Commentationes Mathematicae Universitatis Caroline

Per Simon

A closed separable subspace not being a retract of βN

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 2, 364--365
Persistent URL: http://dml.cz/dmlcz/106309

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

References: [1] Hemann U.: Eigenschaften von Potentialon bezüglich olliptischer Difforentialoperatoren, Math. Nachr. 96(1980), 7-15.
[2] Harvey Polking: Removable singularities of solutions of inear partial differential equations, Lota Mathematica 125(1970), 39-56.
[3] Král J.: Hôlder-continuous heat potentialn, Accad. Naz. Lincei, Rendiconti Ci. Sc. IIs., mat. Ser. VIII(1971), vol. LI, 17-19.

A_CLOSED_SEPARABLS_SURSPACE_HOT_BEING_ARRTRACT_OF $\beta \mathbb{N}$

Petr Simon (Mathematical Institute of Charles University, Sokolovská 83, 18600 Praha, Czechoslovakia), oblatum 17.4. 1984.
D. Maharam [M] proved that the following are equivalent:
(a) For each ideal $I \subseteq P(\mathbb{N})$, if there is a one-to-one homomorphism from $\mathcal{P}(\mathbb{N}) / I$ to $\mathcal{P}(\mathbb{N})$, then there is a lifting from $P(\mathbb{N}) / I$ to $\mathcal{P}(\mathbb{N})$. too;
(b) every non-voia closéd separable subspace of βN is a retract of β N , and has raised the question, whether (a) or (b) is a true atatement.

The answer to the Maharam 's problem is in negative. We can prove the two theorens below.
Theorem 1. There exists a subspace $x \in \mathbb{N}-\mathbb{N}$ satiafying the following:
(1) $X=\bigcup_{n \in \omega} X_{n}$, where $\left|X_{0}\right|=1$ and for each $n \in C$, the set X_{n} is countable discretes
(2) for each $n<m<\omega, X_{n} \subseteq \bar{X}_{m}-X_{m}$
(3) for each $n<\omega$ and for each $x \in X_{n}, x$ is a $\&-O K$ point in $\bar{X}_{n+1}-X_{n+1}$ i
(4) suppose $\left\{U_{k}: k \in \omega\right\} \in \mathcal{P}(\mathbb{N})$ to be a family of sets such that for some $n_{0}<\omega, U_{0}^{*} \cap X_{n_{0}}$ is finite and for each $1<$ $<k<\omega, U_{i}^{*} \cap X_{n_{0}+1} \subseteq U_{k^{*}}^{*}$ Then there is a family $\left\{V_{\alpha}: \alpha \in \notin\right\} \subseteq$ $\Leftrightarrow P(N)$ guch that for each $\alpha \in \phi, \nabla_{\alpha}^{*} \supseteq X \cap_{k \in} \Omega_{\omega} V_{k}^{*}$ and for each $k<\omega$ and for each finite set $\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k}<\phi, \bigcap_{i \leq h_{2}} \nabla_{1}^{*} \subseteq_{i} \bigcap_{k} U_{1}^{*}$;
(5) for each mapping $f_{8} \mathbb{N} \rightarrow X$ there is a set $T \subseteq \mathbb{N}$ and $\overline{a n}$ integer $n_{1}<\omega$ such that $T * \cap X \neq \emptyset$ and for each $n>n_{1}$. $X_{n} \cap \overline{f[T] \cap X_{n+1}}=\emptyset$ 。
Theorem 2. If a subspace $X \subseteq \beta N$ satisfies (1) - (5) from Theorem 1 then X is not a retract of βN.

If should be noted that the first example of a closed separable subspace of $\beta \mathbb{N}$ which is not a retract of $\beta \mathbb{N}$ was given by M. Talagrand under CH in [T] and the second one by A. Szymanski under M in [S].
References: [M] D. Maharam: Finitely additive measures on the integers, Sankhya, Ser. A, Vol. 38(1976), 44-59.
[S] A. Syymański: Some applications of tiry eoquences, to appear.
[P] M. Talagrends Hon existence de relòrement pour certaines mesures inioment additiven et retractés de $\beta \mathbb{N}$, Math, Ann. 256(1981). 63-66.

SHORT_BRAKCHES_II_RUDII-PROLXK ORDER

 oblatum 27.4. 1984.

Rudin-Frolif order of types of ultrafilters in β II ham the following propertiess
(1) each type of ultrafilters has at most $2^{\text {KK }}$ predecessora, [2].
(2) the cardinality of each branch is at least 2^{50}.

Thus, in Rudin-Frolík order the cardinality of branohes oan be only $2^{r_{0}}$ or $\left(2^{\aleph_{0}}\right){ }^{+}$. It was mhown in [1] that there exinta a chain order - 1momorphic to $\left(2^{50}\right)+$. Hence, the exietence of a branch of cardinality $\left(2^{-50}\right)^{+}$is proved.

The following result solves the problem of the existence of a branch having smaller cardinality.
Theoren. In Rudin-Frolik order there exiats an unbounded ohain order-isomorphic to ω_{1}.

By the properties (1) and (2) the branch containing thim chain has cardinality 2^{30}.
Referenoes: [1] E. ButkoviCova: Long chains in Rudin-Frolik or der, Comment. Math. Univ. Caroline 24(1983), 563-570.
[2] Z. Frolik: Sums of ultrafilters, Bull. Amer. Math. Soc. 73(1967), 87-91.

BESULTS_ON_DISJQINT_COYERING_SYSTEMS_ON_THE_RING_OR_INTEGERS

```
Ivan Korec, Department of Algebra, Faculty of Mathematics and
Physics of Comenius University, 84215 Bratislava, Czechoslovakia
oblatum 12.4. 1984.
    A system of congruence classes

```

will be called a disjoint covering systom (DCS) if for ovory
integer }x\mathrm{ there is exactly one i }\in{1,2,···., k} such tha

```

```

moduli of (1) and their least comon multiple will be called the
common modulus of (1).
If k> 1 then no two moduli of (1) are relatively prime.
Thi: condition can be expressed in the form
$\bigwedge_{i=1}^{k} \bigwedge_{j=1}^{k} \varphi\left(n_{i}, n_{j}\right)$

```
where \mp@subsup{\mathcal{F}}{}{\prime\prime}(x,y) is the formula
```



```
Consider more generally the formulae of the form
```

