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COMMENTATIONES -MATHEMATICAE UNIVERSITATIS CARCLINAE

24,3 (1983)

NONSTANDARD MODELS OF ARITHMETIC AS AN ALTERNATIVE
BASIS FOR CONTINUUM CONSIDERATIONS
Karel CUDA

Abstract: From the point of view of

I) nonstandard models of arithmetic: A special type of
strong cuts in the sense of Kirby and Paris are considered. It
is proved that the pair of such a cut and the corresponding
ground model may serve as a basis for an alternative construc-
tion of real numbers. Some other set theoretical properties
are proved,

2) Nonstandard anelysis: Using nonstandard methods & mo-
del for real numbers is constructed in a theory much weaker
than Zermelo-Fraenkel set theory.

3) Alternative set theory: Considerations in a fragment
of AST are made and a contribution to the shiftings of horizon
problem is given.

Key words: Nonstarndard model of Peano arithmetic, Alter-
native se eory, strong cut, indiscernibility relation, pro-
longation.

Classification: Primery O3H15

Secondary 03ET70, 03HO5

Introduction. We consider a fragment of AST (Alternati-
ve set theory). Every nonstandard model of Peano arithmetic
(PA) or Zermelo-Fraenkel set theory for finite sets (ZF,,.)
with a new predicate R added to the language may serve as a
model for our fregment if R satisfies some properties given
below, We prove emong others that the elements satisfying R
form a strong cut in the sense of Kirby and Paris (see LKP]
for the definition and properties of strong cuts). The first
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point of view ¢of our paper is a conseguence of this property.

In our theory we construct a model for real nuambers ms
an Archimedean really closed £1eld with the supreme property.
Archimedean property Ls meant with respect to {he predicate B
coneldered as "to be a natural mmber® and suprems property ia
meant with respect to the properties deseribed in ocur theory.
Hence the obtained structure may be on ome hand richer and sm
%he other hand poorsr than the structure ¢f standard real oum-
bers. Namely if there is a nenstandard momber o satisfying R,
then two real munmbars which differ from each other oaly im -
th position of the dyesdic expansion must also differ in our
atructure, ut thay determine maximally one standard real nmm-
ber. On the other hand, if the ground mode) is countable then
sur structure must be countable, too (from the external point
of view). If R denotes the property "te be & standard natural
mnber® and the standsrd syetem of the medsl is P(®), then
both standerd and our model for reel rumbers are isomorphio.
The mentlonsd constructlon leads to the second polnt of view
on ouxr paper. I

Car tragmenf is the snallest "reesonable" fragment of AST,
*Reasonable® meang hers that we consider infinity phenomenon
using parts of formally finite seta and, in addition, we want
to have the class of all small natural nambers, If we inter=

" pret R as "to be an element of X¥, where X is a out different

from FN, we obtein & contribution to the shiftings of horizem
problem, Theas facts lead to the third polnt of view on our
paper.

The technlceal means uged in the paper are taken from non-—
standard analyais and AST, The procedures are only adoptad for
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weeker formal apparatus. This sdoption, however, is not quite
obvicous end especially the usage of nonstsndard topelogical
tochnique for proving set theoreticel zssertions is quite re-
markeble.

The paper 1s divided into two sections. In the first ene
we describe our theory, give some connections to the nonstan~
dard models of arithmetic and construct two models for reel
pumbers, In the second one we prove some gset theoretical theo-
rems in our theory.

The contents of the pasper was referred and discussed in

the Prague seminar on the AST.

§ 1. The construction of real numbers. We now describe
the mathematical theory we shall work in. The language of the

theory is the language of ZF set theory with a new predicate
x¢ Re Por our convenience we add to the language variables fer
classes, Classes are understood as suitable abbreviations. Thus
e.g. X=Y is an abbreviation for the formula (Vx)(g(x) = ¥(x)),
where X = {x; ¢(x)} and Y = { x4 v(x)}. Formulas containing X
are not correct,

Axioms: 1) All the axioms of ZF,, + axiom of regularity,
for set formulas (i.e. formulas not using the new predicate x¢R).

2) Rc N (where N denotes the class of all natural numbers).

3) (Ve eR)(xt+ 1€R)

4) (VYX)(V & R)(3Iy)(y=X n o)

5) (VX)(3y)(XnR = ynR)

Remarks: 1) In each model of PA we can define xey iff
the x~-th member of the dyadic expansion of y is 1. In this man-
ner we obtain a model of ZFﬂn + the axiom of regularity.
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2) N is defined as the class of ordinal numbers by the
usual definition.

4) This axiom is in fact an axiom scheme due to our con-
vention about classes, The quantification (V¥ X) means "for e~
very formula ...". We eccept this axiom since we want to bring
properties of the class R nearer to the system of the standard
netural nunbers heving the mentioned property.

5) If we interpret R as standard numbers, then this axi-
om expresses the assumption that every definable (with the pa-
rameter R) part of R is an element of the standard system of

the model.

Lemma 13 Every nonempty class Xc R has the minimal ele-

ment, /

Proof: If xeX then (x+l)n X is a nonempty set by the Axi-

om 4.
Theorem 2: (Ve € R)(ccS R) (Cempl(R)).

Proof: Let us put X = {<eRyec § R}, If X40C then we put
m=min(X), We have (m-1)c R, hence (m~2)€e R and (m-1)e R (Axiom

3). Thus mcCR ~ a contradiction.

Theorem 3: If X is a class of functions with the follow-
ing property: t*R0g Rk foer suitable n, k then every function G

from the primitive recursive closure of X has the property, too.

Corollary 4: 1) R is closed on addition, multiplication,
exponentiation,.

n
2) If f"RSR then (YRe R)(.Z,2(i)eR).

Before proving Theorem 3 let us remind the definition of

the primitive recursive closure, A function F:Nk—; N is in



the primitive recursive closure of the class X if it is obt~
ained by finitely many applications of the following three o~
perations on functions from X and four basic functions desc-

ribed below.

Basic functions: 1) ar :N' —» §° (o) = ( )
2)§«x°—x (=0
3) Lt ! L) =
4) ¢ ;¥ nt Q() =oc+ 1

Basic operetions: Fe G(x) = F(G(x))
FxG(x) = {PF(x),G(x)>
M sX) = Po Fo ... 0o F(x)
¢ times

Let us now prove Theorem 3: The only one nontrivival part
of the proof is that one for iteration (F*). Let «c € R and
x€ R, Let us put ¥ = {B€cc + 13 F¥( 3 ,x) is defined and
M X & RE3. we prove that Y40 leads to the contradiction.
If Y0 then let m be the minimum of Y. We have F#(m,x) .
P(F*(m-1,x)) e RY - a contradiction.

The proof of the Corollary: The first part is evident,
For the prcof of the second part let us note that ‘h%o £(i) is
the first component of g*(k+2,0,0,0) where g(x,y,z) =
= (X+y,£(2) ,2+1) .

Remarkss 1) Let us note that in the proof we have not u-
sed Axiom 5,

2) The theorem may be generalized elso for class functions
defined with parameter R, But in this case we can define
(o ,x) only for o« € R.

Let us now give two isomorphic constructions of real num-

bers in our theory:
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1) We construct the field of ratioanl nuw'ers RN using
the usual construction stertirg from N, Thueg RN iz & class da-
finable by a set formula. The cless R is urnderstocod as the sys~
tem of "real' natural mumbers - The Archimedean property will
be understood with respect to R, The gupport of our structure
will be the class BRN ® {reRN; (JL 6 R){Ilri<«). On ERN we
define x2y = ( Ve € R)(Ix=yl< 1/ ) (x is infinitely olose to
y). The factor structure BRN/<: can serve as a model for resl
numbers as we shall prove later,

2) PFor an arbitrary natural number o & N-R we can const-
ruct a model for real numbers such that the support of the mo~
del is a part of o« . For the comstruction we use the following
intuition: We imagine o¢ &8s o6 successive elements such that
the distance beiween each element and its successor is 1/%c .
The middle element is understood as O, The support is now the
class of elements having the distance from new O bounded by a
number from R, The result of each arithmetical operation is de-
fined as such an element of the structure which is near to the
exact result (in the structure of rational numbers). The pro-
perty "to be infinitely close" we define in the same way as in
the case 1). Real numbers we obtain as the factor structure.
Let us give the formal description: We put 8 =[cc/2] (0 in
the new gense), ¥ @ ¥, =¥ + I, - B, (if it is €c),
©Fy =20, - %y We put f3; = [Vc'], (B, +By 151 in the
new sense), Y © ¥y = L( 7y - B) (¥, = B,)/B1] + 3,

@) = P1/(= B + By We put ban = {yecs (I R (Iy-
= Bol <(3,°d") end we define ¥, =Y, & (¥« R)(19, -¥pl<

< fslld'_'). The factor structure bdn/& forms a model for real
numbery,
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Theorsm 5: Both the above factor siructures form a really
olosed field in whish the Arghimedsan property holds in the ver-
slon (¥} (3fe R)({|xl< ) and the supreme property holds in
the version (YX40)({IF{(VieX)(ter) =p (I){{VteX)(t =<
<2viEp) A (VEN(E<s &k Eaz) = (A4 (F>T & +2E)))).

Proofs The proof that & is a congrusnce on supperts,
arithmetiocal eperaticns are defined on supporte, supports are
closed on arithmetical operations {with the excepiion of divid-
ing by zero)} and the proof of the Archimedesa preoperty do not
require any special tricks, The proof of the contimity of pely-
nomialg {x=y =p £(x) & £{y)) may be done by the induction based
on the complexity of polynomials - details needed for the indue—
tion step can be found e.g. in [K]. A nonstenderd proof of the
intermediate property of continuoups funciione may be found e.g.
also iz [K), From this propsriy we deduce esasily that our field
is really closed. We may obame that we have not yet used Axi-
om 5. This exiom we need for the proof of the guprems property.
Let X be a non-empty above bounded cla;as. In view of the Arohil-
medean property we mey assume without loss of generality that
(VieX)(t=<1)%& (I 46X} (¥Z 0), From the class I we Gefine the
¢lags Y& R by the following rscursive doscrip'tion: d'e Y (3te
ST (45,5 2V, O pa x omUD), @),

Let ac ¥ be such that ¥ = anR (we use Axiom 5). In the first
cases we put z 'i%’a- 2'(1"'1) end in the second one we put 2 w
= the largeet element lees than or equal to igmz"(iﬂ). The
proof thet this z is the required supreme c¢an be left to the re-—

adex,

Remarkg: 1) Note that both the given models are isomorph~
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ic. This fact can be proved e.g. using the dyadic expancsion of
real numbers,

2) An equivalent axiomatic system we obtain if we chenge
Axiom 4 by Axiom 4°: R is complete ((VxeR)(Vy< x)(ye R)).
Axiom 4’ is weeker than Axiom 4, but we have proved some inte-
resting results only from the axioms 1 - 4., Let us prove Axiom
4 uging the second version of axioms. Let X c 8& R, hence XcR

(completeness) —» X = anR (Axiom 5)— X = anRnf3=anf3.

§ 2. The prolongations of functions. In the second secti-
on we investigate the question, what functions are either parts
of set functions or parts of functions defined by set theoreti-

cal formulas.

Definition: The class X definable by & formula not using
R is called a set theoretically definsble class, we use Sd(X)
for denotation.

Let us note that in view of our definition of classes we
do not admit the quentification of class variables in formules
defining classes.

Definition: A Sd class S is celled the generating system
of a totally disconnected indiscernibility relation iff it has
the following properties: 1) dom(S)2R

2) (VYo € R)(S"{x? is an equivalence relation on the u-
niversal class V (={ xyx=x}) having & small number of factors
((3BeR) (VX)((Vt,8ex)(ths = 1{t,87e5"{x}) =
=» card(x) £ 3))

3) (Ve € R)(S"{fec + 135 8" fec )

Remark: Using overspill we can restrict S on a suitable
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Be N-R such that the property 3) holds for all elements of /3
except the last one and S"(3 1is an equivalence on V for all
elements of f . Further we suppose that generating systems are

adopted in the given manner.

Definition: A relation T is called a totally disconneo-
ted indiscernibility relation iff there is a generating system
S such that(x,y>€T= (VB € R)Kx,y>e S"{(3% ).

We use notations T 5 .4 s eee for totelly disconnect-
ed indiscernibility relations., We shall omit further the words
totally disconnected, as we shall not use other types of indis-
cernibility relations.

Definition: A class X 1s called a figure with respect to
£  i£f it has the property (Vx,y)(xe X%y 2 x=» yeX).

Theorem 6: Every class is a figure w.r.t. a suiteble in-
discernibility relation.

Proof: It suffices to prove that R is a figure, Sd clas-
ses are figures and that figures are closed on the Godelian o~
perations., R is a figure in the indiscernibility relation with
the generating system having the following description: S"{ec} =
= IdA A6 U (V =) % (V =c¢) where Id denotes the identity mapping.
Every Sd class X is a figure in the indiscernibility relation
with the generating system S"{«c}= (Xx X))V (V-X)x (V=X)., For
the binary operations it is useful to observe the following
facts If = 4 = are indiscernibility relations with the gene-
rating systems Sl’ 82 respectively, then = 0 = 1is an indis~
cernibility relation with the generating system S described by
S"{t = Si{«.}n s3 {«¢} , where dom(S) = dom(Sl)n dom(sz). Hen~
ce if Xl, xa are figures then we may assume that they are
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figures in the same indiscernibility relation. The operaiion -X:
If X is a figure w.r.t. Ea then V-X is also a figure w,r.t. F o
The operation XnY: If X, Y are figures w.r.t. s then XnY is
also a figure w.r.t. 3 . The operation X-Y; X-Y = Xn (V-Y). The
operations Vx X and X»xV: If X is a figure w.r.t. T then V»x X is
a figure in the indiscernibility relation 1 described by Ig Yy
= (xe V-V& ye V-V)v (3 Xy 0%p0T1 oY) (X =Xy 20 &y = 9147504
&x2 r ya). The proof for XxV is analogous. The cperation Xx Y3
XxY = (X»V)n (VxY). The operation XAY: XAY = XN (VxY). The
operation dom(X)s If X is a figure w.r.t. g with the generating
system 81 then dom(X) is & figure w.r.t. 5 with the generating
system S, described by the following manner: Sg{x} is the equi-
valence generated by the partition having as elements Boolean
combinations of domains of elements of partition generated by
Si‘lm!. To prove that sz is a generating system, it suffices to
note that if Sji«ihas B equivalence classes then S§{«} has less
than 2p equivalence classes and R is closed on 2%, The opsration
E: E = {{x,y 3x6y? 18 a Sd class. The proofs for the operations
of oconversions may be left to the reader.

Let us note that in the given theory, there is a natural
definition of a one-one mapping F:N <> V. This mapping is de-
fined by a set formule without parameters., The definition of P
can be found in LV], Here we give only an inatructive example:
324 =28 + 26 4+ 22, 8 = 23, 6 = 22 + 21, 2 = 21, 3 m 2] 4 2°,

1 = 2% F(0) = 93P(1) = {0}, F(2) = {103}, F(3) = {10},0};
F(6) = {{101},1033, F(8) = {{1031,03} 3 F(324) =

= {{110%,0}}, 1£{0}3} ,101}, {033} . The natural ordering on V
mey be defined using the given function. If we speak about an
ordering on V we shall keep in our minds the given natural

- 424 -



ordering,

Theorem 7: Any function F is a part of a "tube" consist-
ing of R Sd functions. Formally: (V¥ F)(3 T,Sa(T))({ Y € R)(T™ec]
is & function) & Fc T"R).

Corollary 8: For f3e N-R and o & N there is no functiom
F such that F'o = ocs 3+

Remark: It is consistent that (3 F)(F: o <> 3 ) =

= (ot/f3) = 1, where = is the relation of nearness defined in
the first section.

An unsolved problem: Is it consistent also the negation?,
i (3F)(F: v« B )& (c/3) =1,

Proof of Theorem7: Let F be a figure w.r.t. g and let
S1 be a generating system for F - We prove
(VxePF)(3 yeR)((Sy iy} )"{x} 1s a function). Let us note that
(S:'({ 73)"ix} is the equivalence class containing x. We have
(VxeF)(Vye dom(8,)-R)((Sy {9})"{x3SF) since F is & figure.
Hence (S{{})"ix} is a function. Thus there must be 3 e« R such
that (Sy{y1)"{x} is & function as R is not Sd (cooverspill),
We construct T by taking for increasing 9~ successively these
equivalence classes of S'i-igv} which are functions. The possibi-
lity of indexing of the equivalence classes of Sy {gi (7€ R) by
elements of R is a consequence of Corollary 4.2) from § 1. Let
us proceed in the construction of T wmore formally. In the fol-
lowing two theorems we ghall need analogous constructions but )
we shall proceed no more formally. Let us define a set relation
s, by the following description: xesy{yi= x is the least ele-
ment of (Si{'ﬂ)"{x}. (A coding of the equivelence classes.) Let
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hs oard(sl) «—> 8, De the one-one mapping given by the succes-
sive ordering of extensions of s, (h(et ) = the least element
of the least extension of s;-h"cc ). Corollary 4.2) from § 1
gives that ( Vo € R)((h’l)“(sioc JER). Let a =if3e card(sl);
(sy {eci)” {h(«c )} 18 a function}, where o« is such that
h(p)e si{ec} o Let g:card(a) «—»> a is the numbering of ele-
ments of a in the increasing menner, T is now described as
followa: T"{ f3}= (sa'.-tcc})"{'h(g((&))} where o¢ is such that
n(g(B)) e syfecs .

Remarks: 1) We can observe from the proof that if F is
a one-one function then the extensions of T may be chosen al-
80 in such a way that they are one-one functions.

2) Note that we have not used Axiom 5 in the proof.

We prove now that if dom(F) = R then F may be prolonged
to a set function. (Compare with the axiom of prolongation
trom [V].)

Lemma 9: Let £ be a not increasing function f:o¢ —> N,
If (VBAeow - R) (£(oc) €& R) then there are 7 e R and et~
-~ R such that £() = £(3).

Proof: Let J=min{y;f(y)< ¥ . Obviously d'¢ R.
IfY={ye d +1; (ABeR)(L(B) =< )} then Yc e R and
hence Y is a set by Axiom 4. Let m = min(Y). We put ¢ =
= min{d 32(J°) = m} and 3 = max {d ; £(J") = m}.

Theorem 10. If F'is & class function such that dom(F) g
S R then there is a set function g such that F = g/ dom(F).

Proof: Let F be a figure w.r.t. T with generating sys.
tem S,. We prove vhat (VxeP)(3A7qe R)((Si{y})"{xiSF). Foyr
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en arbitrary x€F we define the function f(y) =

= cerd((sy{y})"{x}). Using Lemme 9 for f we obtein g'e R and
f# € ¥=R such that £(y) = £(f3), hence (S:'i{q-})"{x} =
=(8§{B3)"ix} SF. Let us numerate all the equivalence classes
of equivalences from S similarly es in the proof of Theorem 7.
Let XS R be the class of those numbers such that the correspon-
ding equivalence classes are parts of F, (Note that X is defin-
able from F and R.,) Using Axiom 5 we obtain a set b such that
X = bnR. The required function g we obtein as the union of all
the equivalence classes corresponding to elements of bn 7y for
e suitable 3 . In fact, let {f;; J € b} be the system of the
equivalence classes corresponding to elements of b, We may as-
sume f; to be a set function as this property is fulfilled for
&'e R (overspill). Now for every {3 € R we have that

Vites Febn P} is a function since U{ fy3 Ied NnHAISF.
Hence we have that g = U{ £ o€ bny} is a function for a
suitable ¢ € N-R by overspill., For proving F& g it suffices
to turn to the definition of X, Hence F = g/ dom(F).

Corollary 11: R is a strong cut in N (in the sense of Kir-
by end Paris [KP]). '

Proof: For proving the weak regularity we do not use Axi-
om 5. For a function f such that dom(f)e R we put X =
= dom(fn (RxR)). X is a set 2s X & dom(f) e R (Axiom 4)., We put
7 = max($£(t)3teX}) -+ 1. Hence g € R and rng(f)nRs o .Thus
the weak regularity is proved.

Let £ be a function such that dom(f)2 R, Let F = fn
n ((N=R)=% R), Let g be a prolongation of P, We may assume that
dom(F) = dom(g)n R (if not, we improve g using Axiom 5 on
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dom(F)). If we put o = max({d’e dom(g); I'< min(g"(d + 1))})
then for every f3 € R such that £(3)¢R we have £(8) > 7 -

The last theorem !;say te also generalized if we suppose
the Axiom of weak choice: (V¥ X, dom(X) = R)(3F a function)
(FecX&dom(F) = R).

Theorem 12: The following properties are equivalent for
a class function F.

1) There is a Sd function G such that F = G/ dom(F).

2) (Yxsdom(P))(FAx is a set function).

Proofs 1) = 2) is obvious.

For 2) =P 1) it suffices to prove the following assertion:
If P having the property 2) is a figure in ¥ with the genera-
ting system S, then (VvxeF)(37ye R)((S{{vg})"{x}/‘dom(l’) =
= P/ dom((Si{y!)"{xl))- The prolonging function can be const-
ructed from classes (Si{g-})"{x'& analogously as in the proof
of the preceding theorem. Let us prove by contradiction the as-
sertion. Suppose that there is x€¢ F such that for every e R
we have X"{y}= (FAdom((S]{g})"{x}) - ((syigt)mix}/
/* dom(F))) + 0., Due to the Axiom of week choice there is a func-
tion G such that dom(G) = R end G& X, From the last theorem
the existence of a function g prolonging G follows. We prove
that there is 3 e dom(g)-R such that g"B s P, At first let us
observe that there is o« € dom(g)-R such that dom(g"x )& dom(F).
For 7€ R we have g(2') € F by the definition of g. We also
have dom(g(7))s dom((S'l'{Tl)"{xi), hence by overspill we have
that for all o < oo (where oo is suitably chosen) this formula
holds. But for & N-R we have (S§{231)"{x}<F since F is a fi-
gure. We have proved that dom(g"ec ) S dom(F). We know that
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P, dom(g"c¢) is a set function by the assumption. For every

% & R we have g"y < FA dom(g"oc) hence by overspill we have
g"B&F for a suiteble 3« dom(g)-R. For every 7€ R we have
g(7 )¢ (5y{73)"ix} hence by overspill the formula holds also
for € 3 ~R. This is a contradiction with dom(g(y)) =

€ dom((sy €33)"{x}), &(y )€ F and (8§ {73)"{x}SF. Thus we have

proved the assertion.

Remarks: 1) There is a model of PA in which @ 1is not a
strong cut (see [MC))., Hence Axiom 5 is independent on other
axioms. The positive answer on this indepénderce problem I ob-
tained also from Professor Wilkie, A direct method for const-
ruction of models of PA with the negation of Axiom 5 for w was
developed by A. Kudera and the author. This method is based on
Arithmetical hierarchy.

2) 1In AST cen be proved the theorem saying that every re-
al semiset function can be prolonged to a set function iff the
restriction on an arbitrary subset of its domain is & set. The
proof is analogous to that one of the last theorem. For the np-

tion of a real class see [CV],

Unsolved problems: 1) Is there a model of PA with a
strong cut R not being & model of our theory?

2) 1Is our theory consistent with the negation of the Axi-
om of week choice? There are some troubles with this axiom as
it is not known whether AST without AC and with the negation
of the Axiom of week choice is consistent.

3) Recall the problem mentioned in this peper: Is our
theory consistent with (3 ,3)((AF)(Frace> )&
9(ec/B) = 1),
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