Commentationes Mathematicae Universitatis Caroline

Per Simon
 Completely regular modification and products

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 1, 121--128

Persistent URL: http://dml.cz/dmlcz/106283

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
C.OMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

25,1 (1984)

COMPLETELY REGULAR MODIFICATION AND PRODUCTS Petr SIMON

Abstract: If X is a topological space, denote $C R(X)$ the completely regular modification of X. The aim of the present paper is to give an example of two T_{3}-spaces X, Y such that $C R(X \times Y) \neq C R(X) \times C R(Y)$.

Key words and phraseg: Completely regular modification, Jones machine, lychonolf plank, almost disjoint family.

Classification: Primary 54G20, 54A10
Secondary 5410, 54D15, 54B10

There is a plenty of papers dealing with the commutatifity of products and a suitable functor from the category of topological spaces into itself. To the author knowledge, the functor of completely regular modification has been investigam ted from this point of view in [O] and [P]. For a topological space X, denote $C R(X)$, the completely ragular modification of X, the space whose underlying set is the same as that of X, equipped with the topology, the base of which consisty of all cozero subsets of X. It is easy to show that $C R(X)$ has the largest completely regular topology contained in the topology of X. Let us remind the best results concerning the commutativity of $C R$ and products:

Theorem [0]: Let X be Tyohonoff. Then the following are equivalent:
(1) X is locally compact,
(ii) for each apace $Y, C R(X \times Y)=X \times C R(Y)$.

Theoren [0]: Let X be a topological space and suppese that $\operatorname{GR}(X)$ is not locally compact. Then there existe a Hausdorff mpace Y such that $C R(X \times Y) \neq C R(X) \times C R(Y)$.

According to these two theorems, the pioture is pretty clears local compactness is the crucial property. Unfortunately, the proof of the second theorem mentioned above easentially usen the fact that the space Y is not regular.

We do not know the answer, whether "Hauadorff" can be replaced by "regular" in the second theorem of S. Oka. Hevertheless, we can exhibit the following

Example: There exist regular spaces X and Y such that $C R(X) \times C R(Y)+C R(X \times Y)$.

The idea is fairly simple. Let us start with a completely regular, non-normal space T, let $A, B \leq T$ be the two olosed diejoint sets which cannot be separated. Run the space T through the Jones machine. You will obtain the regular space X whiah contains a point p and a closed set Λ_{0} isomorphic to A such that p and A_{0} cannot be functionally separated. This iaplies that whenever U is a cozero set in X which contains p, then $U \cap A_{\text {。 }}$ is infinite. Consequently, the point (p, p) belong to the olosure of the set $\left\{(x, x): x \in \mathbf{A}_{0}\right\}$ in the space $C R(X) \times C R(X)$. In orm der to show that $C R(X \times X)$ difiers from $C R(X) \times C R(X)$; we need to find a continuous real-valued function on $X \times X$ which vanishea in (p, p) and equals 1 in each (x, x), $x \in A_{0}$.

Unfortunately, this does not work in general and we ought to be a bit more cereful when choosing the atarting non-nomal space - in fact, we shall need two such apaces. In apite of
this, the idea has just been fully described and the rest are mere technical complications.
A. The modified Trohonoff plank. Let $\tau \leq 2^{\omega}$ be a cardinal number, let $\mathcal{F}=\left\{F_{\alpha}: \propto \in \tau\right\}$ be an arbitrary family of infinite aubsets of ω.

The modified Tychonoff plank $T(\mathfrak{F})$ is defined as followsz The underlying set is $(\tau+1) \times(\omega+1)-\{(\tau, \omega)\}$, every point (α, n) (for $\propto<\tau, n<\omega$) is isolated, the neighborhood base of a point (τ, n) (for $n<\omega$) is the collection $\left\{\{(\tau, n)\} \cup\{(\alpha, n): \propto \in \tau-c\} z C \in[\tau]^{\leq \alpha}\right\}$, the neighborhood base of a point (α, ω) (for $\alpha<\tau$) is the collection $\left\{\{(\alpha, \omega)\} \cup\left\{(\alpha, n): n \in F_{\alpha}-F\right\}: F \in[\omega]^{<\omega}\right\}_{\text {. S S S }}$ Stimes it will be convenient to emphasize by a subscript $(\alpha, n) \mathcal{F}^{\prime}$ that the pair (α, n) belongs to $T(F)$.

Now, the space $\mathrm{I}\left(\mathbb{K}^{\prime}\right)$ is completely regular Hausdorff 0-dimensional. It is normal if and only if $|\mathcal{F}| \leq \omega$, because the sets $A_{\mathcal{F}}=\{\tau\} \times \omega$ and $B_{\mathcal{F}}=\tau \times\{\omega\}$ cannot be separated iff $\tau>\omega$.

The forthcoming lemma shows one important property of continuoue functions on $T\left(\mathcal{F}^{\prime}\right)$.

For $\mathfrak{F} \equiv[\omega]^{\omega}$, denote $y(\mathcal{F})=\left\{x \in[\omega]^{\omega}: \mid\{F \in \mathcal{F}:\right.$ $:|F \cap X|=\omega\} \mid \leq \omega\}$.

Lemma 1. Let $\mathcal{F}^{\prime} \in[\omega]^{\omega}, \tau=|\mathcal{F}|>\omega, \operatorname{let} \mathrm{f}: \mathbb{T}(\boldsymbol{J}) \rightarrow \mathbb{R}$ be continuous, $\varepsilon>0$. Then
(i) if $|\{x \in \tau:|f((\alpha, \omega))| \geq \varepsilon\}| \leq \omega$, then $\{n \in \omega:$
$:|f((\tau, n))|>\varepsilon\} \mid \in Y\left(\mathcal{F}^{\prime}\right)$, and almost conversely
(ii) if $\{n \in \omega:|f((\tau, n))| \geq \varepsilon\} \in \mathcal{F}(\mathfrak{F})$, then $\mid f \propto \in \tau:$ $:|f((\alpha, \omega))|>\varepsilon\} \mid \leq \omega$.

Proof. Since f is continuous, then for each $n, k \in \omega$ the
set $S_{n, k}=\left\{\alpha \in \tau:|f((\alpha, n))-f((\tau, n))| \geq \frac{1}{\frac{1}{2}}\right\}$ is countable. Let $S=\bigcup_{k}^{\infty} \bigcup_{n=0}^{\infty} S_{n, k}, z=\tau-S$. Then for $\propto \in z$ and $n \in \omega$ $f((\alpha, n))=f((\tau, n))$.
(i) Denote $M=\{n \in \omega:|f((\tau, n))|>\varepsilon\}$. If $\propto \in z$ is such that $\left|M \cap F_{\alpha}\right|=\omega$, then the continuity of f implies $|f((\alpha, \omega))| \geq \inf \left\{|f((\alpha, n))|: n \in F_{\alpha} \cap M\right\}=\inf f|f((\tau, n))|:$ $\left.: n \in F_{\alpha} \cap M\right\} \geq \varepsilon$. Therefore $\left\{\alpha \in \tau:\left|F_{\alpha} \cap M\right|=\omega\right\} \in\{\propto \in \tau:$ $:|f((\alpha, \omega))| \geq \varepsilon\} \cup S$. Since both sets on the right-hend aide are at most countable, $M \in \mathcal{Y}(\mathcal{F})$, which was to be proved.
(ii) Denote $K=\{n \in \omega:|f((\tau, n))| \geq \varepsilon\}$. If $\propto \in z$ is such that $\left|F_{\alpha} \cap \mathbb{N}\right|<\omega$, then $|f((\alpha, \omega))| \leqslant \sup f|f((\alpha, n))|:$ $\left.: n \in P_{\alpha}-\mathbb{Y}\right\}=\sup \left\{|f((\tau, n))|: n \in P_{\alpha}-\mathbb{I}\right\} \leqslant \in$. Thus $\{\alpha \in \tau:|f((\alpha, \omega))|>\varepsilon\} \in\left\{\alpha \in \tau:\left|F_{\alpha} \cap \bar{I}\right|=\omega\right\} \cup$ S. Since $H \in \mathcal{Y}\left(\mathcal{F}^{\prime}\right)$, the $\operatorname{set}\left\{\propto \in \tau:\left|F_{\infty} \cap \bar{M}\right|=\omega\right\}$ is at most countable, hence the set $\{\propto \in \tau:|f((\alpha, \omega))|>\varepsilon\}$ is at most oountable, too. \square
B. Jones machine. A well-known construction, the final form of which is due to P.B. Jones, goes as followa [J]: Let T be a non-normal space, denote $A, B \subseteq T$ the closed, disjoint sets which cannot be separated. Let $Z=(T \times \omega) \cup\{p\}$, where $p \nmid T \times \omega$. The topology on z is the usual product topology in all points other than p, the basic neighborhood of p is $\{p\} \cup(T \times(\omega-k))$, where $k \in \omega$. Define an equivalence relation \sim on Z by $(x, n) \sim(y, m)$ iff either $x \in A, y=x$ and $n=2 k+1, m=2 k+2$, or $x \in B, y=x$ and $n=2 k, m=2 k+1$. The space $J(T)$ is the quotient space Z modulo \sim.

The basic properties of $J(T)$ are the following: If T is regular (resp. Hausdorff, resp. T_{1}), then $J(T)$ is, but $J(T)$ is not completely regular. because the point p cannot be functionally
separated from the closed set $A \times\{0\}$.
For the modified non-normal Tychonoff plank $T(\mathcal{F})$, denote $A=\{(\tau, n): n \in \omega\}, B=\{(\alpha, \omega): \alpha \in \tau\}$ and consider the space $J(T(₹))=J(₹)$. (If necessary, we shall again denote the points of $J(乛)$ as $p_{\mathcal{F}}$ and $((\alpha, n), k)_{\mathcal{F}}$.) Then the following holda.

Lemma 2. Let $\mathcal{F} \subseteq[\omega]^{\boldsymbol{\omega}}$ be uncountable, let $\mathrm{f}: J(\boldsymbol{F}) \rightarrow \mathbb{R}$ be continuous, $f\left(p_{\text {cs }}\right)=0, \varepsilon>0$. Then
$f n \in \omega:|f(((\tau, n), 0))|>\varepsilon\} \in \mathcal{y}(\mathcal{F})$.
Proof. There is some $k \in \omega$ such that for all $x \in\{p\} u$ $U(T(F) \times(\omega-k)) / \sim,|f(x)|<E / 2$. Hence there is some even $j \geq k$ such that $|f(x)|<E / 2$ for all $x \in B \times\{j\}$.

Choose $\sigma^{\prime}>0, \sigma^{\prime}<\varepsilon / 2$.j. Since for each $x \in B \times\{j\}$, $|f(x)|<\varepsilon / 2$, by Lemma $1,(i)$, the set $f n \in \omega:|f(((\tau, n), j))|>$ $>\varepsilon / 2\} \in \mathcal{Y}(\mathcal{F})$. Since $A \times\{j\}$ was identified with $A \times\{j-1\}$, the set $\{n \in \omega:|f(((\tau, n), j-1))|>\varepsilon / 2\}$ belongs to $\mathcal{J}(\mathcal{F})$, too. Thus $\left\{n \in \omega:|f(((\tau, n), j-1))| \geq \varepsilon / 2+d^{\prime}\right\} \in \mathcal{f}(\mathcal{F})$, by Lemma 1 , (II), the net $\left\{\alpha \in \tau:|f(((\alpha, \omega), j-1))|>\varepsilon_{/ 2}+\sigma^{\prime}\right\}$ is at most countable. By the identification, $\{\propto \in \tau:|f(((\alpha, \omega), j-2))|>$ $>\varepsilon / 2+\delta \xi$ is countable, too, and the same holds for $\{\propto \in \tau$: $\left.:|f(((\alpha, \omega), j-2))| \geq \varepsilon / 2+2 \sigma^{\prime}\right\}$. Proceeding further, we obtain finally that $\left.f n \in \omega:|f(((\tau, n), 0))|>\varepsilon / 2+j . \sigma^{\prime}\right\} \in \mathcal{F}(\mathcal{F})$, which was to be proved, as $\varepsilon / 2+j . \delta^{2}<\varepsilon$.
C. How to do it. The forthooming lemma is fully proved in [S].

Lemma 3. There is an infinite marimal almost disjoint faaily $m \leq[\omega]^{\omega}$ which admits a disjoint partition $m=\mathcal{F} \subset$ ach that $y(M)=y(\xi)=y(G)$.

Notice that both the collections \mathcal{F}, \mathcal{G} must be uncountable. Suppose the contrary, let $\Re^{\prime}=\left\{F_{n} n_{n} \in \omega\right\}$. Choose a countably infinite subset $G^{\prime} \subseteq G$ and enumerate it as $\left\{G_{n}\right.$ $: n \in \omega\}$ in such a way that for each $G \in \mathcal{G}^{\prime}$, the set $\{n \in \omega$: $\left.G=G_{n}\right\}$ is infinite. Then pick up inductively $k_{n} \in G_{n}-i \bigcup_{0}^{m} F_{i}$, $k_{n}>k_{n-1}$. Now the set $K=\left\{k_{n}: n \in \omega\right\}$ belongs to $y(\mathcal{F})$, for $K \cap F$ is finite for each $F \in F$. On the other hand, the set $\{M \cap K: M \in M$ and $|M \cap K|=\omega\}$ is an infinite maximal alnost disjoint family on K, hence it cannot be countable. Thus $K \in \mathcal{F}\left(\mathcal{F}^{\prime}\right), \mathrm{K} \& \mathcal{Y}(M)$, which contradicts the lemma.

The spaces we promised to construct, are $X=J\left(\mathcal{F}^{\prime}\right), Y=$ $=J(G)$, where F and G are as in Lemma 3. Let $\tau=\left|\xi^{\prime}\right|$, $\mu=$ $=\left|G_{f}\right|$; using the notation as before, denote
$\Delta=\left\{\left(((\tau, n), 0)_{\mathcal{F}},((\mu, n), 0)_{\mathcal{C}_{\gamma}}\right): n \in \omega\right\}$.
First, we shall prove that the point $\left(p_{\mathcal{F}}, p_{G}\right)$ is a cluster point of \triangle in $\operatorname{CR}(X) \times \operatorname{CR}(Y)$.

Indeed, choose arbitrarily a cozero set U with $p_{z} \in U \subseteq$ $s J(\mathcal{F})$, and a cozero set V with $p_{G} \in \nabla \leqslant J(G)$. By Lemma 2, $K=$ $=\left\{n \in \omega:(\tau, n)_{\mathcal{F}} \notin U\right\} \in \mathcal{F}(\mathcal{F})$ and $L=\left\{n \in \omega:(\mu, n)_{g} \phi \nabla\right\} \in$ E $y\left(C_{g}\right)$. By Lemma 3, $y\left(F^{\prime}\right)=y(G)=y(M)$, and clearly $y(M)$ is a proper ideal on ω, thus $\omega-K \cup L$ is infinite. Clearly, for $n \in \omega-K \cup L,\left(((\tau, n), 0)_{\approx},((\mu, n), 0) g\right) \in U \times V$. Thus each neighborhood of a point $\left(p_{3}, p_{C_{8}}\right)$ in $\operatorname{CR}(X) \times \operatorname{CR}(Y)$ meeta Δ, which was to be proved.

Second, we shall separate the point $\left(p_{F},{ }^{\prime} p_{G}\right)$ from Δ in the space $C R(X \times Y)$.

Define a function $f: X \times Y \rightarrow \mathbb{R}$ as follows: $f((x, y))=1$ provided that there are $n \in \omega, \alpha \in \tau+1$ and $\beta \in \mu+1$ suoh that $x=((\alpha, n), 0)_{\mathcal{F}}, y=((\beta, n), 0)_{\mathcal{G}}$, otherwise $f((x, y))=0$.

Clearly, $f\left(\Delta \equiv 1, f\left(\left(p_{3}, p_{\dot{y}}\right)\right)=0\right.$, thus it remains to cheok that f is continuoua.

Pick up $(x, y) \in X \times Y$. Then there are only four non-trivial

cases:

1. $x=((\alpha, \omega), 0)_{3}$ for $\alpha<\tau$, $\mathbf{y}=((\beta, \omega), 0)_{G}$ for $\beta<\mu$.
Let $U=\{x\} \cup\left\{((\alpha, n), i)_{3}: n \in F_{\propto}-G_{\beta}, i \in\{0,1\}\right\}$,
$V=\{y\} \cup\left\{((\beta, n), 1)_{\&}: n \in G_{\beta}-F_{\alpha}, i \in\{0,1\}\right\}$.
Since M was assumed to be almost disjoint, $\left(F_{\alpha}-G_{\beta}\right) \cap$ $\cap\left(G_{\beta}-F_{\alpha}\right)=\emptyset$, thus $P \mathcal{P} U \times V=0$.
2. $x=((\alpha, \omega), 0)$ for $\alpha<\tau$, $y=((\beta, n), 0)$ for $\beta \leqslant \mu, n<\omega$.
Let $U=\{x\} \cup\left\{((\propto, m), i): m \in F_{\infty}-\{n\}, i \in\{0,1\}\right\}$, $\boldsymbol{V}=\{\boldsymbol{y}\} \cup\{((\boldsymbol{\gamma}, \mathrm{n}), 0): \boldsymbol{\gamma}<\boldsymbol{\mu}\}$.

Then P PU $\times V=0$.
3. $x=((\alpha, n), 0)$ for $\alpha \quad \tau, n<\omega$ $y=((\beta, \omega), 0)$ for $\beta<\mu$.
This case is eymmetrical to the previous one.
4. $x=((\alpha, n), 0)$ for $\alpha \leq \tau, n<\omega$, $y=((\beta, m), c)$ for $\beta \leq \mu, m<\omega$.
Let $U=\{x\} \cup\{((\delta, n), 0): \delta<\tau\}$, $\nabla=\{y\} \cup\{((\gamma, m), 0): \gamma<\mu\}$.

Then if $f(x, y)=0$, which takes place if $n \neq m$, we have $P P U \times V=0$, and if $n=m$, then $P H U \times V \equiv 1$ 。

In any case other than these just mentioned, the existence of neighborhoods U, ∇ with $\mathcal{P} P \mathbb{U} \times \mathbb{Z} 0$, is obvious.

Thus f is a continuous function which separates (p_{s}, p_{G}) and Δ.

Remark. The spaces we have constructed, are regular. One
can want, moreover, that both X, Y have a base consisting of interiors of zero sets. It suffices to start with $T(\mathcal{F})$ and $T\left(\mathcal{C}_{\text {}}\right)$ as before, but then adopt the construction described in [W] Instead of Jones mechine.

References
[E] R. ENGELKING: General Topology, Polish Scientific Publishers, Warszawa 1977.
[J] F.B. JONES: Hereditarily separable, non-completely regular spaces, Proceedings of the Blacksburg Virginia Topological Conference, March 1973.
[0] S.OKA: Tychonoff functor and product spaces, Proc. Japan. Acad. 54(1978), 97-100.
[P] R. PUPIER: La complexion universelle d'un product d'esper ces complétement régulières, Publ. Dept. Math. Lyon 6(1969), 75-84.
[S] P. SIMON: A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolinae 21 (1980), 749-753.
[W] M.L. WAGE: Spaces with zero set bases, Comment. Math. Univ. Carolinae 18(1977), 771-775.

Matematický ústav Univerzity Karlovy, Sokolovaká 83, 18600 Praha 8, Czechoslovakia

