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D. Maharam [Ml proved that the following are equivalents 

(a) For each ideal I £ (PON ). i* there is a one-to-one ho-
momorphism from CP(|N)/I to {PliN/t then there is a lifting 
from £>(IN)/X to <P(l>4)f too; 

(b) every non-void, closed separable subspaoe of p>§\ is a 
retract of l-»w , 
and has raised the question, whether (a) or (b) is a true state
ment. , 

The answer to the Maharam s problem is in negative. We can 
prove the two theorems below. 
Theorem 1, There exists a subspace X £ fiU - D4 satisfying the 
following! 

(1) X « U X , where \XJ - 1 and for each n e o the 
ftu c co n " 

set X„ is countable discretes 
n _ 
(2) for each n< m < a> , X^ -*^ - -*m* 
(3) for each n <- co and for each xC Xn, x i s a $ - OK 

point i n X n + 1 - Xn+1* 
(4) suppose ^Uksk e c*>$£<P(lH) to be a family of s e t s 

such that for some n < (0 f U j n l n i s f i n i t e and for each 1 < 
< k < o> , u i n I

n + i £ 0 £ T h e n * h e r e *« a family iV^t oc tf 4 I £ 
s- <P(N) such that for each dl€ k* !£*--?x AjfeCb Uk BXlA toT **oh 

k < o> and for each f i n i t e set oC0 < oCA < . . . <oCk< i^Qi** £ . Q^ Uf* 
(5) for each mapping fs IN ~-.>X there i s a set T £ H and 

an integer 24 < <*> such that T*nX#-0 and for each a *> 1^ » 

Theorem 2. I f a subspace X Q {3 IN s a t i s f i e s (1) - (5) from The
orem 1. thenT i s not a retract of £.N. 

I t should be noted that the f i r s t example of a closed se 
parable subspaoe of ft>H which i s not a retract of (3/N was g i 
ven by, M. Talagrand under CH in ITU and the second one by A. 
Szymanski under MA in tS3. 
Referenoess tMJ D. Maharam: f i n i t e l y additive measures on the 
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SHORT,BRAICg§^ 

Br* ButkoTiSoTa (Mlf SAV, Jesenna 5, 04154 Ko§loefdeexosleT*nsk#)f 
obi a turn 27.4* 1984. 

Rudin-Frollk order of types of u l t r a f i l t e r e in £ 1 has the 
following propertiess $c 

(1) each type of u l traf i l terB has at most 2 predecesBorst 
t 2 : j» , , .*a 

(2) the cardinality of eaoh branch 1B at least 2 • 
Thus, in Rudin-Frollk order the cardinality of branches oan he 
only 2 ° or (2*°) +. It was mhown in [11 that there exists a 
chain order - isomorphio to (2 ̂ ) . Henoef the existence of a 
branch of cardinality (2 ° ) + is proTBdU 

The following result solves the problem of the existenoe of 
a branch h&Ting smaller cardinality. 
Theorem. In Rudin-Frollk order there exists an unbounded ohain 
order-isomorphic to o>^. 

By the properties (1) and (2) the branch containing this 
ohain has cardinality 2 °. 
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A system of congruence classes 
(1) a.j(mod n.j), a2(mod n 2 ) , •••, a^mod n^) 
will be called a disjoint coTering system (DCS) if for STSry 
integer x there is exactly one i €{1, 2, ..., k} such that 
x 2 a^(mod n^). The integers n-|, n2, ..•, n^ will be called 
moduli of (1) and their least common multiple will be called the 
common modulus of (1). 

If k > 1 then no two moduli of (1) are relatiTely prime. 
This condition can be expressed in the form 

(2) /\ A ^ C n l t n3> 

where f(x, y) is the formula 
."3a Hu 3v (at i 1 A Z.U • X A ».T • y) 

Consider more generally the formulae of the form 
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