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A CONSTRUCTION OF THE GLEASON SPACE 
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Abstract; A construction of the Gleason space. 
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The Gleason space of a compact (Hausdorff) space X is the 

(unique up to homeomorphism) extremally disconnected compact 

space G(X) which has an irreducible mapping onto X; see e.g. 

Comfort and Negrepontis 11] page 57 and for the original con­

struction see Gleaason [3]* The aim of this note is to show 

an easy and short construction of the Gleason space. This 

construction was inspired by some ideas of Mioduszewski 143 • 

Recall, a space X is extremally disconnected if for eve­

ry open set U c l , the closure clU is open. A continuous map­

ping fsX onto> Y will be called irreducible if for every clo­

sed set P e l , df(F)#=Y whenever P4*X. If X is compact, then 

our definition coincides with the usual one which asserts that 

f is irreducible if there does not exist any proper closed sub­

set P of X such that f carries P onto Y| see 111 page 55. 

Lemma 0.. If T is a regular topology on a set Xt then 

there exists a completely regular extremally disconnected 
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topologr ** ©a X such that Tc T* and the identity ii(X,T*)—y 

—>(X fT) is irreducible, where (XtT) and (XfT*) denote X en­

dowed with the topology T and T* respectively. 

Proof. Let S he the set of all regular topologies on X 

containing T and such that 

W if T*e Sf then the identity i:(X fT
#)—• (XfT) is 

irreducible. 

The set S is ordered by inclusion. Hote that if L c s is a chain, 

then the topology T# generated by U L belongs to S. Indeed, T# 

is regular because U L is & base of T ' and all topologies in 

L are regular. To show that i:(X,T*)—^*(X,T) is i r reduc ib l e . , 

suppose that X - U is dense in (XfT) for some U € U L# Since 

Ue T" for some Twe Lc Sf we get a contradiction with condition 

(1)« Sof every chain in S is bounded. Hence, by the Kuratowski-

Zorn tiarama, there exists in S a maximal element T* • It remains 

to show that (X,T*) is extremally disconnected; note that ex-

tremally disconnected regular spaces have bases consisting of 

closed-open sets, hence they are completely regular. Suppose, 

Ue T* and clUf T*f where cl denotes the closure in T* . Let T' 

be the topology generated by T*u 4 clUr*. Clearly, T * is regular 

and T*u 17n elUiV& T*S is a base of T '. If X - (Vr> clU) is den­

se in (XfT)f then Vn clU - 0. Indeed, X - (Vn U) is dense in 

(XfT) and Vn Ve T*€ Sf hence Un V » 0. Therefore T *€ Sf and we 

get a contradiction with the maximality of T. 

Lemma 2. If X is regular, fsX-^Bi^y is continuous and 

flG is irreducible for some dense GcX such that f(G) « Yf 

then f is irreducible. 

Proof. Suppose the contrary. Then f(X - U) is dense in 
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Y for some open Uc X, U4c0. Since X is regular, we can assume 

that U is regularly open, i.e. Int clU « U. We claim that 

(2) G - U is a dense subset of X - U. 

Indeed, if V c X is regularly open and Yo(X - U)n (G - U) * 0, 

then GoVcU. Thus clVCclU, because G is dense in X. Since V 

and U are regularly open, Tn (X - U) « 0. Hence, the condition 

(2) is proved. Now, since f is continuous and f(X - U) is den­

se in Y, f(G - U) is also dense in Y. But f|G is irreducible, 

so GnU • 0; a contradiction. 

Construction of the Gleason space: Let X be a compact 

space. By Lemma 1, there exist a completely regular extremally 

disconnected space Y and an irreducible mapping f from Y onto 

X. Clearly, f has a continuous extension T over the Cech-Stone 

compactification /*>Y. By Lemma 2, F is irreducible. It is easy 

to check that (3>Y is extremally disconnected; see e.g. Bngel-

king [23, page 453. Therefore ^Y is the Gleason space of X. 

Remark. By slight modifications, our construction can be 

extended to some wider classes of spaces. For such generaliza­

tions of the Gleason spaces (so called absolutes) see e.g. ex­

pository papers by Ponomarev and Sapiro [51 and Woods [63. 
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