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COMMENTATIONES MATHEMATICAE UNIVERSITATIC CAROLINAE 
24,2(1983) 

ON THE NOVAK COMPLETION OF CONVERGENCE GROUPS 

ROMAN FRl£,MARTIN GAVALEC 

Abstract > Some pro per t l e e o f a oonvorgonoo oommutatlve croup & 
are not i n h e r i t od by i t a f i a o o t complet ion Gi (oonotruoted toy J # 
Novák;)* Vo otudy two ouoh p r e p e r t l e o (& ! • Fréohet o r t e r o l o a - ť r o e , 
r e s p e c t i v e l y ) . , The r o o u l t o ohed moro l i g h t on t h e i n t e r p l a y b e t 
ween a l g e b r a i c and o loouro p r o p e r t l o o of group oompletleno* 

Kov wordo and phraoooi Convergonoe oonojutative group, Kovak 
complet ion, Froohot opaoo, d i v i e i b l e group, t o r o l o n - f r e e group* 

C l a s s i f i c a t i o n . Primary 54H13, 5^020 
Seoondary 54&55, 54B05 

1 # I n t r o d u o t i o n # In terminology and n o t a t i o n on 

opaoo0 and groupo wo f o l l o w Ikl and C5l. Some f a o t o , howovor, a r e 

r o o o l l o o t o d below* 

A oonvorgonoo oommutative group, abbrev iated t o oo-g r o u p , 

i o a quadruple (0>, ty T> + ) auoh t h a t (G, +) i o a oommutative group, 

( G, tf, y) l a a oonvorgonoo opaoo ( l « a * f tj.<z G xG deflmoo a oeouem-

t i a l oonvorgonoo o a t l a f y i n g axiomo (£0), (£Jy (%z)t and y: Z —* I 

l o the Induood oonvorgonoo oloouro opera tor - I t mood n o t bo 

p o t e n t ) | and the a l g e b r a i c and oloouro otruoturoo are oempatlalo 

( i * e # f 1$ s a t i s f i e s : (SO) I f imp-jbrnJ^ and y * tý-lúm y» , 

then there l o a ouboequenoe <i/H>> o f «*> ouoh t h a t ^ - ^ * £~*̂ **»--3 - # • 

Ao a r u l e - VI dono too the l a r g e o t oonvorgonoo induc ing the oamo 

oloouro operator p + Vo oay tha t <J^> l a a O a u e h y o e -

q u e n o o i f f o r ev-"-v ouboequenoe < .^ > o f <^> t h e ooqnoneo 
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< x - X - > £}f - converges to ths neutral elamant 0 of G , and £ 

is o o m p l s t o If every Cauohy sequenoe Of*- converges i-u G. 

A oomplsto co-group ( G} flf>, y , + ) ±m m. o o m p l e t i o n of 

(CytZ>$-> + )±CG±** f -dense subspaoa of (G, (g> f) and a 

subgroup of ( 6 , + ) * 

For every co-group ( 6 3 Of y y > -f ) J*Hbvak has constructed, 

in T5J, a oompletion ( G4> %>?<> + ) • Xt was shown in C1 J that 

ths completion has nioe oategorioal properties (it yields an epi-

refleotor into oomplsto co-groups) | ( Q^ y fjf f ^ •+ ) will be oaXXad 

the N o v a k o o m p l e t i o n ©f ( & > & > / ) + ) • Note that 

(unlike in ths case of a topological group) a oo-group can have 

more nonequivalent completions. In £21, V#Koutnik pointed out 

that if fS is a Freohet spaoe (unique sequential limits), then G4f 

need not be a Freohet spaoe• He also proved that if G is Freohet, 

then G4 is Freohet iff the quotient group G./G --* finite* 

Example 1» Consider the group Q. of all rational numbers 

equipped with the usual convergence of sequences* Xt is a Freohet 

oo-group# The Novak oompletion of & yields the group of all real 

numbers equipped with a rather strange convergence and closure* 

In view of Koutnik's result, it is not a Freohet oo-group. 

Some features of Example 1 are further developed in the next 

section* In the last section we show that the Novak oompletion 

of a torsion-free co-group need not be torsion-free* Ye also men

tion some related problems* 

2* Closure order* Recall that if (L}£t x) is a convergence 
M 

spaoe, then for eaoh ordinal number d a closure operator A is 

defined inductively: for A<= I put \°A~ A and \A~ \J \(XA) 
A<* SI 

for 4 > 0 * If SL is the first uncountable ordinal, then X is 

idempotent, henoe a topology* The smallest ordinal <6 for whioh 
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A is idempotent is said to be the t o p o l o g i c a l o r 

d e r of X | it wiXX be denoted by to-(A) * Freohet spaces (unique 

sequential limits) are pr a wisely those convergence spaces (L}£)A) 

for which itrU) = 1* 

In T3Jf L*MiS£k has construoted a co-group the topoXogioaX 

order of which is greater than 4 but it has a dense subgroup the 

topological order of which equals 4* Our first result shows that 

such groups are not rare* 

Theorem. Let (G>Vt} p }4 )be an incomplete co-group such that 

t<rt>)* 1 and Xet (Qf> tjf4*ft} +) be its Novak oompietion. If (G4) +) 

is a divisibie group, then. -If ($,)>' • 

Proof* If G1 is divisibie, then the quotient group G4/G is 

aiso divisibie* Since G Jr G4 and since the only finite divisibie 

group is trivial, the group G4/G ±m infinite* The assertion now 

foXXows from the before mentioned result of Koutnik (of* T2J). 

Corollary* Let G be a subgroup of the cc-group R of aXX real 

numbers such that Q c G tjr R and Xet 6. be its Novak oompietion* 

Then G4 is not a Freohet space* 

Proof* Xt foXXows from the construction of the Novak oompie

tion that (G )+) is the group of aXX reaX numbers* Xt is divisibie 

and hence G4 is not a Freohet space* 

However, the divisibility is not a necessary condition for 

the Novak oompietion to be Freohet. Ye present an example of a 

Frechet oo-group G such that its Novak completion G1 is not Fre

ohet and 64 is not a divisibie group* 

Example 2* Let 6 be the ring of aXX finite subsets of a coun

table infinite set X * Then G equipped with the symmetric diffe

rence as a group operation and with the usual convergence of sub

sets of X is a oo-group and the Novak oompietion G4 of G is the 
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set of all subsets of X equipped with the symmetric difference 

and a convergence different from the usual convergence of sub

sets (of# [5])« It is easy to see that G is a Frechet space, 

Ĝ  fails to be divisible (each Ae &if A + &, has order I ), and 

Gi falls to be a Frechet spaoe ( GjG is i n f i n i t e ) . . 

Problem 1, Does there exist an incomplete Frechet co-group 

G such that the Novak completion G. of £ is also a Frechet 

space? 

Problem 2* Let G be an incomplete cc-group and 04 its No

vak completion. Describe the relationship between to (f) and 

to(r<) • I» It true that if t(t(t)*1t then tcrfyjkll 

3. Algebraic order. In this section ire oonsider the rela

tionship between the (algebraic) order of elements of a cc-group 

and the order of elements of its completion. 

It is known that the completion operator for topological 

groups does not preserve torsion-type properties* E.g., the 

complete topological group T of all complex numbers having 

absolute value 1 has two dense subgroups, one of which is a 

torsion-free group (an infinite cyclic group) and the other one 

is a torsion group (the subgroup of all elements of finite or

der)* These groups are first countable* Hence, they can be con

sidered as Frechet cc-groups* Then T equipped with the corres

ponding convergences and closures yields the Novak completions 

of the two co-groups* Consequently, torsion-type properties are 

not preserved by the Novak completion of cc-groups* 

Ye present here an example of a countable incomplete Abe-

lian torsion-free oo-group G the Novak completion Gj of which 
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is not torsion-free and aXX nonzero elements nave either in

finite order or order 2* 

Note that G is a first countable Hausdorff topological 

group and the topological completion £ of £ has the same 

algebraic properties as G>4 (see Remark)# 

Example 3* Let G be the weak, direot product of oountably 

many copies of the group £ of aXX integers* The group & oan 

be visualized as the group of all mappings of -V into £ having 

finite support (for each f€&, f(*l)*0 for aXX but finitely 

many />t€/V) eqipped with the usual pointwise addition* For A^M , 

let W| be the set of aXX } * & for which £ (*)* f(l)~ ••• «$(4-*)* 0 

and T.fM is an even integer* Then <^> is a decreasing 

sequence of subgroups of G the intersection of which contains 

only the neutral element 0 of G . Consequently, Wj $ oan be 

taken as a cXopen basis at 0 and G becomes a first countable 

Hausdorff topological group* It foXXows from Corollary k in LkJ 

that G is also a Fr6chet cc-group in which a sequence < ̂ /H> 

oonverges to 0 iff for eaoh k*N the sequence <&*> --« *-*-• ty 

for aXX but finitely many Ai€N * Denote the resulting cc-group 

by (Qt ($\r>+)* l»t (&4ity4,fc,+) ->• *.** Novak compXetion. ¥e 

show that G4 has the desired properties* 

Recall that two Cauchy sequences <$„> » <X/tc> are equivalent 

if 0* Wn (fa-A^) . The group G4 consists of the set of all 

equivalence classes of Cauchy sequences (each point of & is 

identified with the class containing the corresponding constant 

sequence) equipped with the natural group structure and a cer

tain convergence of sequences* Bach divergent Cauchy sequence 

<AA> in G converges in GA to the equivalence class DcA >J 

it belongs to* 
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Let <AH> be a divergent Cauohy sequence in G . Then there 

are two possibilities. 

1. For each ke N there exists m(k)( A/ such that n^(i)^0 

whenever m >/n(k) • Then <ZkM> converges in G> to 0 and the 

ideal point C<AM>1 * G1 has order 2. 

2. There exists ktN such that km(k) •* 0 for infinitely 

many Ai € N » Then for each rm. *N the sequence </>nAH> cannot con

verge in £ to 0 . Hence the ideal point r<A/H>7^ tŜ  has 

infinite order* 

It oan be easily verified that 6̂  is not a Prechet space. 

Remark. Since & is a first countable topological group, 

the topological completion & of & is the group G>4 (consisting 

of equivalence classes of Cauohy sequences in 6 ) equipped 

with the corresponding topological and uniform structures. Thus 

each nonzero element of G has either infinite order or order 2. 
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