that each G, is
P-generic. over .

The heart of the proof of Theorem 2.1 (viz. that the po-
set we set up is c.c.c.) will proceed parallel to the proof
of Lemma 44 B in Fremlin [6]. However, we have to set up a
different poset from that of in [6] and, therefore, part of
the notation of [6] 1s not applicable here. Thus we think: to
make our paper more readable (and, perhaps, the statement of
Theorem 1.l more convinecing) by giving the details here.

Proof of Theorem 1.1, Let P = [2]°“x [U1°“ with the
following pertial order:

CK,M>2<K",%’> 1212 KcK', e c ¢’ and (K- K)n (Ug) = 8.

Suppose P is not c.c.c. Then there is a family pf =
-<K§' ?CE> (g < @,) of pairwise incompatible members of P.

We may suppose that

(1) {ngfe wl} forms a A-system with root K;

(11) Por every € e @, K’; nU <¢ (Uae'l) = @, where
KE*-KE-K (§ e ).

To see that we can make sure (ii) note that
IU"L‘E (U&,L)nzlé. @ for every § & @,, and the Kg‘ ‘s are
pairwise disjoint.

Since the p_. s are pairwise incompatible by (ii) we have

§
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mn < E < @y implies K:Ln ( U3€§-)#=¢-

Thus the family B= {(UH)s1 ¥ €[V]<% and the sequen~
ce {K“ 1fe @, satisfy the conditions of Lemma 2.2, Thus
there is a set D ¢ [Z] “ and a sequence -{BE: ge wl}cds such
that

(x) for every C e[DJQ" there 18 an o € 4 with
{c}u{Bgz fo o ~ot} centered.

Note that each B§ has the form BE = ugeé for some

'5(/; e [71%% and 8o

(xx) Bg c Uua&'g Uy

Let us choose inductively a couple of sequences oo(g e

ew,, ch X(ge @) in the following ways:

(1) o = UL UgeVe Upoe ®g3

(2) (D-Gg)n nfsc Bg*ﬂ for every celcw, - x (§ )<

(3) m<§ implies ¢ (7 )<cc(§ ).

(2) is possible by (x ). (Remember that by condition (b)
of Theorem 1.1 each Gf is countable!)

Now let, for every ? € @y,

Fg = ﬂez«, (g)B§z>
By (xx%)» F§C§¢(g)‘ Geype On the other hand (2) implies
(kxx) F§ n (I-G§)+¢ for every ge e

Thus FE $ Ff 410 1eeod PF tfe 6\)1} is & monotone increas-
ing family of compact subsets. Since X is countably tight,
this implies that F = UE c® ?E is compact. Since

FcU Geo and the G, s are increasing, there is a
feoy § &
g € @, with Pc Gf s in contradiction with (xXxx).

Thus P i8 a c.c.c, poset of cardinality < 2") « For eve-
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ry VeV consider
By ={<K, %> € P:Ve 3.

Ey is P-dense, since any p -(Kp. ’pr> € P can be exten-
ded by p° -(Kp, 'acpu{vbe Bye Let D = {By:Ve V'Y, and
congider a GCP such that G is P-generic over D . Let us de-
fine

A =U$R:(33%) (K, %> € 6.
We claim that A is closed discrete in Y = UU . Once we
prove that claim, Theorem 1.1 follows from Lemma 1.3,

To see that our claim is true, it is enough to verify
that |VnAl< w for every Ve ¥ . To see this, let p =
=<xp,acp> € EynG, Now, if we had VnA ¢ Kp then there would
be a zeVn A - K. Then, by z€ A we could find a p” =
= <Kp,,35p, > € G with zer,. We may assume p 4 p. Then

zeVn (K, - K))c (URIN (K, - K.

But p’¢ p implies ( U?ep)n (Kp, - Kp) = @ , a contradiction,
Thus Vn AcC Kp, i.e., |lVNAl< @ , qee.d.

Remarks, There are lots of strengthenings of Theorem 1l.l.
For example, we have the following combinatorial strengthen-
ing which then enables us, under some additional conditions,
to prescribe some points to be accumulation points of the
An's in X,

Strengthening 1., Suppose that the conditions of Theorem
1.1 are satisfied, and B is a family of < 2% subsets of Z
such that no member of 73 can be covered by a finite subfa-
mily of ¥ . Then, in eddition to the conclusion of Theorem
1.1, we can make 2 = Unﬁmll11 so that |BnA | Z @ holds for
every ne @ sand Be &,

To see that this can be done. sonsider the poset P of

N
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the proof of Theorem 1.l and let, for everyme <> and Be 53)

D (B) ={<K,%> € P: |KnB\zn}.

D (B) is dense in P, since for any p =(Kp, 9€p> € P the-
re 18 a K€[B -~ u*aep]“‘, and then p can be extended by
p’ = (KpuK, 'JCp)eDm(B). Now add to the family @ at the end
of the proof of Theorem 1.1 all of the D (B) ‘s (me @ ,Be®D).
Let GC P be P-generic over this &) and A = U{K:(3% ) <(K,¥# €
€ G}, Then it can be easily verified that Be 53 implies
|IBAA[Zm for every me o .

Sirengthening 2., Suppose that the conditions of Theorem
1.1 are satisfied. Further suppose that ¥ = USV:V e V¢ end
Pc7Z - Y i8 e closed subspace of X such that F has an outer
base B* of cardinality < 2% in Z. Then, in addition to the

conclusion of Theorem 1.1 we can make 2 = UJ An so that

- new
AnDF holds for every me .

To see that this strengthening is possible, let
B = {Bn Z:B e B* » BnP+ @t cP(2). Suppose indirectly that
BnZc U{H:He ¥} for some BnZe B and ¥ e [ U1°%, Then
B=BnZzc U{H:H ¢ #¥3}cY in contradiction with Fn B+g.
Thus we can apply Strengthening 1 to conclude that for every
BnZefH eandne w|BnZnA |2 @ holds. Since B* is an
outer base for F in Z this means that X oF,

2. Locally countable, locally compact spaces and infinite

combinatorics

Lemma 2.1, The following are equivalent for a countably
tight locally compact space X:

(a) The one-point compactification X¥ = Xu{x*} cf X
is countably tight;
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(b) X does not contain a perfect preimage of the ordinal
space ;.

Proof. To show (a) = (b), it is enough to verify that
if a space X has a perfect map f onto the ordinal space Wy
then X cannot be embedded into a compact space X ot countable
tightness. Suppose indirectly that it can be embedded. Then,
since X = £57¢( @,) is not compact, there is a point xe olyg X -
- X. By #(X) = @ there is a countsble ACX with x¢ cf3A - X.

Let o € w, be such big that Ac £ (cc Ufx}) = X+ By the

1l
perfectness of £, X, is a compact subset of X so that
x ¢ of3X, , in contradiction with AcX .

A less trivial task is to prove (b) =3 (a), but this es-
sentially follows from the following result of Gruenhage and
Burke (see [8],[3]):

(GB) If Y is e noncompact space and every separable olo-
sed subspace of Y is compact, then Y contains a perfect pre-
image of the ordinal space 2

Now assume that X* does not have countable tightnesa.
Then there is an Ac X, |Al> @ such that ¥ = cfo ia not com-
pact but cle' is compact for every A'e [AJw « Then, since Y
is countably tight, every separable closed subspscs of ¥ ie
contained in clYA' = cfo' for some A e [A]® ; and so is com~

pact. Thus (GB) is applicable.

Theorem 2.2 (MA +~\CH). Suppose that Y is o locally .
compact, locally countable space of cardinality <« 2% |, %hen
the following conditions are equivalent:

(a) The one-point compactification X of Y is countsably
tight;

(b) Y does not contain a perfect preimage of wl,-
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(c) Y is the union of countably many closed discrete sub-
spaces;

(d) Y is a Moore space,

Proof, The equivalence of (a) and (b) follows from Lemma
2.1. Therefore it is enough to show (a) => (¢), (¢)=> (4) and
(d) => (v).

(a) => (c). Let 7 be a base of cardinality <2% for Y
consisting of open sets with compact closures. Since Y is an
open, locally compact, locally countable subspace of X, it is
easy to find, for each Ve V¥ , an open subset Uv of X such as
required in the conditions of Theorem 1l.l. Then applying Theo-
rem 1.1 with 2 = Y finishes the proof.

(¢) =>(d). It is wellknown, more generally, that a first
countable space which is the union of countably many closed
discrete subspaces, is developable,

(d) == (b). Since a countably compact Moore space is com-
pact, and subspaces of Moore spaces are Moore, we infer that
a perfect preimage of @y being & countably compact noncompact

space, cannot be embedded in any Moore space.

Remark. As one can easily prove, (c) and (d) are equiva-
lent in ZFC even if Y is only supposed to be locally countable
and first countable, We, however, will not need this fact in

the present paper.

Corollary 2;2 (MA +CH)., A locally compact space Y of
cardinality < 2% is a Moore space if and only if it has a Gy-
diagonal,

Proof. It is enough to note that by a result of J. Cha-

ber [4]) a countably cor-e~rt noncompact space (in particular,
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a perfect preimage of wl) cannot have a Gy-diagonal,
Remark. There are examples (Gerlitz [7], Burke [2], W.
Weiss [ 22]) of locally compact nondevelopable spaces with Gy-
diagonals. Those spaces are locally countable and have cardi-
nality 29, It is en interesting consequence of Corollary 2.3
that there are no such spaces of cardinality @y in ZFC (cf.
Corollary 3.14 and Remark 3 at the end of the third section).

Corollary 2.4 (G. Gruenhage [91, MA +71CH), A locally
compact space of cardinality < 2% 1g a Moore space if and on-
ly 1f 1t is perfect.

Proof. No perfect preimage of aal is a perfect space.
(Otherwise its perfect image, (‘)1 would be a .perfect space
which it is not.)

The proof of the following folklore result is omitted.

Proposition 2.5« Let T be a tree of height &)1. Equip

T with the tree topology. Then the one-point compactification
of T is countably tight if and only if T has no cnl-bra.nch.

Corollary 2,6 (Baumgartner, MA +-1CH), Suppose T is a
tree of cardinality < 2% and T has no wl-branch. Then T is
the union of countably meny antichains.

Proof. Note first that if Ac T is closed discrete in

the tree topology then A is the union of countably many anti-
chains.

(Indeed, if A is closed discrete then for every xe€A,
2nA ={ye Aty4q x} is finite. Now consider, for each n € @
the entichain A, = {xcA:RNA = n+l}. Then & = U. A .)
By Proposition 2.5, the one-point compactification of T is
countably tight so thaf Theorem 2,2 implies that T is the
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union of countably many closed discrete subspaces, and thus,
of countably many entichains.

The last corollary is essentially due to Wage (see [18],
P. 500).

Corollary 2.7 (MA +7CH). Let 2 < 2% be an uncountab-
le cardinal and {Hl’ £ € L} be an almost disjoint family of
countable subsets of s with |L1<2% . Then 2= Unew‘n
such that for eachn e , {Hy: L€ Liu{A,} is almost dis-
Joint.

Proof. Define a topological space X in the following
way.

The underlying set of X is the disjoint union of L and
22 o+ Define the topology of X by the following two conditi-~
ons

(1) 32 is an open discrete subspace;

(2) {123 u (Hy - F)iP e [21°“} 18 a neighbourhood ba-
ae for £ in X,

It is easily verified that (1) and (2) define a locally
compact T2 topology. Suppose indirectly that X contains a
perfect preimage P = r"(a>1) of the ordinal space @y Then,
since P is countably compact and L is closed discrete in X,
it follows that |PALl< @ ., Thus there is an x € @, with
£<57( wy -xX)Cc %% , Since 22 is a discrete subspace and
£¥( @, ~a) is countably compact, 12<¢ @y ~g)|l< @ , 8
contradiction.

Nnw, by Theorem 2.2, s (more generally, the whole spa-
ee X) i3 the union of countably many closed discrete subspa-
czs of X, fhen we can finish the proof by observing that

eweit ity , being o compact set in X, has a finite intersection
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with any closed discrete subspace.

3. On locally nice spaces

Definition 3.1, We shall say that a space X is 6 -collec-
tionwise T2 if for every closed discrete subset A of X we have
A= UnsoAn such that for each n € @ , the points of An can
be simultaneously separated by open subsets of X,

Remark. Collectionwise Tz spaces are 6 -collectionwise

Tz. Normal 6 -collectionwise T2 spaces are collectionwise T2.

Lemma 3,2, Let X be a locally hereditarily Lindelsf, lo-
cally hereditarily separable, hereditarily 6 -collectionwise
'1‘2 space. Then X is the topological sum of clopen subspaces
each having the Lindelof degree = @y

Proof. First of all we claim that if Fc X is any subspa-~
ce of X then there is a & -disjoint collection Q} of heredita-
rily Lindeldof, open subsets of X such that (Ug,)nF is dense
in F. .

To prove this, let U be a maximal family of pairwise dis-
joint, relatively opén, separable subsets of P, and let, for
every Ue U , S(U) = {x,(U)ine @} be a dense subset of U,
Purther, for every Ue % 1let us choose an open subset b) of X
such that A F = U, Now, for every ne @ , S, = {xn(U):UéQL}'
is a closed discrete subset of the open subspace U{T:U e %3+
Since U{T: e A% is 6-collectionwise T,, there isa 6 -dis-
joint collection {G (U):Ue %y = G of open hereditarily Lin-
deldf subspaces of X such that x (U)e G (U) for every U e U,
Then G= U _ G, is as required.

Now define by induction a sequence {{F. , Gy :xe (')1}
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in the following wey. P = X and G, is a collection of pair-
wise disjoint, open, hereditarily Lindeldf subspaces of X
such that UG 18 dense in X. If pE @y - {0} and
{{P¢ 1G> 1 € 3% is already defined, then let Py o= X -
= Urep (UGg) and let Gy be a €-disjoint collection of
hereditarily Lindeldf, open subspaces of X such that ( U% )o
Ia FB is dense in F,s .

Then X = U_ ¢ 6,1( UG, )+ Indeed, if there was an x€X -
-U e UI( UG = Nge aquc » then we could teke a heredita-
rily Lindeldf neighbourhood V of x and, since ( UGy InFy =
= F ., we could take a point x.€ Vn (‘U Q,w)n F, for each
< € @4+ Then -(xoc $LE 6)13 would be an uncountable scatter-
ed subspace of V, in contradiction with the assumption that V
is hereditarily Lindeldf.

*

Thus G* = U a)lgfcc

the union of < @, disjoint collections. Since every member

of g,* is c.c.cey it follows that every G e g,* intersects

is an open cover of X and g,* is

only £ @, other members of G* . Thus, by an essy inducti-
on argument, X can be decomposed into disjoint open (and, thus,
closed) subspaces each of which is the union of < 01 members
of G* and has, therefore, Lindeldf degree £ Wy

Theorem 3.3 (MA +71CH). Let X be a locally hereditarily
Lindelof hereditarily & -collectionwise T2 space. Suppose
that X can be embedded into & countably tight compact space..
Then X is paracompact,

Proof. Note first that since MA +~CH implies a count-
ably tight compact space contains no L subspaces [21] X is
also locally hereditarily separable, Further, a locally Lin-
deldf space 1is paracompact iff it is the topological sum of
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its clopen Lindelof subspaces, If the space is, in addition,
locally hereditarily Lindelof and locally hereditarily sepa~
rable, then these clopen subspaces are automatically heredi-
tarily Lindelof and hereditarily separable,

By Lemma 3.2 we only have to consider the case when the
Lindelof degree of X is @i Let U={Uy 3 & € % be an open
cover of X by open, hereditarily Lindelof subspaces such that

U - UﬂEOCU =+ @ for every o € @W,. Let

A ={xe @, Urseccrs* ﬂexu‘a}

To prove that X has a topologicael decomposition such as
described above it is enough to show that A is non-stationary
in ©q.

Suppose indirectly that A is stationary in a)l. Then choo-
se, for every cc € A, & point x eUﬁewﬂ ﬁéd’Uﬂ.Since

Z 3 implies x, & Us » the subspace { X, :oc € A is locally
countable, Thus we can apply Theorem = to get A = Unew n

such that each{xec tcC€E Ani is a discrete subspace. Let An
o

be non-stationary in 2 and let, for every o € Ano, \{x be an
open subset of X such that Von{x :oe Ano'i ={x_ } . Then
D= {xcc toC € Ano3 is & closed discrete subspace of the open
subspace S = U4 Vg soCce Ano} .« Since X is © -collectionwise

T2, there is a stationary set Ar; c An such that we can find
o o

a family{(}oc t oG E Ar: $ of disjoint open subsets of S (and
(¢}
thus, of X) such that x € G,_1c for every o € Al;o. Since for

every o« € Ano X, € Ufsecc A it follows that for every

& € Ar'1 there is an f(« )€ o0 With G N Uf(d)#(b. Since Ar:

(<] [

is stetionary, the Pressing Down Lemma implies that there is
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& f3e w; with =3¢ B = @q. Thus U intersects uncount-
ably many G ” ‘s in contradiction with our assumption that Ug
is & herediterily Lindelof (and thus, c.c.c.) subspace.

Theorem 3.4 (MA +71CH). Let X be a locally compact, lo-
cally hereditarily Lindelof, hereditarily & -collectionwise
T2 spece. Then X is paracompact if and only if X does not con-
tain a perfect preimage of the ordinal space wl.

Proof. Only the "if" part needs proof. So let X not con-
tain a perfect preimage of @y Then by Lemma 2,1 X can be
embedded into & compact space of countable tightness. Thus
Theorem 3.3 is applicable,

Theorem 3.5 (MA +"CH)., Let W be a locally hereditarily
Lindelof, & -collectionwise T2 gpace with Lindelof degree
< 2“ + Suppose that W can be embedded into a countably tight
compact space X, Then W is hereditarily & -collectionwise ‘1‘2.

Proof. Let 72 be an uncountable discrete subspace of W,
Let U be & cover of W by open subsets of X such that UnW is
hereditarily Lindelaf; and thus, Un Z is countable, for every
UeU . By regularity of X there is a cover 7/ of W by open
subsets of X such that for every Ve U there is a Uy € A
with Vc Uy. Since L(W)< 2% we may essume |V | < 29, By
Theorem 1,1 2 = Unea) An such that each An is closed discre-
te in ¥ = UV , and thus, in W, Since W is & ~collectionwise
Tz, it follows that Z is the union of countably many collecti-
ons {Ank m,k € w¥ such that the points of each Ank can be si-
multaneously separeted by open subsets in W,

Combining Theorems 3.3 ahd 3.5 together, we get

Theorem 3.6 (MA +71CH).  Let X be & locally hereditarily
Lindelof, 6 -collectionwise T, space with Lindel3f degree
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< 2‘0 o Suppose that X can be embedded into a countably tight
compact space, Then X is parecompact.
The following result of Nyikos [15) is an application

of Jones’ Lemma,

Lemma 3,7 (Nyikos [15)). Suppose that cf(2%) > @1
Then every separable, locally hereditarily IJindcle, heredi.
tarily normal space has the Lindeldf degree < 2%.

Remark. In [15) Nyikos made the assumption "2% is a
successor" but his proof only requires "cf(2%) > @.",
One easily checks that Nyikos* argument is valid to pro-

ve the following more general versions

Lesma 3,7° . Suppose that 2% > @, and for every
A< 29, 22 2 2% nolds. Then every locally hereditarily Lin-
dol3£, hereditarily normel space of density < 2% has the
Lindeldf degree < 2%.

(Note that the second cardinal assumption in Lemma 3.7°
implies that 2% is regular.)

Iterating Lemma 3.7°, we get

Looma 3.8, Suppose that 2% > @, snd for every A < 29
2* = 2% holds. Let X be a locally hereditarily Lindeldof, lo-
cally hereditarily separable, hereditarily normal space and
X be an arbitrary point of X. Then x is contained in a clo-
pen set of the Lindeldf degree < 2%,

Proof. Note first that since X is locally herediverily
separable, every subspace Yc X with L(Y)< 2% also satisties
a(Y)< 2% and thus, by Lemma 3.7°, L(Y)< 2% . Therefore we
may construct an increasing sequence {I“' teL € 6)1§ of open
subsets of X such that
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(a) xex,?
(b) I(x, )< 2% gor every o € @y,
(6) X c Xy for every o« € ;.

Then Y = Uc‘(‘e o X, is an open subset containing x. By

(e)y Y=U_ a)lrec , which implies ¥ = Y, since X is countab-

1y tight. Finally L(Y)< 2* follows from (b) and from c£(2%)>
> 6)1o

Remark. There are other cardinal assumptions which make
Lemme 3.8 true. (One such is, for example, 2% = wy(n2z2).)
However, the assumptions of Lemma 3.8 suit us best, since we
are going to essume MA +-1CH which implies (VA < 2%)

(2% - 29),

Putting Lemma 3.8 and Theorem 3.6 together yields

Theorem 3.9 (MA +~CH)., Let X be a connected, locally
hereditarily Lindelof, hereditarily normal, 6 -collectionwise
T2 space, Suppose that X can be embedded into a countably
tight compact space. Then X is hereditarily Lindelcf.

Proof. Since a countably tight compact space contains
no L subspaces, X is locally hereditarily separable, Lemme 3,8
and connectedness together then imply L(X)< 2% go that Theo~
rem 3,6 is applicable to get paracompactness of X, A paracom-
pact locally hereditarily Lindeldf space, however, is the free
sum of clopen herediterily Lindeldf subspaces, so X is heredi-
tarily Lindeldf agein by connectedness.

Remark. To get paracompactedness of X we made use of
connectedness only through Lemma 3,8, Therefore, if we could
prove some analogue of Lemma' B.é with "hereditarily normel"
in place of "hereditarily & -collectionwise T," then we could

quote Theorem 3.6 to prove
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Conjecture 3.10., Suppose that all the conditions of
Theorem 3.9 except connectedness of X are satisfied. Then X
is paracompact.

Looking back to Lemma 2,1 gives us the following "local-

1y compact versions™ of Theorems 3.6 and 3.9, respectively.

Theorem 3,11 (MA +-CH)., Let X be locally compact, lo-
cally hereditarily bindelcf, 6-~collectionwise Tz aspece with
the Lindeldf degree < 2’ , Then X is paracompact 1ff X does
not contain a perfect preimage of Wy

Theorem 3,12 (MA +—1CH), Let X be a connected, locally
compact, locally heredita\rily Lindelof, hereditarily normel,
6 -collectionwise T2 space. Then X is paracompact iff X does
not contain a perfect preimage of Wy

In [9] Gruenhage proved that under MA +-CH, every per-
fectly normal, locally compact space is paracompact provided
it is collectionwise normal with respect to compact sets. A
stronger form of Gruenhage ‘s result is a corollary to our

Theorem 3.4:

Corollery 3.13 (MA +7CH), If X is a locally compact,
perfect, 6 -collectionwise ‘1'2 space, then X is paracompact.

Proof, It can be easily seen that a perfect, 6 -collec-
tionwise T2 space is hereditarily € -collectionwise '1‘2. Thus,‘
meking use of the fact that perfect compact spaces are here-
diterily Lindeldf and that a perfect preimage of the ordinal
space o)l is not a perfect space (cf. the proof of Corollary
2.4), we can apply Theorem 3.4.

Corollary 3.14 (MA +1CH). If X is a locally compact,
G -collectionwise Ta space with a Ga*-dia.gonal, then X is
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paracompact provided one of the following conditions holds:

(a) X is hereditarily & -collectionwise T,;

(b) X has the Lindelof degree < 20;

(¢) X is 15 and connected,

Proof. In order to apply the corresponding theorems pro-
ved above it is enough to note that a compact space with a
GJ-diagonal is second countable and a perfect preimage of @y
cannot have a GJ-diagonal (cf. the proof of Corollary 2.3).

Remarks, 1, Some corollaries of the theorems of this
section which concern manifolds (more generally, locally com-
paot, locally connected spaces) will be included in the fourth
(and last) section.

2. The Kunen line [11] is an example, under CH, of a lo-
cally compact, locally countable, sublmetrizable, perfectly
normal, hereditarily collectionwise normal space of Lindelof
degree @y which is hereditarily separable, does not contain
a perfect preimage of wl, but still fails to be paracompact.
(Note that "geparable + paracompact"” implies "Lindeldof".)
This shows thet MA +CH is an essential assumption in Theo-
rems 3.3, 3.4, 3.6, 3.11 and Corollaries 3.13, 3.14(a),(D).
(One, however, has to write L(X) = ), instead of L(X)<2%
in Theorem 3.11 and Corollary 3.14 (b).) Note that MA +-1CH
is also essential in some other results of this section, whe-
re it was assumed (cf. Remark 1 in the fourth section).

3. W, Weiss [22) constructed a naive exsmple of a normal,
collectionwise T2, locally compact, separable, submetrizable
space which is not paracompact. This example shows that "he-
reditarily 6 -collectionwise T2" in Theorems 3.3, 3.4 and Co-
rollary 3.14 (a) cannot be weakened to "6 ~collectionwise TZ"'
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Purther, it shows that L(X)< 2% cannot be omitted in Theorem
3.6, Corollary 3.1l and Corollary 3.14 (b).

4, I£ MA +°CH holds, then there is an example ([17], p.
47) of a locally compact, normal, nommetrizable Moore space.

Thus "¢ -collectionwise Tz" is essential in Corollary 3.13.

4, On locally compact, locally connecied spaces

In this final (and really very short) section we refor-
mulate some of the results of the third section for locally
compact, locally connected spaces (in particular, for mani-
folds). Our aim in doing so is, on the one hand, to get some
further corollaries, on the other hand, to point out some pos-
sible improvements of our results if only manifolds (or more
generally, locally compact, locally connected spaces) are

considered,

Theorem 4,1 (MA +-CH), Let X be & locally compact, lo-
cally hereditarily Lindelof, locally connected, coneccted spa-
ce (in particular, let X be a manifold). Suppose that X con-
tains no perfect preimage of wl. Then X is Lindeldf if one
of the following conditions holds:

(a) X is hereditarily 6 ~-collectionwise T3

(b) X is G -collectionwise T, and L(X)<2“’;

(¢) X is 6 -collectionwise T2 and heredi tarily normal.

Corollary 4.2 (Lene [14], Rudin [20], MA +-CH). Let X
be a perfectly nogmel, locally compact, locally connected,
connected space (in particular, let X be a perfectly normal
manifold). Then X is Lindelof.

Proof. A perfectly normal, locally compact, locally
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connected space is, by a result of Alster and Zenor [1l], he-
reditarily collectionwise '1'2. Since a perfect preimage of
“’1 is not a perfect space (cf. the proof of Corollaery 2.4),
and a perfect locally compact space is locally hereditarily
Lindeldf, we can apply Theorem 4.1 (a).

Corollary 4,3 (MA +CH), Let X be a locally compact,
locally connected, connected space (in particular, a manifold)
with a GJ-dingonal. Then X is second countable, provided one
of the conditions (a),(b),(c) of Theorem 4.1 holds.

The proof goes parallel to the proof of Corollary 3.14.

Remarks. 1. M,E. Rudin and Zenor [19] constructed, under
CH a perfectly normal, hereditarily separable, herediterily
collectionwise '.l'a. non-metrizable manifold of weight 6)1.
This showa that MA +"1CH is a necessary assumption in Theorem
4.1 and Corollary 4.2 (and, a fortiori, in Theorem 3.12). We
do not know whether it can be omitted from Corollery 4.3.

2, The Prifer manifold is a separable, nommetrizable Moo-
re manifold, Since it is Moore, it is perfect and does not
contain a perfect preimage of a)l. Thus the additional hypo-
theses (a),(b),(c) in Theorem 4.1 and Corollary 4.3 and nor-
mality in Corollary 4.2 cannot be omitted.

3. P, Nyikos [16] conjectures that, under MA +-1CH, eve-
ry T5 manifold of dim>1 is metrizable., (In dimension 1, the
long line is counterexample.) The best results we are able
to prove in connection with this con:)ecture. are Theorem 4.1
(a),(v),(c)s These results give us raise tl:e following que=-
stions:

Question 1. Suppose MA +-1CH (or PFA). Does every non-
metrizable ‘!'5 menifold contain a perfect preimage of 6)17
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Question 2, Suppose MA +"1CH (or PFA). Does every nor-
mal, nommetrizable manifold of weight < 2"’ contain a per-
fect preimege of 001?

By Theorem 4.1 (b),(c) we could give affirmaetive answers
to Questions 1 and 2 if we had an affirmative answer (under
MA +~"CH, or PFA) to the following question of Alster and
Zenor [1]:

Question 3 (Alster and Zenor [1]). Is every normal ma-
nifold collectionwise Tz?

Acknowledgement., Having been informed of Theorem >~
in 1981 in Ppague, Heikki Junn11§ observed that he had a si-
milar result: Returning to Helsinki, he checked his 1979 no-
tes and he kindly informed the author [12] that he actually
proved Theorem = , two years before the author and Fremlin
(re~)discovered it. He, however, was reluctant to publish
his result, because he could see no applications. Thus Theo-

rem 2 should also be attributed to Heikki Junnile.
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