Commentationes Mathematicae Universitatis Carolinae

Francesco Saverio De Blasi; Giulio Pianigiani Remarks on Hausdorff continuous multifunction and selections

Commentationes Mathematicae Universitatis Carolinae, Vol. 24 (1983), No. 3, 553--561

Persistent URL: http://dml.cz/dmlcz/106254

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

REMARKS ON HAUSDORFF CONTINUOUS MULTIFUNCTION
 AND SELECTIONS
 F. S. De BLASI, G. PIANIGIANI

Abstract. Continuity properties of multifunctions and existence of continuous selections are investigated.

Key words. Multifunctions, Hausdorff distance, selections.
Classification: 54 C 60,54 C 65.

1. Introduction. Let x be a metric space and let Y be a real normed space. Denote by Q the space of all closed convex bounded subsets of Y with nonempty interior endowed with Hausdorff distance. In this note we establish some properties of multifunctions which are used in [1] in order to study the structure of the solution set of the Cauchy problem (*) $\dot{x} \in \partial F(t, x), x(0)=x_{0}$. In [1] it is supposed that $F:[0,1] \times Y \rightarrow B$ is Hausdorff continuous and Y is a real reflexive Banach space. The existence of solutions of ($*$) could be proved directly. However in [1], we establish a more precise result stating that almost all (in the sense of the Baire category) solutions of $\dot{x} \in F(t, x), \quad x(0)=x_{0}$ are solutions of (*). In Section 2 we introduce the terminology and review some elementary properties of Hausdorff continuous multifunctions. In Section 3 we prove the existence of (nontrivial) continuous multivalued selections for multifunctions $F: X \rightarrow B$.
2. Notations and preliminaries. Let 2^{Y} be the family of nonempty subsets of the real normed space Y. We shall consider the following subfamilies of 2^{Y} : $\mathcal{F}=\left\{A \in 2^{Y} \mid A\right.$ is bounded $\}, \quad X=\left\{A \in 2^{Y} \mid A\right.$ is closed bounded $\}, \boldsymbol{Y}=\left\{A \in 2^{\mathbf{Y}} \mid\right.$ A is closed convex bounded $\}, B=\left\{A \in 2^{Y} \mid A\right.$ is closed convex bounded with nonempty interior $\}, 2=\left\{A \in 2^{Y} \mid A\right.$ is open convex bounded $\}, U=\left\{A \in 2^{Y} \mid A\right.$ is convex with nonempty interior\}. Let (X, e) be a metric space. For any set $A \subset X$ we denote by int $A, \bar{A}, \partial A$ respectively the interior, the closure, the boundary of A. If $A \subset X$ is nonempty, diam A stands for the diameter of A.

For any $u \in X$ we put $S(u, r)=\{x \in X \mid e(x, u)<x\}, r>0, \bar{s}(u, r)=\{x \in X \mid$ $e(x, u) \leq x\}, x \geq 0$. For notational convenience the unit balls $s(0,1), \bar{s}(0,1)$ in Y are denoted by s, \bar{s}. For any $A, B \in \mathcal{F}$ define $h(A, B)=$ inf $\{t>0 \mid$ $A \subset B+t s, B \subset A+t s\}$. As is well known, h is a pseudometric in $\mathcal{J}, 2$ while it is a metric (Hausdorff distance) in $X, \mathscr{X}, \mathcal{B}$. For any $u \in X$ and $A \subset x$ $(A \neq \varnothing)$, we set $d(u, A)^{\prime}=\inf \{e(u, a) \mid a \in A\}$. A multifunction $F: X+2^{Y}$ is said to be Hausdorff lower semicontinuous "Hausdorff l.s.c." (resp. Hausdorff upper semicontinuous "Hausdorff u.s.c.") at $x_{0} \in X$ if for every $\varepsilon>0$ there is a $s>0$ such that $F\left(x_{0}\right) \subset F(x)+\varepsilon S$ (resp. $\left.F(x) \subset F\left(x_{0}\right)+\varepsilon S\right)$ whenever $x \in S\left(x_{0}, \delta\right)$. F is said to be Eausdorff continuous at x_{0} if is Hausdorff i.s.c. and Emuedorff u.e.c. at x_{0}.

Proposition 2.1. Let $F: X \rightarrow Q$ be Hausdorff continuous. Ther so is the mitifunction $F_{c}: X \rightarrow 2^{Y} \quad$ (resp. $\partial F: X \rightarrow X$) given by $F_{c}(x)=Y \backslash F(x)$ (reap. ($\partial F)(x)=\partial F(x)), \quad x \in X$.

Proof. It is routine to see that F_{c} is continuous. To prove that ∂F is continuous take $x_{0} \in X$ and let $\varepsilon>0$. There is a $\delta>0$ such that for each $x \in S\left(x_{0}, \delta\right)$ we have $h\left(F(x), F\left(x_{0}\right)\right)<\varepsilon, h\left(F_{c}(x), F_{c}\left(x_{0}\right)\right)<\varepsilon$. Since $\partial F(x)=F(x) \cap \overline{F_{c}(x)} \subset\left(F\left(x_{0}\right)+\varepsilon S\right) \cap\left(F_{c}\left(x_{0}\right)+\varepsilon S\right)=\partial F\left(x_{0}\right)+\varepsilon S$, and $\partial F\left(x_{0}\right)=F\left(x_{0}\right) \cap \overline{F_{c}\left(x_{0}\right)} \in(F(x)+\varepsilon S) \cap\left(F_{c}(x)+\varepsilon S\right)=\partial F(x)+\varepsilon S$ it follows that ∂F is continuous.

Lemma 2.2. Let $A, B \in Q$ satisfy $A \cap B>\bar{s}\left(y_{0}, r\right), r>0$. Let $\varepsilon>0$. Then $A \cap(B+\sigma S) \subset A \cap B+\varepsilon S$ where $\sigma=\varepsilon x / d i a m A$.

Proof. Let $y \in \mathbb{A} \cap(B+\sigma S)$ and take $\tilde{Y} \in B$ such that $|y-\tilde{y}|<\sigma$. Suppose $\tilde{y} \neq y$ (the case $\tilde{y}=y$ is trivial) and set $u=y_{0}+r(\tilde{y}-y) /|\tilde{y}-y|$. clearly $u \in \bar{s}\left(y_{0}, r\right) \subset A$. Since y and u lie in the convex set A, also $v(t)=t y+(1-t) u \quad(t \in[0,1])$ is in A. Analogously $\tilde{v}(t)=t \tilde{y}+(1-t) y_{0}$ ($t \in[0,1]$) is in B. An easy computation shows that $v\left(t^{\star}\right)=\tilde{v}\left(t^{*}\right)$ for $t^{\star}=r /(x+|\tilde{y}-y|)$. Hence, denoting by y^{*} the point $v\left(t^{\star}\right)=\tilde{v}\left(t^{\star}\right)$, we have $\mathbf{y}^{*} \in \mathrm{~A} \cap \mathrm{~B} ; \quad$ furthermore

$$
\left|y-y^{\star}\right|=\left(1-t^{\star}\right)|u-y|=|u-y||\tilde{y}-y| /(x+|\tilde{y}-y|)<(\text { diam } A)|\tilde{y}-y| / x<\varepsilon .
$$

Thus $y=y^{*}+\left(y-y^{*}\right) \in y^{*}+\varepsilon S \subset A \cap B+\varepsilon S$ and the lemma is proved.
Proposition 2.3. Let $F: X \rightarrow Q$ and $G: X \rightarrow Q$ be Hausdorff continuous
multifunctions such that $F(x) \cap G(x)(x \in X)$ has nonempty interior. Then the multifunction $F \cap G: X \rightarrow B$ given by $(F \cap G)(x)=F(x) \cap G(x), x \in X$, is Hausdorff continuous.

Proof. Fix $x_{0} \in X, 0<\varepsilon<1$, and take $k=\operatorname{diam}\left(F\left(x_{0}\right) \cup G\left(x_{0}\right)\right)$. From the hypotheses it follows that there is a $\delta>0$ such that for each $x \in S\left(x_{0}, \delta\right)$ we have: $F(x) \cap G(x) \supset S\left(y_{0}, r\right)$ (for some $y_{0} \in Y$ and $x>0$), and $h\left(F(x), F\left(x_{0}\right)\right.$) $<\sigma, h\left(G(x), G\left(x_{0}\right)\right)<\sigma$, where $\sigma=\varepsilon r /(k+1)$. Hence, by virtue of Lempa 2.2, . we have

$$
\begin{aligned}
F(x) \cap G(x) & \subset\left(F\left(x_{0}\right)+\sigma S\right) \cap\left(G\left(x_{0}\right)+\sigma S\right) \\
& \subset\left(F\left(x_{0}\right)+\sigma S\right) \cap G\left(x_{0}\right)+E S \subset F\left(x_{0}\right) \cap G\left(x_{0}\right)+2 \varepsilon S, x \in S\left(x_{0}, \delta\right) .
\end{aligned}
$$

Analogously $F\left(x_{0}\right) \cap G\left(x_{0}\right) \subset F(x) \cap G(x)+2 E S$, and the proof is complete.
Proposition 2.4. Let $F: X \rightarrow B$ and $G: X \rightarrow \mathscr{C}$ he Hausdorff continuous and satisfy $G(x)+r S \subset F(x), x \in X$, for some $r>0$. Then the multifunction $F \backslash G:$ $X \rightarrow \mathcal{F}$ given by $(F \backslash G)(x)=F(x) \backslash G(x), \quad x \in X$, is Hausdorff continuous.

Proof. Let $x_{0} \in X$ and take $0<\varepsilon<x / 2$. Take $\delta>0$ such that $h(F(x)$, $\left.F\left(x_{0}\right)\right)<\varepsilon, h\left(G(x), G\left(x_{0}\right)\right)<\varepsilon$ for each $x \in S\left(x_{0}, \delta\right)$. From this and the fact that $G\left(x_{0}\right)+r S \subset F\left(x_{0}\right), G(x)+r S \subset F(x)$ it is not difficult to obtain $h(F(x) \$ $\left.G(x), \quad F\left(x_{0}\right) \backslash G\left(x_{0}\right)\right)<2 \varepsilon$.

Repark 2.5. The statement of Proposition 2.1 fails if \mathcal{C} is replaced by X. If in the eqoposition 2.3 the assumption that $F(x) \cap G(x)$ have nonempty interior is replaced by $F(x) \cap G(x) \neq 0(x \in X)$, the conclusion is no longer true. If in the Proposition 2.4 the hypothesis $G(x)+r S \subset F(x), x \in X$, is replaced by $G(x) \subset F(x)$, the conclusion is not true in general.
3. Multivalued selections of multifunctions. For each $A \in B$ let $\sigma_{A}=$ sup $\{x>0 \mid$ there is $a \in A$ such that $S(a, r) \subset A\}$. Evidently, $\sigma_{A}>0$.

Lemma 3.1. Let $F: X \rightarrow O$ be Hausdorff 1.s.c. (resp. u.s.c.). Then the fun-
ction $\sigma_{F}: X \rightarrow R$ given by $\sigma_{F}(X)=\sigma_{F(X)}, X \in X$, is l.s.c. (resp. u.s.c.). In particular σ_{F} is continuous whenever F is Hausdorff continuous.

Proof. Let F be Hausdorff 1.s.c. and, for a contradiction, suppose that σ_{F} is not 1.s.c.. Then there are $x_{0} \in X, \varepsilon>0$, and a sequence $\left\{x_{n}\right\} \subset x$ converging to x_{0} such that $\sigma_{F}\left(x_{n}\right)<\sigma_{F}\left(x_{0}\right)-\varepsilon, n \in \mathbb{N}$. Since F is Hausdorff
1.s.c., there is $n_{0} \in \mathbb{N}$ such that $F\left(x_{0}\right) \subset F\left(x_{n_{0}}\right)+(\varepsilon / 2)$. We have $\sigma_{F}\left(x_{n_{0}}\right)+$ $\varepsilon<\sigma_{F}\left(x_{0}\right)$, thus there are $y \in F\left(x_{0}\right)$ and $r \in \mathbb{R}, \sigma_{F}\left(x_{n_{0}}\right)+\varepsilon<x \leq \sigma_{F}\left(x_{0}\right)$, such that $S(y, r) \subset F\left(x_{0}\right)$. Therefore $S\left(y, \sigma_{F}\left(x_{n_{0}}\right)+\varepsilon / 2\right)+(\varepsilon / 2) S \subset S(y, r) \subset F\left(x_{0}\right) \subset$ $F\left(x_{n_{0}}\right)+(\varepsilon / 2) S$ and so $S\left(y, \sigma_{F}\left(x_{n_{0}}\right)+\varepsilon / 2\right) \subset F\left(x_{n_{0}}\right)$. Hence $\sigma_{F}\left(x_{n_{0}}\right)+\varepsilon / 2 \leq$ $\sigma_{F}\left(x_{n_{0}}\right)$, a contradiction, and σ_{F} is l.s.c.. If F is Hausdorff u.s.c. the proof is similar. The last statement is obvious.

Lemma 3.2. Let $A \in B$. For each $0<\mu<\sigma_{A}$ put $A_{\mu}=\{a \in A \mid S(a, \mu) \subset A\}$ and let $A_{0}=A$ if $\mu=0$. Then $A_{\mu} \in B$ and, furthermore, we have

$$
\begin{align*}
A_{\mu} & =\{a \in A \mid d(a, \partial A) \geq \mu\} \tag{3.1}\\
\partial A_{\mu} & =\{a \in A \mid d(a, \partial A)=\mu\}
\end{align*}
$$

Proof. When $u=0$ we have $A_{0} \in Q$ and (3.1), (3.2) are true. Suppose $0<\mu<\sigma_{A}$. From the definition of σ_{A} there is $a \in A$ and $\mu<r \leq \sigma_{A}$ such that $S(a, r) \subset A$. Since $S(a, r-\mu)+\mu S=S(a, r) \subset A$ it follows that $S(a, r-\mu) \subset A_{\mu}$ and so A_{μ} has nonempty interior. Let us prove that A_{μ} is convex.
To this end let $a_{1}, a_{2} \in A_{\mu}$ that is $S\left(a_{1}, \mu\right) \subset A_{,} S\left(a_{2}, \mu\right) \subset A$. Since A is convex, for each $t \in[0,1]$ we have $t S\left(a_{1}, \mu\right)+(1-t) S\left(a_{2}, \mu\right)=S\left(t a_{1}+(1-t) a_{2}, \mu\right) c$ A and hence $t a_{1}+(1-t) a_{2} \in A_{\mu}$. clearly A_{μ} is bounded and, as one can easily verify, also closed. Therefore $A_{\mu} \in B$. Consider now (3.1). Let $a \in A_{\mu}$. Then $S(a, \mu) \subset A$ and hence $d(a, \partial A) \geq \mu$. Conversely, if a $\in A$ satisfies $d(a, \partial A) \geq \mu$, we have $S(a, \mu) \subset A$ thus $a \in A_{\mu}$. Therefore (3.1) is true. Let us prove (3.2). Denote by B_{μ} the set on the right hand side of (3.2). Let $a \in \partial A_{\mu}$. Since $a \in A_{\mu^{\prime}}$ from (3.1) we have $d(a, \partial A) \geq \mu$. For a contradiction, suppose $d(a, \partial A)>r>\mu$. Evidently $S(a, r-\mu)+\mu S=S(a, r) \subset A$ which implies that $a \in$ int A_{μ}, a contradiction. Hence $d(a, \partial A)=\mu$ and $a \in B_{\mu}$. Conversely, let $a \in B_{\mu}$. We have $a \in A_{\mu}$ for $B_{\mu} \subset A_{\mu}$. Suppose that $a \in$ int A_{μ} that is $S(a, r) \subset A_{\mu}$ for some $r>0$. Then $S(a, \mu+r)=S(a, r)+\mu S \subset A$ from which we obtain $d(a, \partial A) \geq \mu+r, a$ contradiction. Therefore $a \in \partial A_{\mu}$ and also (3,2) is true.

Remark 3.3. Let $A \in B$. For any $0 \leq \mu<\sigma_{A^{\prime}}$ put $A_{\mu}^{0}=\{a \in A \mid d(a, \partial A)>\mu\}$. Evidently $A_{\mu}^{0}=$ int A_{μ} thus A_{μ}^{0} is nonempty open convex bounded, that is $\mathrm{A}_{\mathrm{H}}^{0} \in 2$.

Remark 3.4. If $A \in Q$ and $0<\mu<\sigma_{A}$, we have $A_{\mu}+\mu S \subset A$. The inclusion can be strict. In fact simple examples show that $A \backslash\left(A_{\mu}+\mu S\right)$ can have nonempty interior.

Lemma 3.5. Let $A \in B$. Let $0<\mu<\sigma_{\lambda} / 2$ and take $0<\varepsilon<d i a m$ A. There is then $\delta_{0}>0$, given by $\delta_{0}=\varepsilon\left(\sigma_{\lambda} / 2-\mu\right) /$ diam $A \quad$ (resp. $\quad \delta_{0}=\min \left\{\mu, \varepsilon\left(\sigma_{\lambda} / 2-\mu\right) /\right.$ diam $A\}$) such that, whenever $0 \leq \delta \leq \delta_{0}$, we have $A_{\mu} \subset A_{\mu+\delta}+E S \quad$ (resp. $A_{\mu-\delta} \subset$ $A_{\mu}+E S$). Moreover, if $0<\mu<\sigma_{A} / 4$, we have $h\left(A_{\mu}, A\right) \leq(\mu \operatorname{diam} A) /\left(\sigma_{A} / 2-\mu\right)$.

Proof. Let A, μ, ε and $0 \leq \delta \leq \delta_{0}=\varepsilon\left(\sigma_{A} / 2-\mu\right) / \operatorname{diam} A$ be as in the gtatement. From the definition of σ_{A}, there is a $\in A$ such that $S\left(a_{i} \sigma_{\lambda} / 2\right) \in A$. Since A_{μ} and $A_{\mu+\delta}$ are in 03 (in fact $0<\mu \leq \mu+\delta<\sigma_{A} / 2$) the inclusion A_{μ} c $A_{\mu+\delta}+\varepsilon S \quad\left(0 \leq \delta \leq \delta_{0}\right)$ is true if we show that $\partial A_{\mu} \in A_{\mu+\delta}+\varepsilon S$. To this end, let $y \in \partial A_{\mu}$ and suppose that $|y-a| \leq \varepsilon$. Since $S(a, \mu+\delta) \subset S\left(a, \mu+\left(\sigma_{A} / 2-\mu\right)\right)=$ $=S\left(a, \sigma_{A} / 2\right) \subset A$, we have $a \in A_{\mu+\delta}$ and hence $Y=a+(y-a) \in A_{\mu+\delta}+\varepsilon S$. Now. suppose that $y \in \partial A, \quad$ is such that $|y-a|>\varepsilon$. Let $y^{*}=\left(1-t^{*}\right) y+t^{*} a$, where $t^{*}=\varepsilon /|y-a|$, and observe that $\left|y^{\star}-y\right|=\varepsilon$. Observe that $S\left(a, \sigma_{X} / 2-\mu\right)+\mu S=$ $=S\left(a, \sigma_{A} / 2\right) \subset A$ whence $S\left(a, \sigma_{A} / 2-\mu\right)=a+\left(\sigma_{A} / 2-\mu\right) S \subset A_{\mu}$. Also Y $\quad A_{\mu}$ thus, since A_{μ} is convex, we have

$$
\begin{equation*}
A_{\mu} \geq\left(1-t^{\star}\right) y+t^{*}\left[a+\left(\sigma_{A} / 2-\mu\right) s\right]=Y^{*}+t^{\star}\left(\sigma_{A} / 2-\mu\right) s \tag{3.3}
\end{equation*}
$$

This implies that

$$
d\left(y^{*}, \partial A_{\mu}\right) \geq t^{*}\left(\frac{\sigma_{A}}{2}-\mu\right)=\frac{\varepsilon}{|y-a|}\left(\frac{\sigma_{A}}{2}-\mu\right) \geq \frac{\varepsilon\left(\sigma_{A} / 2-\mu\right)}{d i a m A}=\delta_{0}
$$

Let $v \in \partial A$ be arbitrary. From (3.3), $y^{*} \in$ int A_{μ} whence the segment [y^{*}, v] meets $\partial A A_{\mu}$ in a point u and we have $\left|y^{*}-v\right|=\left|y^{*}-u\right|+|u-v|$. Evidently, $\left|y^{*}-u\right| \geq d\left(y^{*}, \partial A_{\mu}\right) \geq \delta_{0} \geq \delta$. On the other hand $v \in \partial A$ and $u \in \partial A \quad$ thus $|u-v| \geq \mu$. Hence $\left|y^{\star}-v\right| \geq \delta+\mu$ and, since $v \in \partial A$ is arbitrary, we have $d\left(y^{*}, \partial A\right) \geq \mu+\delta$, thus $y^{*} \in A_{\mu+\delta^{*}}$ Since $y=y^{*}+\left(y-y^{*}\right) \in A_{\mu+\delta}+\varepsilon S$, the proof of the inclusion $A_{\mu} \subset A_{\mu+\delta}+\varepsilon S \quad\left(0 \leq \delta \leq \delta_{0}\right)$ is complete. The argument to prove that $A_{\mu-\delta} \subset A_{\mu}+\varepsilon S \quad\left(0 \leq \delta \leq \delta_{0}\right)$ is similar. It can be obtained (with few minor modifications) by replacing A_{μ} and $A_{\mu+\delta}$ in the above proof by $A_{\mu-\delta}$ and A_{μ} respectively. To prove the last statement of the proposition, suppose $0<\mu<\sigma_{\boldsymbol{A}} / \mathbb{4}$. Let $\varepsilon=(\mu \operatorname{diam} A) /\left(\sigma_{A} / 2-\mu\right)$ and observe that $0<\varepsilon<\operatorname{diam} A$. Moreover. $\delta_{0}=$
$\min \left(\mu, \varepsilon\left(\sigma_{A} / 2-\mu\right) / \operatorname{diam} A\right\}=\mu$, thus we have $A_{\mu-\delta_{0}} \subset A_{\mu}+\varepsilon S$, that is $A \subset$ $A_{\mu}+\varepsilon S$. Evidently $A_{\mu} \in A$ and $80 \quad h\left(A_{\mu}, A\right) \leq \varepsilon=(\mu \operatorname{diam} A) /\left(\sigma_{A} / 2-\mu\right)$. This completes the proof.

Lemma 3.6. [2, p. 170]. Let $p_{1}: x \rightarrow \mathbb{R}$ and $p_{2}: x \rightarrow \mathbb{R}$ be an u.s.c. and a 1.s.c. function such that $p_{1}(x)<p_{2}(x), x \in x$. Then there exists a continuous function $p: X \rightarrow \mathbb{R}$ such that $p_{1}(x)<p(x)<p_{2}(x), x \in X$.

Let $F: X \rightarrow Q$ be Hausdorff 1.s.c.. By Lemma 3.1, σ_{F} is 1.s.c. and positive and by Lemma 3.6 there is a continuous function $\mu: x \rightarrow \mathbb{R}$ satisfying $0<\mu(x)<\sigma_{F}(x) / 2, x \in X$. For each $x \in X$ set $F_{\mu(x)}(x)=\{y \in F(x) \mid d(y, \partial F(x)) \geq$ $\mu(x)\}, \quad x \in X$. Evidently, $F_{\mu(x)}(x) \in \mathbb{B}$ thus the multifunction $F_{\mu}: x \rightarrow \infty$ given by $F_{\mu}(x)=F_{\mu(x)}(x), x \in X$, is a multivalued selection of F.

Proposition 3.7. Let $F: X \rightarrow B$ be Hausdorff 1.s.c. (resp. contincous) and let $\mu: X \rightarrow \mathbb{R}$ be continuous and satisfy $0<\mu(x)<\sigma_{F}(x) / 2, x \in X$. Then the multifunction $F_{\mu}: X \rightarrow B$ given by $F_{\mu}(x)=F_{\mu(x)}(x), x \in X$, is also Hausdorff 1.s.c. (resp. continuous). Moreover if $0<\mu(x)<\sigma_{F}(x) / 4, x \in x$, we have $h\left(F_{\mu}(x), F(x)\right) \leq(\mu(x)$ diam $F(x)) /\left(\sigma_{F}(x) / 2-\mu(x)\right)$.

Proof. Let F be Hausdorff l.s.c. and suppose, for a contradiction, that F_{μ} is not so. Then there are $x_{0} \in X_{,} \quad 0<\varepsilon<\operatorname{diam} F\left(x_{0}\right)$, and a sequence $\left\{x_{n}\right\} \subset X$ converging to x_{0} such that $F_{\mu\left(x_{0}\right)}\left(x_{0}\right) \notin F_{\mu\left(x_{n}\right)}\left(x_{n}\right)+\varepsilon S, \quad n \in \mathbb{N}$. Let $\left\{Y_{n}\right\} \subset Y$ be such that

$$
\begin{equation*}
y_{n} \in F_{\mu\left(x_{0}\right)}\left(x_{0}\right) \quad y_{n} \notin F_{\mu\left(x_{n}\right)}\left(x_{n}\right)+\varepsilon S, \quad n \in \mathbb{N} \tag{3.4}
\end{equation*}
$$

By Lemma 3.5 we have $F_{\mu\left(x_{0}\right)}\left(x_{0}\right) \subset F_{\mu\left(x_{0}\right)+\delta_{0}\left(x_{0}\right)+E S \text { where } \delta_{0}=\varepsilon\left(\sigma_{F}\left(x_{0}\right) / 2-1 . ~\right.}^{\text {- }}$ $\mu\left(x_{0}\right)$)/diam $F\left(x_{0}\right)$. Hence, for each $n \in \mathbf{N}, y_{n} \in F_{\mu\left(x_{0}\right)+\delta_{0}}\left(x_{0}\right)+\varepsilon S$ and so there is $z_{n} \in F_{\mu\left(x_{0}\right)+\delta_{0}}\left(x_{0}\right)$ satisfying $\left|y_{n}-z_{n}\right|<\varepsilon$. Moreover, since μ is continuous, there is $k \in \mathbb{N}$ such that whenever $n \geq k$ we have $\mu\left(x_{0}\right)-\delta_{0} / 2$ < $\mu\left(x_{n}\right)<\mu\left(x_{0}\right)+\delta_{0} / 2$ and, in particular, $\mu\left(x_{0}\right)>\mu\left(x_{n}\right)-\delta_{0} / 2$. Consequently, $\mu\left(x_{0}\right)+\delta_{0}>\mu\left(x_{n}\right)+\delta_{0} / 2$ which implies that $F_{\mu\left(x_{0}\right)+\delta_{0}}\left(x_{0}\right) \subset F_{\mu\left(x_{n}\right)+\delta_{0} / 2}\left(x_{0}\right)$, $n \geq k$. Since F is Hausdorff l.s.c. there is $k_{1} \geq k$ such that $F\left(x_{0}\right) \subset F\left(x_{n}\right)+$ $\left(\delta_{0} / 2\right) \mathrm{s}$ for all $\mathrm{n} \geq \mathrm{k}_{1}$. Furthermore, for each $\mathrm{n} \geq \mathrm{k}_{1}$ we have $z_{n} \in$ $F_{\mu\left(x_{n}\right)+\delta_{0} / 2}\left(x_{0}\right)$ which implies that $S\left(z_{n^{\prime}} \mu\left(x_{n}\right)+\delta_{0} / 2\right) \subset F\left(x_{0}\right)$. Hence, $z_{n}+$ $+\left(\mu\left(x_{n}\right)+\delta_{0} / 2\right) S \subset F\left(x_{0}\right) \subset F\left(x_{n}\right)+\left(\delta_{0} / 2\right) S$ thus $z_{n}+\mu\left(x_{n}\right) S \subset F\left(x_{n}\right)$, that is $z_{n} \in F_{\mu\left(x_{n}\right)}\left(x_{n}\right)$, if $n \geq k_{1}$. Then $y_{n}=z_{n}+\left(y_{n}-z_{n}\right) \in F_{\mu\left(x_{n}\right)}\left(x_{n}\right)+\varepsilon S$ for
each $n \geq k_{1}$, in contradiction to (3.4). Therefore F_{μ} is Hausdorff 1.s.c. Now, suppose F Hausdorff continuous. To show that so is F_{μ} it is sufficient to prove that F_{μ} is u.s.c.. Arguing by contradiction one finds $\dot{x}_{0} \in x_{r}$ $0<\varepsilon<\operatorname{diam} F\left(x_{0}\right)$, and a sequence $\left\{x_{n}\right\} \subset x$ converging to x_{0} such that $F_{\mu\left(x_{n}\right)}\left(x_{n}\right) \not \subset F_{\mu\left(x_{0}\right)}\left(x_{0}\right)+\varepsilon S, \quad n \in \mathbb{N} . \quad$ Let $\left\{_{y_{n}}\right\} \in Y$ be such that

$$
\begin{equation*}
y_{n} \in F_{\mu\left(x_{n}\right)}\left(x_{n}\right) \quad y_{n}<F_{\mu\left(x_{0}\right)}\left(x_{0}\right)+\varepsilon S \quad, \quad n \in \mathbb{N} \tag{3.5}
\end{equation*}
$$

By Lemma 3.5 , there is $\delta_{0}>0$ given by $\delta_{0}=\min \left\{\mu\left(x_{0}\right), \varepsilon\left(\sigma_{F}\left(x_{0}\right) / 2-\mu\left(x_{0}\right)\right) /\right.$ diam $\left.F\left(x_{0}\right)\right\}$ such that $F_{\mu\left(x_{0}\right)-\delta_{0}}\left(x_{0}\right) \subset F_{\mu\left(x_{0}\right)}\left(x_{0}\right)+\varepsilon S$. By the continuity of μ there is $k \in N$ such that $\mu\left(x_{0}\right)-\delta_{0} / 2<\mu\left(x_{n}\right)<\mu\left(x_{0}\right)+\delta_{0} / 2$ if $n \geq k$. Thus, for each $n \geq k, \mu\left(x_{0}\right)>\mu\left(x_{n}\right)-\delta_{0} / 2>\mu\left(x_{0}\right)-\delta_{0} \geq 0$ and hence $F_{\mu\left(x_{n}\right)-\delta_{0} / 2}\left(x_{0}\right) \subset F_{\mu\left(x_{0}\right)-\delta_{0}}\left(x_{0}\right)$. On the other hand by the Hausdorff continuity of F there is $k_{1} \geq k$ such that $F\left(x_{n}\right) \subset F\left(x_{0}\right)+\left(\delta_{0} / 2\right) S$ if $n \geq k_{1}$. Since $y_{n}+\mu\left(x_{n}\right) S \subset F\left(x_{n}\right) \subset F\left(x_{0}\right)+\left(\delta_{0} / 2\right) S$, it follows that $Y_{n}+\left(\mu\left(x_{n}\right)-\delta_{0} / 2\right) S \subset F\left(x_{0}\right)$. Hence for each $n \geq k_{1}$ we have $y_{n} \in F_{\mu\left(x_{n}\right)-\delta_{0} / 2}\left(x_{0}\right) \subset F_{\mu\left(x_{0}\right)-\delta_{0}}\left(x_{0}\right) \subset$ $F_{\mu\left(x_{0}\right)}\left(x_{0}\right)+\varepsilon S$, which contradicts (3.5). Therefore F_{μ} is Hausdorff u.s.c. . The last statement of the proposition follows from Lemma 3.5. This completes the proof.

Remark 3.8. Let $F: x \rightarrow B$ be Hausdorff continuous. Let $\mu: x \rightarrow R$ be continuous and satisfy $0<\mu(x)<\sigma_{F}(x) / 2$, $x \in X$. For each $x \in X$, put $F_{\mu(x)}^{0}=\{y \in F(x) \mid d(y, \partial F(x))>\mu(x)\}$. From Remark 3.3 it follows that $F_{\mu(x)}^{0}(x) \in 2$, thus the multifunction F_{μ}^{0} given by $F_{\mu}^{0}(x)=F_{\mu(x)}^{0}(x)$, $x \in X$, maps x into 2. Since $F_{\mu}^{0}(x)=$ int $F_{\mu}(x)$, by virtue of propositions 3.7 and 2.15, it follows that F_{μ}^{0} is Hausdorff continuous. Observe that also the multifunction $\partial F_{\mu}^{0}: X \rightarrow X$ given by $\left(\partial F_{\mu}^{0}\right)(x)=\partial F_{\mu}^{0}(x), x \in X$, is Hausdorff continuous since, by Proposition 2.5, $x \rightarrow \partial F_{\mu}(x) \quad$ is so and $\quad \partial F_{\mu}(x)=\partial F_{\mu}^{0}(x)$, $x \in X$.

Proposition 3.9. Let $F: X \rightarrow U$ be Hausdorff 1.s.c.. Then there exists a Hausdorff continuous multifunction $G: x \rightarrow 03$ and a positive continuous function $t: X \rightarrow \mathbb{R}$, satisfying $G(x)+t(x) S \subset F(x), x \in X$.

Proof. Let $z \in X$. Since $F(z)$ has nonempty interior there are $G \in B$ and $t_{z}>0$ such that $G_{z}+2 t_{z} S \subset F(z)$. Furthermore, F is Hausdorff 1.s.c. thus there is $\delta_{z}>0$ such that $G_{z}+t_{z} S \subset F(x)$ for each $x \in S_{z}=\{u \in X \mid$ $\left.e(u, z)<\delta_{z}\right\}$. As $\left\{s_{z}\right\}_{z \in X}$ is an open covering of the metric space x, there
is a partition of unity subordinated to $\left\{s_{z}\right\}_{z_{\epsilon} X}$. Hence there is a family \mathcal{S} of continuous functions $p_{z}: X \rightarrow[0,1]$, whose supports form a neighborhood finite closed covering of $X_{;}$furthermore the support of each p_{z} lies in S_{z}, and $\sum_{z \in X} p_{z}(x)=1, \quad x \in x$. Set

$$
t(x)=\sum_{z \in X} p_{z}(x) t_{z} \quad G_{0}(x)=\sum_{z \in X} p_{z}(x) G_{z}, \quad x \in X
$$

Observe that $t: x \rightarrow R$ is continuous and positive while, as we shall see, G_{0} is Hausdorff continuous. To this end, fix $x_{0} \in X$ and $\varepsilon>0$. For $r_{0}>0$ small enough there is only a finite number of functions $p_{z_{1}} \in \mathcal{S}(i=1,2, \ldots, k)$ whose supports meet $S\left(x_{0}, x_{0}\right)$. By the continuity of $P_{z_{1}}$ there is $0<r<r_{0}$ such that

$$
\left|p_{z_{i}}(x)-p_{z_{i}}\left(x_{0}\right)\right|<\varepsilon\left[\sum_{i=1}^{k} h\left(G_{z_{i}}, 0\right)\right]^{-1}, \quad x \in S\left(x_{0}, r\right) .
$$

where $i=1,2, \ldots, k$. Then, for each $x \in S\left(x_{0}, r\right)$, we have

$$
\begin{aligned}
& h\left(G(x), G\left(x_{0}\right)\right)=h\left(\sum_{i=1}^{k} p_{z_{i}}(x) G_{z_{i}} \int_{i=1}^{k} p_{z_{i}}\left(x_{0}\right) G_{z_{i}}\right) \\
& \leq \sum_{i=1}^{k} h\left(p_{z_{i}}(x) G_{z_{i}}, p_{z_{i}}\left(x_{0}\right) G_{z_{i}}\right) \leq \sum_{i=1}^{k}\left|p_{z_{i}}(x)-p_{z_{i}}\left(x_{0}\right)\right| h\left(G_{z_{i}}, 0\right)<\varepsilon
\end{aligned}
$$

and G_{0} is Hausdorff continuous at x_{0}. Moreover, we have $G_{0}(x)+t(x) S C F(x)$, $x \in X$. In fact, take any $x_{0} \in x$ and denote by $p_{z_{1}}(i=1,2, \ldots, k)$ those functions in \mathcal{S} whose supports contain x_{0}. since $x_{0} \in S_{z_{1}}$ we have $G_{z_{1}}+$ $t_{z_{i}} S \subset F\left(x_{0}\right), i=1,2, \ldots, i k$, and thus

$$
\begin{aligned}
& G_{0}\left(x_{0}\right)+t\left(x_{0}\right) S=\sum_{i=1}^{k} p_{z_{i}}\left(x_{0}\right) G_{z_{i}}+\left(\sum_{i=1}^{k} p_{z_{i}}\left(x_{0}\right) t_{z_{i}}\right) S \\
& =\sum_{i=1}^{k} p_{z_{i}}\left(x_{0}\right)\left(G_{z_{i}}+t_{z_{i}} s\right) c \sum_{i=1}^{k} p_{z_{i}}\left(x_{0}\right) F\left(x_{0}\right)=F\left(x_{0}\right) .
\end{aligned}
$$

Then the multifunction G defined by $G(x)=\overline{G_{0}(x)}, x \in x$, maps x into B, is Hausdorff continuous, and satisfies $G(x)+t(x) S \subset F(x), x \in X$. This completes the proof.

Remark 3.10. The above argument shows that, if we retain the hypotheses
(and notations) of Proposition 3.9 , then $F: X \rightarrow U$ admits a continuous single valued selection $g: X \rightarrow Y$ satisfying $g(x)+t(x) S \subset F(x), \quad x \in X$ For continuous F, from X to the nonempty open convex subsets of Y, the existence of, continuous single valued selections follows from Michael [4, Theorem 8.5]. Observe that if in Proposition $3.9 \quad F$ is supposed to be lower semicontinuous (that is, whenever $V \subset Y$ is open in Y then the set $\{x \in X \mid F(x) \cap V \neq \varnothing\}$ is open in X), the existence of continuous single valued selections may fail. In fact, as shown by Michael [3, Example 6.3], there exists a lower semicontinuous multifunction, from $[0,1]$ to the nonempty open convex subsets of a Banach space, which has no single valued continuous selections. This pathology is ruled out under the stronger hypothesis that F be Hausdorff l.s.c.

References

[1] F.S. De Blasi, G. Pianigiani, A Baire category approach to the existence of solutions of multivalued differential equations in Banach spaces, Funkcial. Ekvac. (2) 25 (1982), 153-162.
[2] J. Dugundji, Topology, Allyn and Bacon, Boston 1966.
[3] E. Michael, Continuous selections I, Ann. of Math. (2) 63 (1956), 361-382.
[4] E. Michael, Continuous selections III, Ann. of Math. (2) 65 (1957), 375-390.

Istituto Matematico U. Dini
Viale Morgagni, 67/A
50134 Firenze, Italy

Istituto Matematico Universita V1a Mantica, 3 33100 Udine, Italy

