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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

24,3 (1983) 

TOPOLOGICAL CATEGORIES WITH BOTH EPIREFLECTIVE AND 
COREFLECTIVE PROPER SUBCATEGORIES 

Eraldo GIULI 

Abstract: It is known that some familiar topological 
categories - for example the category of all topological spa
ces and the category of all uniform spaces - have no proper 
subcategories which are both epireflective and corefleetive. 

In this paper we produce a class of topological catego
ries which contain the category Rere of all reflexive relati
ons as proper, both epireflective and corefleetive subcatego
ry. 

All these categories are cartesian closed and have other 
nice properties. 

Key words: Topological category, epireflective subcate
gory f"^corlirrective subcategory. 

Classification: 18A40 

1. It is shown in (t61) that the topological category 

Top of all topological spaces has no proper subcategory which 

is both epireflective and corefleetive (i.e. closed under the 

formation of products, subspaces, coproducts and quotient spa

ces). The same statement is true for the categories Mer of all 

merotopic spaces (171), Unif od all uniform spaces (C5J) and 

Born of all bornological spaces (L11K 

The category Simp of all abstract simplicial complexes 

(191) is an example of a topological category with a proper 

subcategory which is both epireflective and corefleetive. In 

fact the subcategory Simp of all o-dimensional simplicial 
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complexes (which coincides with the subcategory Diacrete(Simp) 

of all discrete Simp-objects) is obviously closed under the 

formation of products, subspaoes, coproducts and quotient spa

ces. Moreover it is shown in 113 that SimpQ is the unique sub

category of Simp with the previous properties. 

Examples of topological categories (in the sense of Herr-

lich 123) with a proper, non trivial (i.e. 4- Discrete) both 

epireflective and coreflective subcategory were firstly given 

by Husek in 153 and t103. 

Example 1 ([51 Example 2). Let X be the full subcatego

ry of the category Unif whose objects are all uniform spaces 

(X,U), U- uniform neighborhoods of diagonal, with the proper

ty that the intersection of equivalences from % belongs to 

% . If J is the full subcategory of X generated by all (X,U ) 

such that r\VL &V, then J is non trivial, and both coreflec

tive and bireflective in X. 

Example 2 (110} Example 6). Let 2 be the full subcate

gory of the category Top whose objects are all locally connec

ted spaces. Then % la a. topological category because it is a 

coreflective subcategory of the topological category Top. The 

full subcategory J of X composed of all spaces the collection 

of open and closed sets of which coincides is a non trivial, 

both bireflective and coreflective subcategory of X. 

The aim of this paper is to describe a class of topolo

gical categories which have proper, non trivial, both epire

flective and coreflective subcategories. In particular each 

of these categories contains as full subcategory with the pre

vious properties the category Rere of all reflexive relations 
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described in [33. It is also shown that all these categories 

are strongly topological (i.e. they are cartesian closed and 

final epi-sinks are hereditary) and no universal topological 

categories in the sense of Marny ([82). 

2. Here topological category means concrete category 

(XfU) over the category Set of all sets which is initially com

plete and well-fibred (i.e. it is small-fibred and every con

stant map UX—»* UY underlies some X-morphism). 

Por definitions and results on cartesian closed topologi

cal categories see [23. All undefined terminology is that of 

143. 

2.1. Definition. Let A be a non empty set. A denotes the 

category whose objects are couples (XfP) where X is a set and 

P is a subset of the set Set(A.X) of all maps of A into X con

taining all constant maps, and whose morphisms of (XfP) into 

(YfG) are the maps h:X—> 1 such that h o f c G for each fcP. 

2.2. Proposition. A is a topological category. 

Proo:fr The class of all A-structures in a set X is a set 

and every constant map is an A-morphism. Thus A is well-fibred. 

Let X be a set, (Yitpi)i§i
 a family of A-objects and (hi:X-> 

— ¥ Yi^i€l a fajiiily o f maps. Then the set P =- ifik—• X: 

-(h.,© f)c $± for each i€ 1$ is the initial A-structure in X 

with respect to (x»ni»(Yi»Pi)iCi) uniquely determined by its 

defining properties. Thus Jk is initially complete. 

2.3 (1) An epi-sink (h±: (Xi,Pi) — * (Y fP)) U I is final iff 

f *P holds whenever there exist i€ I and ^ e Pi such that 

h± o f i » f. 
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(2) k:(XfF)—• (YfG) is em. embedding (and (XfF) is a sub-

space of (YfG)) iff f is infective and F - ff:A—>X: kof eGj. 

(3) If (G-it*i-*)i£i is a family of A-objects then the fa

mily of m*ps f:A-">iTT.l Xt satisfying the condition that each 

component p.ĵ o f belongs to F1 is the product structure .TT. Fif 

and the family «{k, • f:iel and f€FJ f where k4:X, —*tllT X. x 1 1 1 »j, $ j 3 

are the canonical injections, is the coproduct structure JJL Xi. 

(4) q:(XfF)—• (YfG) is a quotient morphisra (and (YfG) a 

quotient space of (XfF)) iff G » •{ q * f Jftfp. 

(5) (X,F) is discrete iff F « Set(A.X). 

(6) (XfF) is indiscrete iff F « «{all constant maps}. 

2«4* theorem. A is a strongly topological category, i.e. 

(a) A is cartesian closed. 

(b) Final epi-sinks in A are hereditary. 

Proof, (a): It is to be shown (t2l Theorem 2 (1)«=->(6)) 

that, for each final epi-sink (hi:(XltF1)—*(XfF))l€l and A-

object (YfG)f the epi-sink (i^x 1y: (X^ YfF±x G ) — > 

—»-(XxYfFxG))l€l is final. 

Let m be an element of Fx G. Since the component m--. belongs 

to F (2.3. (3))f by 2.3.(1) there exist i« I and t±€ f± with 

m-r m h-o f1# Since the component my belongs to G (2.3* (3)) then 

the map <fifmy>2A—• X1x Y belongs to F1x G and h.± • (<fifmy>)--

- &• 

(b): Let (h^d^F.^)—*(XfF))l4l *>
e a final epi-sink in 

A and X# a subset of X with k:X*—* X the inclusion map. Furt

her let F be the subspace structure in X f and, for each i€ I, 

. It let F/ be the subspace structure in hj ( x ' ) c l . j . It follows 

from 2.3.(2) and 2.3.(1) that the epi-sink (^/hj (X')
s 

t(hJ1(X*)fF1)-*(X
#
fF'))l4T is final. 
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2*5* Remark. If A is a two-point set then the category A 

coincides with the category Rere of all reflexive relations 

described in C33» 

The subcategory SRere of all symmetric reflexive relati

ons properly contains the trivial subcategory Discrete(Rere) 

of all discrete Rere-objects. Moreover the functors ff-^g: Rere -» 

•—» SRere which respectively send each reflexive relation P in

to the smallest symmetric relation containing P and into the 

largest symmetric relation contained in F, are left and right 

adjoint of the inclusion functor J: SRere •—• Rere. 

Thus SRere is a proper non trivial subcategory of Rere 

which is both bireflective and coreflective. 

Por each surjective map q:A—> B let A^ denote the full 

subcategory of A, whose objects are all (XfP) satisfying the 

following condition: for every fcP there exists g:B—*X ouch 

that g © q » f. 

2»6» Theorem. Por each surjective map q:A—> B the cate

gory A is an epireflective and coreflective subcategory of A. 

Moreover, if lA|>2 and q is not infective, then A is a pro

per and non trivial subcategory of A. 

Proof. Let (XfP) be an A-object. If cP « { f c P : there 

exists g:B—> X with g«q « r}f then the A-morphiom c:(XfcF)-> 

— > ( X f P ) , which is the identity map on the underlying set Xf 

is the coreflection of (XfP) in ̂  . Let rX be the quotient of 

X given by the equivalence relation generated by x £ y iff 

there exist afb€ A and fc P such that fa • xf fb • y and qa * 

• qb (i.e. rX is the largest quotient set of X such that, for 

each f c P there exists g:B—• rX with g • q * r © f f where 
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rsX—• rX is the quotient map). Then r:(XfP)—> (rXf roP) is 

the epireflection of (X,P) in A,. 
H 

--•?• Remarks. (1) Por each surjective map q:A—> B the 

functor Q:B —* A. defined by Q(XfP) « (XfP • q) is a full embe

dding and QB » A . Then the theorem above says that the func

tors P ^ P g : ^ - - * ! . , defined by P-,(YfG) « (Yf*h:B--• Y:h# q«G]) 

and P2(YfG) « (rYf{h:B —* Y: there exists f cP with h©q « 

• r© f})f are respectively left and right adjoint of the func

tor Q. 

In particular if B is a two-point set (that is £ » Here) 

then each surjective map q:A—*• B induces a full embedding Q: 

:Rere—•A as well as an epireflective and coreflective sub

category. 

(2) If \A\>3 and q:A~»B is not infective then A is 

not bireflective in A. It follows from (1) and Remark 2.5 that 

every Af with |Al2 2 has a proper and non trivial, both bire

flective and coreflective subcategory (namely SRere). 

(3) TQ-objects in Rere (i.e. objects (XfP) such that 
e a c n Rere-morphism of a two-point indiscrete object into (XtP) 

is constant) are the reflexive antisymmetric relations. Pur-

thermore it follows from t23 Prop. 5 that a reflexive relati

on belongs to the bireflective hull ITpRere of the subcatego

ry TQRere of all TQ-objects iff the largest symmetric relati

on which is contained in it is an equivalence relation. Since 

it is very easy to find relations without the property above 

then Rere is not universal in the sense of Marny (t83). 

(4) Por each set A with lAlz: 3 the topological category 4 

is not universal. In fact if A would be a universal topologl-
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cal category, then using a characterization by Marny ([8.1) an 

A-object (X,F) would be indiscrete iff R^ » {(x,y)cX>«Xi the 

sub space {x,y] is indiscrete) » XxX. But if we choose (X,F) 

with |X|^3 and F « U : A ~ * X : IlmfU2?, then (X,F) is not 

indiscrete, and Ry » XxX. 

(5) The previous characterization of the class Ind of 

all indiscrete objects still holds for the category Rere even 

if Rere is not universal. 
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