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A GENERAL CONTINUITY PRINCIPLE 
R. WITTMANN 

Abstract: In this note we sharpen and generalize a theorem 
of I. Netuka concerning the continuity of signed potentials. The 
theorem is then applied to Riesz potentials. 
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Introduction. Answering a question posed by B. W. Schulze, 

I. Netuka [9] proved the following generalization of the classical 

Evans-Vasilesco theorem: 

If y is a signed measure on JR ' with compact support K such 

that 

p(x) -. r _ _ n _ 2 y (dy) 

is finite for any x € JR , then p is already continuous on X provided 
Pj K is continuous. 

In f a c t , he even proved a generalization of this result to har

monic spaces which satisfy the strong domination axiom. Besides 

seme results of the general theory of harmonic spaces his proof is 

based on Fuglede's fine minimum principle. In this note we give a 

generalization of Netuka's theorem to rather arbitrary convex cones 

of continuous functions on locally compact spaces. Our approach is 

based on an application of the Hahn-Banach theorem which occurred 

first in [1]. Surprisingly our theorem is not only more general 

but also sharper than Netuka's theorem in that p is no more assumed 
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to be a signed potential. 

In the sequel let P be a convex cone of non-negative continuous 

functions on a locally compact space X with a countable base. The 

only condition which we impose on P is that it contains a strictly 

positive element. We denote by S.:=- Sp the convex cone of all 

functions which are pointwise limits of increasing sequences in P. 

K will always be compact subset of X and PK a convex cone of 

functions p € P such that 

s € S, P<s on K •» P<s on X. 

We denote by Pft the linear space of all functions f on X for 

which there exist two sequences (p ), (q ) in P„ and a finite 
"n ^n K 

function s € S such that 

(a) lPn"
qnl - s (n€ 3N) . 

(b) lim(p -q )(x) - f(x) (n€lM) . 
n-xw ^n ^n 

Note that under our rather general, assumptions a function f € Pj£ 

need even not be continuous on X ^ K . 

1. Theorem. A function f€ P$ is already continuous throughout X 

if only its restriction to K is continuous. 

For the proof we need the following 

2. Lemma. For any x £ X the set M of all measures y on K such that 

(i) Jpdy < p(x) (p € P). 

ai) Jpdy « p(x) (p € P K), 

is non-empty. Moreover, for any y €M , we have 

(iiO Jsdy < s(x) (s 6 S) , 
(iv) |fdy - f (x) (f € P£). 
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Proof. Let (p : C(K) 4 B be the sub l inear f u n c t i o n a l def ined by 

<p(f) :« i n f { ( p - q ) ( x ) : p € P , q € PK, f < p - q on K). 

Note that the infimum is finite by the carrier property of PK. 

By the Hahn-Banach theorem, there exists a linear functional 1 on 

C(K) with l<(p. If f<o, then 1 (f) < (p (f) < o . Hence there exists 

a measure y on K such that 

1(f) • Jfdy (f€ C(K)). 

To see (i), let p£P and observe that 

Jpdy < (p(p|K) < p(x). 

For P € Pj/ we have also 

J-pdy < <p(-p,K) < -p(x) 

(iii) is an immediate consequence of (i). 

To see (iv), let f € P* and choose (p ),(q ),s as in (a),(b). Using 

s(x) < 00 and (a), (b) we may apply Lebesgue's dominated convergence 

theorem and (ii) to get 

Jfdy » limJ(p -q )dy = lim (p^-q„)(x) = f(x). n-*» n n n^too n n 

Proof of the Theorem. Let f € P£ such that f|K is continuous, x€X 

and (x ) a sequence in X converging to x. We have to show 

lim f(x ) = f(x). 
n-»eo n 

n 
To accomplish this, we choose, for any n € IN a measure y € ri 

If p is a strictly positive element i* p with p > 1 on K, then we 
o o — 

see from 
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lim sup y AK) < lim supJpn dyrt < lim sup p (x) - p (x) 
n -» oo n — n -» w o n —• n -> «»

 ro n o 

that (y ) is a bounded sequence of measures. Taking a subsequence, 

we may assume that (y ) converges vaguely to a measure y on K. 

Since p|K, q|K€C(K) for any p € P, q € P^ we have 

Jpdy » lim Jpdy < lim p(x_) * p(x) 
n™*°* •' n *°° n 

Jqdy » lim Jqdy » lim q(x ) « q(x) 

and therefore y€M . Using Z (iv) and f.„€C(K) we finally get 

f(x) - Jfdy - lim Jfdyn * lim f(xj 

From now on let (X,S) be a standard balayage space (cf. [3]). 

Denoting P the convex cone of continuous potentials we obviously 

have S • S. Thus the preceding notation coincides with the present 

notation. We denote further by P the convex cone of all potentials 

which are a countable sum of continuous potentials. In the notation 

of [6] this is exactly the band M. PK will be the set of all con

tinuous potentials with carrier in K. Obviously the difference of 

two finite potentials in Pm with carrier in K is contained in PS. 

The converse, however, is only true in fairly trivial cases. 

3. Corollary. Let p,q€P be finite such that f :» p - q is har

monic outside K. If f.w is continuous, then f is continuous on X. 

Proof. In view of the preceding comments we have only to show that 

there exist p' ,q' € Pm with carrier in K and f » p' - q' » p - q. 

This problem was solved in [9] under rather restrictive assumptions 

In the general case we have to follow a device of B. Fuglede which 

is outlined at the end of [9]. We define inductively pQ » P»qQ • q 

Pn :- Pn.T R(Pn-T ^n-l
3' qn * qn-1 " R(qn-1 _ P n - 1 K 
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Since P is a "cone of potentials" Pn»q belong again P and 

Pn < qn-i ' % < Pn-v Moreover, Pn.-,-Pn » ̂ n-r
qn a r e h a r m o n i c 

on X^ K. Hence (p ) and (q ) decrease to some limit u and *n ^n 
p' :» p-u, q* :a q - u are harmonic on X^ K. Since the sequences 

(p ) and (qn) are even specifically decreasing, the functions u, 

p* ,q' belong to Pm. Since p'-q' * p-q " f and S(p'),S(q')c K 

the assertion follows. 

For more details of the above construction see [5], Proposi

tion 1.2. 

4. Corollary. Let 0 < a < 2 , n >̂  3 and y be a signed measure on ]R 

carried by a compact set K such that 

f(x) = /n^Tin-a «(dy) Ax-y| 

is finite for any x£ F and f.K is continuous. Then f is con

tinuous throughout IRn . 

Proof. Since the kernel Va defined by 

vaf(x) • Jj~7,n-a f(y)«Jy 

is the potential kernel of a nice convolution semi-group (cf. [2], 

p. 136) the potentials 

' r^7T n - ° v(dy)-

where v runs through all positive measures, generate a standard 
1 

balayage space (cf. [3]). Since the function kernel -—ZTTTn-a 
satisfies the continuity principle (cf. [7], p. 189) every finite 

potential (of a measure) belongs to P . In particular, we have 

f € PJ- The assertion follows now from the theorem. 
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Remarks. (a) It would be interesting to know whether there exists 

a direct proof of the last corollary which depends only on certain 

estimates of the kernel in question. 

(b) For some illustrative examples the reader is.refered to [9]. 

In particular, there is an example of a continuous Newtonian signed 

Potential with compact carrier which is not the difference of two 

continuous potentials. 

(c) After having finished this paper A. Cornea made some important 

remarks: (1) The theory still works if X is an arbitrary topologi

cal space. (2) An element f € Pj£ is already lower semi-continuous 

if its restriction to K is lower semi-continuous. (3) If P is a 

convex cone of continuous functions on a compact space X, then a 

P-affine function (cf. [4], p. 500) is continuous on X if its re

striction to a Shi-lov set (cf. [10]) is continuous. 

All these assertions may be proved with the above method, one 

has only to replace sequences by filters. 

(d) After having submitted a first version of this paper the author 

received the Preprint [ 8] of 3. Krai. In this paper Krai extends 

his old (unpublished) method from 1975 to a new proof of Theorem 1. 

It should be remarked that his method is much simpler, in special 

situations, Corollary 3 for example. On the other hand it seems 

not possible to get the second generalization indicated in (c) in 

this way. 
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