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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

25,4 (1984) 

MODELS OF AST WITHOUT CHOICE 
K. ČUDA, B. VOJTÁŠKOVÁ 

Abstracts In this paper, we present two models of the 
alternative set theory with the negation of the axiom of choice; 
in the second model even the negation of the weak axiom of choi­
ce is valid. The constructions which in several aspects remind 
the classical method of symmetric models, lie, however, basic­
ally on topological means of AST and the fact (also proved h e r e ) 
that there exists an increasing sequence of endomorphic univer­
ses with standard extension. 

Key words? Alternative set theory, basic equivalence, fi-
gure, fully revealed class, endomorphic universe, standard ex­
tension, ultraproduct, model. 

Classification: Primary 03E70 

Secondary 03E35, 03E25 

The axiom of choice (AC) is in fact in the alternative 

set theory (AST) equivalent with the axiom of extensional cod­

ing (see tV], ch. II, § 3)* However, its independence on the 

other axioms of AST was, for a long time, an open question. A 

partial answer, not yet published, was given by the first au­

thor who constructed a model of AST in which the Godel's sche­

me, the weak form of the axiom of cardinalities (i.e. ererj two 

infinite sets are equivalent) and the negation of the axiom of 

choice hold. A further contribution to this problem comes from 

A. Vencovskd. Her paper (quite recently published): "Indepen­

dence of th« axiom of choice in AST" contains a model of the 

whole AST with the negation of the axiom of choice in which 

- 555 -



the weak axiom of choice (WAC) is valid. The construction uses 

the axiom of reflection (see [S-V3]). Some notions and results 

from this paper will he used later. 

Heret we give two interpretations in AST. 

The first one is a model of 

AST - AC + lAC + WACt 

the second one is a model of 

AST - AC + 1 WAC. 

In addition, in both models the following assertion holds: 

( # ) Each uncountable class of the model contains a countable 

class which is not a class of the model. 

The following intuitive image gives a good picture of the 

nature of both constructed models. Let us iterate countably ma­

ny times the ultraproduct construction on the universal class 

V (the index set is FN). The "enlargements" of classes obtain­

ed from finite iterations and other "suitable" classes (e.g. so­

me countable classes) will represent classes of our models. 

Just for the description of these "suitable" classes, we shall 

use substantially topological techniques of AST. Into the se­

cond model, we add, moreover, a special class PR (and, of cour­

se, other classes which are obtained from PR, e.g. by Godelian 

operations) such that dom (PR) - FN and for each neFN the class 

PR" \n\ is the "enlargement" of FN from the n-th iteration of 

the ultraproduct. This class prevents the validity of WAC. 

As to the validity of other axioms in our models, we shall 

show that: 

Axioms for sets follow from the fact the the ultraproduct 

is an elementary superstructure of the starting structure; 

the Morse's scheme will be obtained tor a technique similar 
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to symmetric models* 

nAQ and the axiom of cardinalities result from the fact 

that the cardinality of the nenlargementn of every infinite 

class (in classical sensef of every infinite set) is the con­

tinuum; 

the axiom of prolongation is the consequence of the selec­

tion of countable classes. In our models, there are namely only 

the countable classes which one can obtain already on a certain 

step of the iteration* This circumstance Implies also the vali­

dity of the assertion (*)• 

Up to nowf we have quoted the notion of the iterated ultra-

product which is more currently used in mathematical literature* 

In our article we shall work, however, with another technique, 

specific for AST, namely with creating a system of endoraorphic 

universes with standard extension* This method lies in the exis­

tence (proved in § 4) of an increasing sequence of endomorphio 

universes with standard extension* We shall understand the "small­

est" member of the sequence as the universal class V and the fol­

lowing endomorphio universes as successive iterations of the ul-

traproduct construction. 

How we shall briefly recall some notions concerning our pro­

blems (see LVJ,ES-Vi;j)# 

k function P is an endoraorphism iff dom (P) * V and for e-

very set-formula $ p ( z l t . . . tz ) of the language PL, the normal 

formula 

(1) y9,(?)^(Vxlf...fxtt£dom (P))(sp(x1,...fxn) s 

3r55>(P(x1)f...,P(xn)) 

holds* 

If P is an endomorphism and rng (P) - Y, we call P an auto-
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morphism. 

A class A is an endomorphic universe iff there is an endo-

morphism F with rng (F) m A. 

Let A be an endomorphic universe. An operation Ex defined 

for all subclasses of A is called a standard extension on A iff 

for an arbitrary normal formula y(Z-,f... ,Z ) € FL. and arbitra­

ry X1,...fXn£A we have 

<j>A(Xlf...,Xn) s y(Ex (X1)f...,Ex (Xn))f 

where g> denotes the formula resulting frora go by the restric­

tion of all quantifiers binding set variables to the elements 

of A and all quantifiers binding class variables to the subclas­

ses of A. 

Let A, B be endomorphic universes, AcB. An operation Ex 

defined for all subclasses A is called a standard extension on 

A with respect to B T^ iff for an arbitrary normal formula 

cp (Z-,,... fZn)fe FL^ and arbitrary X.,,...,X £ A we have Ex (Xi)£ B 

(i * lf...fn) and 

9>A(Xlf.,.fXn) 2= y
B(Ex (X1)f...,Ex (Xn)). 

If an endomorphic universe A has a standard extension (for 

necessary and sufficient conditions see CS-V13)f the extension 

is uniquely determined - we shall denote it Ex^. Analogously, 

we denote by Ex. ̂ g the uniquely determined standard extension 

on A with respect to B. 

x) The notion was introduced by A. Vencovska. Some of her (recen­
tly published) results will be used later here and denoted 
by LAVJ. 
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From [8-Vll let us reoall several assertions: 

Let A+V be an endomorphio universe with standard exten­

sion, XfY£A. Then 

(Al) X£ExA(X) 

(A2) X - ExA(X)nA 

(A3) BxA(A) » V 

(A4) BxA(FH)4-FH 

(A5) BxA(doa (X)) - doa (E*A(X)) 

(A6) ExA(Y"X) - (BxA(Y))" ExA(X) 

(A7) (Va)(a€A =»ExA(aoA) -a) 

(AS) Let FiX *-> Y* then B*A(F) : BxA(X) ««->• BxA(Y) 

(A9) I S I S ExA(X)s BxA(Y) 

(A10) If x is definable hy a normal formula from ExA(X)f 

then x is definablef in Af by a normal formula from X 

and x € A. 

All these facts, except (A4)9 are immediate consequences 

of the definition of Ex. The assertion (A4) follows from the 

facts that A can be ordered by the type SX and A4-V. 

J 1. Some properties of endomorphio universe. In this 

section we shall prove several assertions concerning endomorph-

ic universes and fully revealed classesf which we shall use la­

ter. 

Up to the end of this paper let Af Alf -^f** denote en-

domorphic universes with standard extension. 

Lemma 1. UAV4 Let (F be an automorphism)*, X£A and 

F" X m X. Then ExA(F) is an automorphism and the condition 

(ExA(F))
w ExA(X) - ExA(X) 
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holds . 

Proof. Let %>(P) he formulas (1) from the d e f i n i t i o n of 
•̂  A 

endomorphisB. Since (P i s an automorphism) the formulas 

Yep (*) **• v a l i d . Prom the d e f i n i t i o n of s tandard ex tens ion 

we o b t a i n 

which implies that BxA(P) is a similarity. Since dom (P) * A, 

the following equality holds (see (A5) 9(A3)) 

dom (BxA(P)) - ExA (doa (P)) « -3*A(A) - V. 

Hence BxA(P) is an automorphism. Therefore - notice that P" X » 

» X - we have 

(BxA(P))" BxA(X) « ExA(X). 

Lemma 2 . Let (P he an automorphism) f Xc Af Pw X « X. 

Then we have the following* 

( i ) (ExA(P))» (X) - X 

( i i ) (BxA(P))« (A) - A 

( i i i ) ( E x A ( P ) ) r BxA(Def) i s an i d e n t i t y . 

Proof. Por ( i ) and ( i i ) n o t i c e t ha t ExA(P)2 P ( seo ( A l ) ) f 

hence (Ex A (P))" (X) « X. The a s s e r t i o n ( i i i ) fo l lows from the 

f a c t t h a t P r Def i s an i d e n t i t y . 

Lemma 3* Let A., v A^ D« such endomorphic un ive r ses t h a t 

k^C Ag and l e t XSA^. Then the fo l lowing ho lds : 

( i ) Ex. (Ex. . . (X)) * Ex. (X) (corarautativity of Ex) 
Ag A ^ A g AX 

( i i ) ExA ^ 4 (X) - ExA (^o.Ag 

Proof. Since Ex. ( E ^ ^ » (D) is a standard extension 
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ott \ t the formula (i) is valid. The assertion (ii) follow* 

immediately from (A2). 

The existence of endomorphio universes with pro forties 

mentioned in Lemma 3 will he proved in the fourth seotion. 

for the following considerations we shall recall two no­

tions (see IV] and [S-Vl]). 

A class X is revealed iff for eaoh countable ¥£ X there is 

a set u such that Y £ u SX« 

A olass X is called fully revealed iff for every normal 

formula y(ztZ)c?Ly the olass $x| 9(x,X)f is revealed* 

Remark. Mote that classes definable by normal formulas 

of the language ?I*y from a fully revealed olass flay the role 

of a generalissation of Sd classes. We shall often use this ana­

logy for our proofs. Instead of giving precise argumentationsf 

we shall only quote the corresponding assertions fromtT] and 

leave it to the reader to replace the words "a set formula of 

the language fL* by *a normal formula of the language *--*.nrt ** 

their proofs. 

The following assertion is proved in £S-V1]J 

(All) The class Bx^(X) is fully revealed for every X£A. 

To see this fact notice that Y is fully revealed iff VI 

cannot be defined by any normal formula of the language VLy from 

T. 

An immediate consequence of (All) asserts thats If A-j£ Agt 

X£A l f then (ExA ^ A (X) is fully revealed) 
Aг 

Theorem 1. Let X be a fully revealed class and lot X-, o 

3 Xp :D ... bo a descending sequence of classes definable from X 
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by a normal formula (and thug rerealed). Than O l ^ i i a non­

empty and rerealed claaa. 

Proof. SeeLV]f oh. I I f f 5. 

fo the construction of our models we shall need a new ty­

pe of the equiTalence of indiseernibility. 

Definition UVJ. Let X he a class. We pat x ^ y Iff for 

each normal formula &(s fZ)*fL we hare $>(xfI) m g>(y,X). 

Votiee that each claaa X i s a figure in JL . 

Remark. I t follows from Theorem 1 that for any fully re-

Tealed class X the equiTalence A i s compact. In other words, 

the equiTalence & has, in this oase (from topological point 

of Tiew)f as "sensible" properties as the equiTalence -= . 

iSSBSLA* 

(I) Monads in & axe either trifial or they contain an 

Infinite set. 

(II) Let (U,, • im\9 than a Is definable by a normal for-

mula from X. 

(ill) There are only oountably many triTial monads in &, . 

Proof. See an "analogous" theorem in [Vjf oh. Vf 5 1. 

Lemma 5. Let f be such an automorphism that f« X » X. Then 

(Vx) f(x) & x. 

Proof* See LV3, oh. Vf § 1 and adapt the proof of the 

"analogous" theorem. 

Lemma 5 Implies that each automorphism which "preetrree" 
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the class Xf "preserves" also monads and figures in A . 

Theorem 2 1.1VJ. Let x = yf X be fully revealed. Then 

there exists an automorphism P such that P(x) - y and F" X - I . 

Proof. Use the hack and forth method. In greater details 

• adapt the proof of the theorem on the existence of an auto­

morphism from LV], oh. Vf 5 1. 

Lemma 6. Let X he fully revealed. Then 

X i f f T S X - t X , f N } T* 
Proof. Suppose at f irs t x & y. We have to prove that 

for every normal formula <y (xfXfFH)s PL the formula 

(2) 3>(xfXfFH) m y(y fX fPI) 

holds. 

Prom our assumption i t follows (see Theorem 2) that there 

i s an automorphism P such that P(x) - y and P" X • X. But 

y(xJLfVB) i s a normal formula. Therefore (since P i s an auto­

morphism) we obtain 

9(x fX fPI) as y(P(x) fP" Xf P" FH)f 

(see LV3f oh.Vf $ 1) . We knowf moreover, that P(x) » yf P" X » 

• X and F" FN « FN (which i s the consequence of the assertion 

that FISDef). Therefore the formula (2) i s valid. 

Since the relation cx^pHl i a f i n # r t n a n r̂ k t t n # 

converse implication i s obvious. 

Remark. Replacing FN by Ex (FN) in the previous lemma, 

we obtain an uncorrect statement: I t suffices now to put X - V; 

we have then that Ex (FN) i s a figure in ^C^CIJU • Bu* t n e 

class i s not a figure in £ since Ex (FN) i s not a real class 

(for details see C5-V3). 
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Corollary. Lat X ha a fully revealed class. Than it la 

possible to define a from X and Jff if and only if a la definable 

only from X. 

Proof. Hotica that *a} is a monad in ry^r** **f *** *• 
— — iA 7 rnf 

a monad in -=- • 
\X\ 

Our nazt observations will deal with a special type of the 

equivalence of indisoernibility, i.a. with ,-,4^> f which wa 
shall use substantially in the nazt two 8 actions. 

Theorem 3. Lat (A, ha a monad in < **f%\\ » *-*• Iat(n *• 

have 

(i) (A,n A • 0 or ( /ûr. A la a monad in ,^, ) f moreover, 

BzA( (j, A A) & (to . 

(11) If a 6 A, then 

a fifcsaAAfi ^ A A . 

( i i i ) If (X i s fully ravaaled)A
f than (j,r> A+0. 

Proof. For (1) i t la sufficient to prove: 

Lat (Y - 4t |cp(t fX)\) f where y i s a normal formula; than 

(,tf\((j,n A) + 0 *» ?a((A,n A))A. 

Suppose therefore Y A ( (A, A A)4-0. Than Bz^(Y) n ( ^ + 0. from this 

i t follows (since (U, i s a monad in £c$*ty\\ a a a -BxA(Y) ** 

definable from BzA(X)) that BzA(Y) 3 <u, • Thus Y - BzA(Y)n A 5 

2 f*, A A. 

Sinca £* A A£Yf wa haTa that BzA(<u, A A)C 1ZA(Y) - see 

(A9). fha Talidity of BzA( (A, A A) S. <<A follows now from tha 

fact that (A, miQ^Hlk3LiSti) f o r -wltabla X± dafinabla from X. 

fha Implication « ^ in (11) i s tr iv ia l . Tha converse 
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assertion i s an immediate consequence of (A7)f(A9) and (i)s 

Since aeA and an Ac f-cn Af according to our assumption, wo 

have 

a * BxA(aA A)£ BxA( (A, n A) Sk (U, • 

for proving ( i i i ) notice that fx. • . f"V.. BxA(Y^)f 

whore Y^S A and I ^ Y g 3 ••• ia a descending sequence of classes 

definable from X and hence (revealed) . Then, acoording to The­

orem l f wo obtain that C\ Y14= 0 and henoe (see (1)) also 

^ n A4-0. 

This completes the proof* 

Lemma 7. Lot (X be fully revealed)A
f a fhe A and 

a S <a • (b). Thorn a £ At • (b). 
ViE^CXn «*A£k>>ExACFNrt 

Proof. To prove our statement by contradiction, lot ma as­

sume that there i s t e a such that t 4 fit & (b). 

Then for a normal formula y both i f ( t t S ^ ( Z ) t ! Z | ( n ) ) and 

Y (bfBxA(X)fBxA(fH)) hold* Denote 

^(a fBxA(X) fBxA(fir))^ ( 3 t c a ) ( T Y (t fBxA(X) fBxA(lI)) t 

obviously <p ia a normal formula. 

Since 

op(afBxA(X)fBxA(fI)) * y (atXfn)9 

we obtain that there is Tc an A suoh that 

-t Y(*fSxA(X)fExA(fI)# 

We shall show that this fact is in contradiction with the 

assumption a s* (U> &,_., (&)• *« tnia •*-&• notice that the 

existence of t implies that (a $ <u> A (b))A. But acoord­

ing to Lemma 6 
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xi, • W • |-v ft (b) 
^ x r p N i ex $ 

and thus (a i /u, • (b)) • 
Cxi 

For completing the proof i t su f f i ce s to show that 

a s p o (b) 2? (a £ M> » ( b ) ) A . 
M|[**CX>* l iff* 

To see t h i s , not ioe (use Theorem 3) that 

( . « ^ 0 » ) A = a n i * < * { E j * ( ) 0 . ( D ) . A S 

= a £ ^ « (b) . 

W;cx)$ 

5 2 . Model of AST - AC + n AC + WAS. In t h i s part f we 

sha l l construct the f i r s t model. For creating i t we suppose to 

have an increasing sequence A-jCAgC. . . of endomorphic univer­

ses with standard extension (for i t s construction see 5 4 ) . Let 

us denote 

V * - U i A ^ n c F H h 

The definition of classes in this model (we shall denote 

them X*f Y*9 X£ ,..., etc.) lies substantially on the relation 

4. f more preeieely, on the relation *S- « • For an ea-

sier typing we shall write further only Bxn(Z) inotead of 

Exj. (Z) and oimilarly EXfc.*£ ^ w i l 1 De tlie abbreviation for 

* V * (z)-
Def in i t ion . C£e*(X) i f f x « Xn V*f where X i o a f igure i n 

an epuivalanoe - ^ ^ , i Z S A n » moreover, 

(X*G* Y*)2S (X* - X n ? n XfcY*) 
+• 

and 

- 566 .. 



(X* -* X*)55 (X*- X*). 

For the reader's convenience we shall - when there is no 

danger of confusion - speak sometimes (when using the definiti­

on of C£fl*(X)) only of X instead of X*. 

Remark. It is easy to see that, for eaoh xeV*f xnV* is 

a Glass in our model: Lot xfeV*f then x£Ag for a suitable & . 

According to (A7) wo have x - Exp(x). But x is a figure in ,», 

(see the note behind the definition of =&, )• Thus 

C*S*(XAY*). 

Furthermore, wo shall denote by $>* the formula which is 

obtained from the formula f by restricting all its quantifiers 

to olasses of our model and e to €* . If y does not contain 

oubformulas of the type XcX, then <p* is obtained by the res-

trie tlon of all its quantifiers binding olasses of our model 

and sets to sets of our model. 

Before proving the validity of the above mentioned axioms 

for our model, we shall formulate several lemmas which will ma­

ke the proofs easier. 

Lemma 1. Let C£s*(X1)fC£s*(X2)f... .Cis*^). Then there 
___ ^k 

Is kcFI and a class XSA^ such that (X Is fully revealed) 
and Xf m Y4r\ V*t where Y4 are figures in #„ A. M . 

* * * tEsc-cy#s 

Proof. It follows directly from commutativity of Ex (see 

Lemma 3, 5 1) that we oan suppose that X^ are figures In 

^ =; ,-. x* t Zi-sA. . for a certain keFH. But the finite ae-

quence of Z^ oan be coded by one Glass - let us denote It Z. 

Put now X » Bxkfl.1^k(Z). According to (All) we have that (X is 
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he 
fully revealed) 9 which oompleteo the proof. 

freaaa 2« Let t f u € A , f I >- k. Let further t » v, u. 
ІЬж^iXЛ 

Then there e x i s t e an automorphism P such that P(t ) • u and 

P« Exj^Z) - B x ^ Z ) . Moreover P« T* - T* and O£0*(PnT*). 

Proof. Since ( B x ^ ^ (z) i s f u l l y revealed) * - see (Al l ) f 

and s ince t ._ ^ ( Z ) 7 « we have (owing to comrautativity of Ex) 

that t ^ ^ ^ *(.Z))\ Um * n t r « * o r * ( • • • Theorem 3 ( i ) f J 1) we 

A, 
obtain that (t ̂ ^ * ^ u ) *. Proa Theorem 2f 5 1 we know that 

there exiete (an autoaorphiem a) * auoh that G(t) - u and 

G« (-^^^(Z)) - ̂ ^ t (z^ Î t now P - Ex^G) and use Leaaa 2f 

5 1. 

Lemma 3 . Let P he mioh an autoaorphiaa that P" T* • T* 

and C £ 0 * ( P A T * ) . Then 

CZe*(X) m C£0*(P« X). 

Proof. It suffices to prove the following statements: 

(1) (C£,0*(Y) fc C£0*(X))-* C£0*(Y" X) 

(2) C£0*(X) -* C.€0*(X-1). 

We shall show only the validity of (l)f the proof of (2) 

is analogou0. 

Since Xf Y are classes of our modelt they are figures in 

Let now ucY1* X» tcT* and u„ & ^ t. Then for a suit-
•CE-X^CZV* 

able Z> k i t i s true that u f t c A ^ . Let P he an automorphism 

from Lemma 2 . This autctaorphiara "keepe" obviously also f igures 
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Y" X i s a figure in iBj~cz)? . As Pw V* - V* we have hence 

C£s*(Yw X). 

(Morse's scheme)* . Por every formula 9?(x f X l f . . . fX^)€ PL 

and for every X-*M.*fX* t i i e r e exis ts a class Y such that 

0£a*(Y) and 

(Vx€V*)(xcY m 9 *(x f X* t . , . f x£ )) . 

Proof. We can suppose (see Lemma 1) that Xlf...fXn are 

figures in an equivalence ,̂-,N-, where Z£i~ and (Z is ful~ 

ly revealed) • 

Define 

Y •{xcV* f^(x fX* f.. MI* )}. 

We shall prove C£s*(Y). To this end, it suffices to show that 

Y is a figure in ̂ E x^ ( 2o » i.e. that for every ucl and te V* 

such that t t r =v.,x> « we have teY. 
-I E ^ C Z H 

Let £ > k be such a number that t tu€. A^ . Let further P 

be an automorphism from Lemma 2. Since ucY f the formula 

y*(u,X* f . . . f X* ) holds. 

We show the val id i ty of the formula 

(3) ? *(u ,X* f . . . f X*) ss 9*(P(u) ,X* t . . . ,X* ) . 

Notice that (JX*)if means (3 X)(C£s*(X) & y ) . Since (see 

Lemma 3) C£s*(X) s C£s*(P« X) and P" V* - V*f according to 

Lemma 2f § l t we can replace ( J X)C£s*(X) by ( 3 ? * X)C£s*(F* X) 

and ( 3 x ) x€V*by ( 3 X ) P ( X ) G V*. But then 

<j*(u fX* f... fX* ) s y*(P(u) fP»*X l t . . . fP"*Xn) 

- see UVlf ch. Vf § 1. Formula (3) follows now immediately from 
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the fact that F«*% » x * (i . i f... f n) # This completes the 

proof* 

Further we sfc*!! investigate oountable classes in our model. 

Lemma 4. FN* * FN. 

Proof. Since FNcDef (see LV1, ch. V, } 1), the class FN 

is a figure in each equivalence ,|?> • Moreover, FNSA* for 

every i \ this follows from the fact that Def is a subclass of 

each endomorphic universe (see tS-Vll). Therefore FN£V*. Hen­

ce CJHS*(FN). For proving FN* « FN notice that FN*<£ FNf since 

in our model there is a smaller amount of classes than in AST. 

Theorem 1. Let X* be a countable class of V* . Then there 

exists an endomorphic universe Ak suoh that X*£ A^. 

Proof. Since 06s*(X), the class X is a figure in , £ „ v-> iE*j^CZ)S 

for Z£A^ and (Z fully revealed) . Moreover, since X* is a 

countable class, all monads in ^ = . . , x , there are trivial - see 

Lemma 4, § 1. Suppose now ts X* . Then *tt} a ^ is a monad in 

•CE^rXZH • F r o m Theorem 3* § 1 it follows that ( jCun A. is a 

monad in =- ) . Hence t e A . 

Corollary. The property "to be countable" is absolute for 

the classes of our model-,i.e. 

Count * (X*) SB Count (X*). 

Proof. From Lemma 4 we know that FN* • FN. Suppose at 

first Count * (X*). Then there exists F* :FN-*->X* . But F* is 

a one-one mapping in AST, too. 

If we assume Count (X*) we obtain - in accordance with 

Theorem 3> 5 1 - that X* £ A^ for a suitable k. Therefore there 

is such a mapping F that F:FN-<->X* and moreover, FSA^. Prom 

- 570 -



the axiom of prolongation in AST it follows that F - f r FN for 

a certain f € A^. But f€.V*t which completes the proof. 

(Axiom of prolongation)* • Let (F* he a countable func­

tion)* » then there is a function f* such that F*£ f * . 

Proof. From the Corollary of Theorem 1 it follows that F* 

is a countable function. How proceed similarly as in the second 

part of the proof of the Corollary. 

Before proving the axiom of cardinalities, we shall formu­

late a useful assertion. 

Theorem 2. For each uncountable class X* there is a set 

acA^, for a suitable k€FN f such that a £ X * and a is an infi­

nite set. 

Proof. The class X* is a figure in r ^ / ^ i » where ZsA^, 

(Z fully revealed) *• Since X* is an uncountable class and sin­

ce there is only a countable amount of trivial monads in ttT = . ^ s , 
-lEx^CZ)! 

(see Lemma 4 , § 1) , the class X* has to contain a non-trivial 

monad. Such a monad contains, however, an infinite set - this 

follows from Lemma 4f § 1 and Theorem 3, § 1. 

(Axiom of cardinalities)* • Each uncountable class X* can 

be mapped by a one-one function onto V* • 

Proof. Owing to Theorem 2 and Cantor-Bernstein's theorem 

i t i s sufficient to prove: If ac.V* and a i s an infinite set , 

then there exists F* :a<->V* • 
An 

Let aek£ • Then there is (G:a«->Ag) . Put now F* • 

« Ex^ (G)r\V* . 
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(Negation of the axiom of choice) . (There i s no c l a s s X 

such t h a t e f X i s an order ing of the type H . ) * 

Proof • Such a c l a s s X would have to be uncountable and 

could not conta in any i n f i n i t e s e t , a t the same time (see IV3, 

ch. I I # § 3 and Theorem 2)* 

(Weak aaiosa of choice)* , Let R* be a r e l a t i o n , dom (R*) « 

« FN. Then the re i s a function P*£ R** such tha t dora (F*) » FH. 

Pro of. R* is a figure in rr & , for Zs AVf (Z fully —- it^CZ)f -c 

Ak 
revealed) • We claim that dom (R^n Afe) » PH. For thisf it 

suffices to realise that for each ncPN the class R* -£ ni is a 

figure and moreover (see Theorem 3f (iii), § 1) R*
n i n In A^ 4s 0. 

Since the axiom of choice holds in the endomorphic universe 

A, (and, obviously, the weak axiom of choice, too), there exists 

a function gc A^ such that 

grFN£R*r, x^c R* . 

Put now F* m g ̂  FN. 

Theorem 3. Each uncountable class X* contains a countab­

le class Y such that -| C£s* (Y). 

Proof. Let T a -{a,tS2f...]r where a,€ A-., a e A - ̂ a-l ̂
or 

m « 2,3,... . Obviously T9 V*. 

We shall prove at first that i C£s*(T). The class T is, 

evidently, countable. Suppose Cls^T). Then - according to The­

orem 1 - there exists A^ such that T£A^. Prom the construction 

of T it follows, however, that 6-j-.+,€ Ak+^ - A^, i.e. &j-.+i ̂  A^, 

and simultaneously av+1 G T, which is a contradiction. 

Since X* is an uncountable class, there is F* :V*«*—> X* • 

Put now Y = P* " T. 
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Remark. The previous theorem implies that there exist* a 

countable system of classes in cor so del which eannot "be oode4. 

This circumstance raises hopes that it could be possible to 

create a model in whien even the weak axiom of cnoice does not 

noli. Such a -eciel is described ir the following section* 

§ 3. Model of AST - AC • 1 WAC. This model will contain 

all the classes from the first -soiel. In addition, we join here 

a special class (and therefore ZAZTJ sther classes that we can 

obtain from itf e.g., oy lodelian operations) which prevent! 

the validity of WAG. The class will be denoted FR (in fact, ?! 

is a relation created from standard extensions of FN) and defi­

ned as follows: 

Definition. FR is such a class that don (?R> • FI and 

(VneFN) FR" i n \ « Ex^CFN). 

Note that the larger the endomorphic unlTerse An ief the 

smaller is the extension Ex (FN). 

Lemma 1. For each neFN 

FRr n * Exn(Z)f 

kn where (Z is a fully revealed class) • 

Proof. From the definition of FR, (A2)f Le*nma 3f § 1 and 

(All) it follows that 

FRh n » Exn (Exft.1^n(PRr n n A ^ ) ) ; 

this completes the proof. 

Now we shall introduce new relations of indisoernibility 

in which the class FR will be a figure. 

Let us denote -« w , by n'£. 
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Corollary. (Vn^FN) ^ - =, 

for a suitable T. 

Proof* It follows directly from Lemma 1. 

Definition. Let us put 

\yi m,*fN iVl 

The relation i- is obviously a refinement of all rela­

tions *& f n £ FIT. 

a ) . 

Lemma 2. The class FR is, for each Yf a figure in -= . 
m 

Proof. It is sufficient to realize (see the definition of 

-* ) that for each n e FN the class FR r n + 1 is a figure in 

The next assertion that will further be used substantially, 

is a generalization of Lemma 7» § 1. 

A 
Theorem 1. Let (X be fully revealed) f a fb€A a f Y • 

• Ex^d) and a £ ( U ^ (b). Then a £ ( M ^ (b). 

Proof. Obviously it suffices to prove that for each keFN f 

k>n f the inclusion a Q P'Jh* ^ holds. This fact follows -
*Yi 

using induction - from Lemma 7» § 1 and the equality (see the 

definition of FR): 

FR r k + 1 - Exk((FR r k)o Ak)u Ex-^FNMkl). 

We shall create now the second model. The definitions of 

classes, relations »* and €.* are similar to those ones in the 
SL t« 

first model. We have only to substitute there {E"*~*CZ)} *& 
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8s. v, . We leave the detailed reformulation to the reader. 
{Ex^CZn 

Notice that X*f Y*f... will mean now classes in the second 

model. To prevent any misunderstanding when further speaking 

about classes of the first model, we then shall express this 

explicitly. 

Remark. Note that the definition of classes in this model 

really ensures that each class in the first model is also a 

class in the second one (the converse assertion is notf of cour­

se, true owing to PR). This fact will help us to verify here 

the individual axioms (and auxiliary statements, too). If it is 

possiblef we shall not give further detailed argumentations but 

only modify procedures of the analogous assertions from § 2. 

Lemma 3. Let tfu€A^ , I y k. Then 

* <e*~m\u s * i£*fan Um 

Proof. The assertion is an obvious consequence of Theorem 

1. Put there e.g. a » -it) and b » u. 

K Lemma 4. Let (Z be fully revealed) . Then 

(i) If x ^ - = 2 Y , yf x4-y and if xfye A^ , where I £ kf then 

there is a $. Pin, aeA^ such that a £ (** <*> (x). 

(ii) If (^^SL (x) »4xjt then xeA k. 

Proof. Por (i)f at first, notice (see Lemma 3) that 

x ^^ y s x *& , y. We data that (M I* v (*)
 is a 

non-trivial monad which contains an infinite -*et from k£ • This 
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a s s e r t i o n fo l lows (see Lemma 1 and Co ro l la ry) from the f ac t 
£ — — ^k 

t ha t jgx\z*)iaj; ^ - x ? - o r a s u i t a b l e Sf (Z fu l ly revealed) , 

and from Lemma 4» 5 1 and fheorem 3 , § !• 

For proving ( i i ) l e t us assume tha t I , ( £ z: k ) , i s the 

smal les t number l o r wnich x £ L . We show, by con t r ad i c t ion f 

t ha t JL ~ k# Suppose there fore i! .> k. Then (U ^ o ( x )n Â? « 

• i x i s ince fo r t f u t Ay we have - i n accordance with Lemma 3 -

t h a t 

Hence x i s def inable i n A^ from Exk p (Z) and Ex« 1 - > j t (FR r£ )A 

ri A« , . Thus, usjLUfc eummutativity of Ez and (A10) t we ob ta in 

tha t x i s def inable i n A* .^ from %x^a^j(Z) and (FR tin A* ^) * 

which c o n t r a d i c t s the cho ice of £ * 

o> o 
LecnjaaJ^« 1ft t . u c A ^ , £ p- k. Let f u r t h e r t f == s i u« 

Then the re i s an automorphism F such t ha t F ( t ) « u and F" Bx^CZ)* 

« Ex k (Z) . Moreover, F" V* • V* and C£s*(FnV*), 

Proof. From the d e f i n i t i o n of ^ and Lemma 1 i t fo l lows 

t ha t 

•{E^IZ.^ " Kt*hdSS^l\ ~ «^(.2>,E*£(Z>3 > 

A£ 
where (Z is fully revealed) • Moreover, commutativity of E:* 

implies that 

iBx^it\t^Z)\ ' ifc^(E3^^C2)),E êCZ)J 

Since Ex. _ ^ ( Z ) and Z are both Btandard extensions E X f - i - £ (-H^ 

fo r s u i t a b l e Z . f the same i s va l id f o r t h e i r couple. This coup-

l e i s the re fo re (a f u l l y revealed c l a s s ) * • 

Now put i n mind Lemma 3 and proceed analogously to Lemma 
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2f § 2. Let F be that automorphism, Then F(t) - u and also 

F" Exk(Z) - Exk(Z) since Exk(Z) is the first component of the 

couple which is "preserved" by F. As V* is the same in both 

models, we have that F" V * » V** . The assertion 0£s*(FnV*) fol­

lows from the fact that FnV** is even a class of the first mo­

del. 

LjemmajS. Let F be such an auto-nor phism that F" V*" * V* and 

C£s*(fnV*). Then 

G,£s*(X) ss C£s*(F*? X). 

Proof. Modify the proof of Lemma 3f § 2 in such a way: 

iCG^-czn by«rjcz^ W( 

U f £ ^ k f such t h a t t f u e A^ ) 

r ep lace t_ =%_.,, by r - ^ - ^ and note t h a t ( t h e r e i s , of courn*, 

Hence t t -%— , u (see Coro l la ry of Lemma 1 ) . 
i E y ^ t Z n 

(Morse s scheme)*. For every formula <j? (x f X-^ f . . . fXn)€ FL 

and for every X ^ , . . . f X ^ the re e x i s t s a c l a s s Y such tha t C£s*(Y) 

and 

(Y'xe .V*)(x€Y & cp*(x,X* f . . . fX* ) ) . 

Proof. It is enough to modify the proof of the Morse's 

scheme in the first model. Substitute there r_ --_v, by 
iExj^iZn 

CO 0 

{EvJtZ)^ and instead of Lemmas 2, 3 of § 2, consider now Lem­

mas 5, 6. 

Lemma 7# FN* - FN. 

Proof. Since FN is the class of the first model (see Lem­

ma 4, § 1), we have here C£s*(FN)f too. The assertion FN* - FN 
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follows now from the Dame eqiality in the first model and from 

the fact that the second ,:ô cl contains a greater rĵ ount of 

classes. 

Theorem 2. Let X* b<* a countable class of V* . Then the­

re is an endomorphic univerne A, mich that X* £ Av.. 

Proof. Cis*(X) implies that X is a figure in ,-**»-., for 

K 
Z£A^, (Z fully revealed) . But X** is a countable class. The­

refore (see Lemraa 4 (i)) all monads of X* are trivial. For 

proving the fact that X*£ A. f apply the second assertion of Lem­

ma 4. 

Corollary. Count* (X*) s Count (X*). 

Iroof. Modify, using Lemma 7 and the previous theorem, the 

proof of the analogous assertion from the first model. 

Since sets and countable classes are the same in both mo­

dels, we obtain immediately that the following statement holds: 

(Axiom of prolongation)* • Let (P* be a countable func­

tion)* , then there exists a function f * such that P*£ f * • 

(Axiom of cardinalities)* • Each uncountable class X* can 

be mapped by a one-one function onto V* • 

Proof* Lemma 4 (i) implies that each uncountable class of 

our model contains an infinite set| let us denote it a. Since, 

in the first model, there exists a function P such that P:a «—* 

«t—*V* » this function is also a class in the second model. Now 

see the proof of the axiom of cardinalities in the first model. 

(Negation of weak axiom of choice)* • There is such a 
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relation R* with dom (R*) • FN that for any function F*with 

dom (F*) « FN, the condition F*£ R* does not hold* 

Proof. Put R* » PR - (FN* FN) and suppose that P* ia such 

a function that dom (F*) « FN and F*£ R* . T,et us prolong F "* 

and denote the new function by g* . Then F* » g*VFB, Jince 

g*£ An for a suitable n, we have g*(n)c A (notice that H E A, >, 

Therefore (£xn(FN) - FN)nAn4
:0 (according to (A2) we know iiini 

Exn(FN)nAn « FN), which is a contradiction. 

Theorem 3« Each uncountable class X* contains a counta •-

le class Y such that n C£s*(Y). 

Proof* As both models have the same countable classes, 

Theorem 3 follows directly from the validity of the analogous 

assertion in the first model and from the axiom of cardinali­

ties* 

§ 4* The construction of an increasing sequence of endo-

morphic universes with standard extension. The con-

struction of both the models mentioned above lies substantial­

ly on the existence of an increasing sequence of endomorphic 

universes with standard extension. The last section of our pa­

per will be devoted just to proving that such a sequence ex­

ists. If the following text will remind someone of the const­

ruction of the iterated ultraproduct, we stress that the simi­

larity is quite accidental and that its content is but a pure 

fiction* 

At first we shall recall several notions and results from 

[S-Vl] , we shall further need. 
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For an arbitrary class A and arbitrary set d we put 

A[dJ » U(d)i feA}. 

Theorem (A). Let A be an endomorphic universe and let 

d 6 (J A. Then ATd) is the smallest endomorphic universe, the 

subclass of which is the class Au-CdJ. 

Prom the definition of ;- Id] it follows now: 

Lemma 1. Let A be an endomorphic universe. Then for each 

function feA aiw <**ich dtiiA the condition 

A tf(d)J £ Atd3 

holds. 

Theorem (B). Let A be an endomorphic un iverse and l e t 

c fd e U A. Then Afcl « A[dl i f f t he r e i s a one-one mapping f e A 

with o « f ( d ) . 

I f A i s an endomorphic u n i v e r s e , then we put for each XSA 

EA(X) m n U e A j XS u i . 

Theorem (C). An endomorphic un ive r se A has a s tandard ex­

tens ion i f f 

V * U { E A ( X ) , X£A & X 4 PN}. 

Nov/ we shall introduce some notions which make our next 

considerations easier. 

Definition. An ultrafilter 0* is called an ultrafilter on 

PI iff 

(VX e f) FNr.X+0. 

Since we shall be further interested only in ultrafliters 

on semisets (namely on the countable ones), we shall restrict 

ourselves only on sets; ultrafilters are nowfully determined 

by their sets. 
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For ultrafl i ters on PIT we iih-i"11 defire an ordering (in 

fact, i t is Rudin-Keerier s order'r./; on ultrafiltoro; ef. 

LC-Hl). 

Definition. Let '£ l$ "12 be >ntraf l i ters on FN, We oh al l 

say that ^ 2 is stronger ihim ;T\ w,ijth_ re^^ot^Js ,.a..fM.v•/1 on f 

(denotation tf -̂  ̂  'f ?) iff dorrs (f)=>-?N, f«P2?£PJi \ '»d, fr r p^ii 

xe f2» f "x £ ./,., We my, moreover, that ?p iq^s^iroj^i y then 

'/., (denotation 'f* "4 '/«) Iff there exists a function f such 

that ^ 4 ^ 2
# 

Let further A denote, similarly to previous paragraphs, an 

endomorphic universe with standard extension. 

Definition. Let x€ExA(PN). The class 

{ y* xeExA(PHny)} 

will he called a f i l ter determined by x and denoted by (&£, (x). 

Obviously, for each xeExA(PN)t the class 3?tt (x) is an 

ultrafi l ter on PN. 

Lemma 2. Let f eA he a function. Then 

(Vdedom(f)) -jRe(f(d)) I? dKe(d). 

Proof is evident* 

Definition. Let ^ be an ul trafi l ter on PN. Then the class 

rUExA(yr>PN); y <* $ i 

is called a monad of ul traf i l ter tf and denoted by {u, ($)• 

Let us note that there is an ul t raf i l ter $ on PN such that 

, * ( # ) = 0. 

Prom the definitions of ordering on ultrafi l ters and mon­

ads of ul t raf i l ters , the next two assertions follow immediately. 

Theorem 1. (i) Let x£ExA(PN). Then x e (U ( <&£ (x)). 
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( i i ) Let I be an u i t r a f i l t e r on P1I* Then 

( %* X r-< / v C : ' ) ) f * i^'i'r v * * « 

Theorem ;>, Let f ba an u i t r a f i l t e r on F!is xeEx A (PH) . 

Then 

f^gZUx)** ( 3 f £ A n ' i . . - ^FNSf M PN~ FK S * - 3 £ £ ( f ( x ) ) J . 

Theorem 3 . For e»*cu u i t r a f i l t e r T̂ on F!J t"»^re e x i s t s an 

endomorphic universe A i*icU standard extension) (md xeExA(PN) 

such t h a t 

V * ACx'I U .» =» S*K (x) • 

Proof. See ».S-Vlj# j J. 

De f in i t i on . We say tha Q± i a nupfa §m]Jj>z~MmM c 2 (de­

n o t a t i o n o 1 < < c , ) i f f 

(c 1 e BxA(PN))ik ( y r€ A) i c ? i %xA(rrlPN)) ^ 

.- > ( f ( C n ) 6 Pil v f u ? ) - C j ^ l . 

Def in i t i on . Let cc f Ix^(PH) and l e t f s A he a funct ion 

with doin (0 ->PU. »*le say t h a t [i e ExA(PN) i s the second com­

ponent of cc with r e s p e c t to f i f f vC i s the ^3- th element of 

r ^ f C c c ) * . 

Let xfeExA(t;/)f where €> is a countable subclass of A. 

Let f i * be a function with dom (f) o o . We call fj e Ex^frJ ) 

the second component of x with respect to f and t> iff x is 
in , 

the |J-th element of f if(x)jr in a fixed chosen ordering of 

& by the type c> • 

Remark. Notice that all the above mentioned definitions 

and assertions concerning ultrafliters on PN can be, in an ob­

vious manner, reformulated for ultrafliters on countable sub­

classes of A. We shall further suppose to have such modifica-
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t i o n s . 

Lemma 3 . l e t x «• fix. *„ *- ) 9 M - :c .mtable w b c l a s s of A. l e 

ffeA be a funct icp *1 th Oow t O :J * * Thmi f l x H E A ( f , f (^ ) ) . 

Proof i-J saav nni can ?c l r f t t^ the r^p^r*. 

Theorem 4« i*-t ATd» -.- * . n 4 . i . " *-5ExA(«* ) *»M * c- / Iss 

countable . Let f€ A *, u *t funct ion *.**ii. dom ( f ) ? »* '*M l e t /< t 

€ i?lxA(tf) be the seccri 1 ,*o»r.pcment of d with r e spec t to f» and » . 

I f 3 < < f ( d ) f then ALf^OJ i s on ^ndomorphic un iverse with 

s tandard ex tens ion . 

Proof. Aff(d)l i s ev iden t ly an endomorphic u n i v e r s e ; t h e ­

r e fo r e i t remains to prove t ha t A!f(d)3 can be s tandard ly e x t ­

ended. Without l o s s of g e n e r a l i t y , we can suppose tha t & * FN 

and fMFN£FN. Then deEx A (FN) . Put c « f ( d ) . We show tha t /3 € 
6 BAtcl (^)* ^° * n i a en& ** i f l necessary and s u f f i c i e n t to p ro ­

ve 

(xfeAtcJ ft x^FN) ==> ;3 5 x . 

Put f • max -{d* % & c. x l . Then d" 6 ACcJ and thus fo r a su­

i t a b l e func t ion g c A , we have cf'» g ( c ) . Hince ? 3 < < c f we ob­

t a i n |3 6 cT ( d * 3 FN). But J ' c x ; hence .3 e x . 

Now we show t h a t fo r s u i t a b l e u . f where o , i a a countab­

l e subc lass of Atc3 f i t I s t rue t h a t dfcEArc^ i&X I n ttccordan-

ce with Lemma 3 i t s u f f i c e s to prove tha t t he r e i s such a func­

t i o n g t h a t g c AHC3 and d = g ( ^ ) . 

Let the funct ion g be defined a s fol lows: g ( t f o 6 ) i s the 

aC-th element of f 4 t $ . Obviously g £ A. Put now g(oc ) • 

• g ( c f c c ) . 

For completing the proof i t i s now enough to r e a l i z e t h a t 

for every xs.V we have x • h ( d ) , fo r s u i t a b l e h e Ac Atc3 f and 
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apply once more Lemma 3. 

Remark. Let us stress the fact that if f(d) < < ft , then 

Atf(d)3 has no standard extension. This result is not quite ob­

vious. 

For the construction of an increasing sequence of endomor-

phic universes with standard extension it suffices now to find 

a suitable endornorphic universe A with standard extension, a 

suitable element dfcV and such a sequence of functions f-,ffp,... 

from A for which the second component ft± (i€FN) of d with 

respect to f j and & ( 6 is a countable subclass of A such that 
x A 

d€EA(6'))is much smaller than fi(d) and f±(&) A f±+\(&* 
A We define the symbol ~( as followss 

A 
x4 y e (3f 6A) x =- f(yh 

x -4 y as x 4 y and there is no function ge A such that g 

is a one-one mapping and x -= g(y). 

If we put rmk± » Alf .(d)] , we obtain a sequence of endo­

rnorphic universes with standard extension for which A, £ 

-̂  Ag ̂  ... • The ideas, just described, will be now precised. 

Firstly, we give a definition. 

Definition. Let $± be ultrafliters on &±f & be an 

ultrafilter on £> , where <o , & . are countable classes (i € 

€ ) . Then the ultrafilter ¥ * JF - Z. #* t le called snjT -

sum of ultrafliters $± and defined in such a ways 

$ is an ultrafilter on X _ #., » 4<xfi>s, x e 6̂  ..ft i€ FN? 
-£ £ t> -1- •** 

and 
(Vu)(u€?)5 (Vt)(tDU*uM4"iS e ^ ^ ^ t * ^ ) . 

If ̂  £ are equal we write instead of ̂  « ̂  - 2- Sf^ 

only W m $ X ^. 
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Theorem 5. Let 6 c A he a oountahle class. Let 3^, & %* 

respectively, he non-trivial ultrafliters on & , If reap, and 

& » f2X &v Let further d€lxA (6**- W ) and gf« $£l(6). 

Then (Pr denotes the projection function) 

(i) Pr2(d)<<Pr1(d) 

(ii) Pr1(d)^ d 

(iil) Pr2(d) is the second component of d with respect to Pr-̂  

and 6*x PH. 

Proof. At first we shall prove an auxiliary assertions 

Under the assumptions of Theorem 5 It Is true that 

3^ - gk&CPr^d)) (i . 1,2). 

We have to show that 

(Vu) u € $±zz u3Pri(d) (i - 1,2). 

Let 1 • 1. Then 

u x F S a ? ' 5 uxPN3 d = uePr-,(d). 

Por i « 2 , substitute FN hy €? and proceed analogously. 

To prove ( i ) suppose that f € A i s such a function that 

f(Pr1(d))<Pr2(d). Then the same i s valid for a set of the u l ­

traf l i t e r $ • Thus, for a certain component j , we have (see the 

definition of 3* « $ 2 X F %) uw-fj } 6 ^ r Henoe W tfaPr-^a) 

and therefore f(Prx(d)) « f (Pr 1 (<'Pr 1 (d) , j»)< j . Since j€PH, 

the validity of ( i ) i s demonstrated. 

We prove the assertion ( i i ) hy contradiction. Let g&A he 

a one-one mapping for which Pr-̂ (d) « g(d). Then Pr2(d) • 

- Pr2(g"1(Pr1(d))) which contradicts Pr2(d)<< Pr1(d) - see ( i ) . 

The statement ( l i i ) i s obvious. 

I t follows from [ V3, ch. I I , § 4 that there i s a non-tri­

vial ultraf i l t e r $ on FN. 

Let us put 
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FH* «. FN* FN* ...xFN 
^ — • - — v * 

i-times 

and defina ultrafilters ^± on PN1 in such a way: 

Further put ? « $ - IE 3̂  . and denote ro «. X FN1. The 
i -» t e FN 

class g> is, evidentlyf countable. Prom Theorem 3 we know that 

for $ on jo there is an endomorphic universe A (with standard 

extension) and d£ExA(^> ) such that V « Aid] and $ » 3&£(d). 

On rf> , we shall define functions f j.: If x £ jo are such 

elements that Pr« (x)^if CPrg denotes the last projection), 

then f±(x) *<Pr1(x)f...fPri(x)>. 

Denote Pr^d) » di and put ci »<dlf...fdi> . We would like 

to show that, for every if the class Atc^p is an endomorphic uni­

verse with standard extension. 

Put further d « <<dlf...fdi> i<c-i+i»'*« >> • Then A[d] « 

» Aid] since there exists a one-one mapping g£ A such that d » 

* g(d). If we denote #«<di+1,... > f we obtain that d » 

- < c i f p > . 

Under the above stated denotations we prove 

Lemma 4. Sct(d) « &t£(/3) X <3tll (c±). 

Proof. Let, at f i r s t , u e 3 £ t ( d ) . Then u 3 "d. Let m£ A be 

such that 

ma-fxedora (50); \xn ix^.9 o±} 

( p̂ i s obtained from <p by an obvious manner). 

We prove that ra £'£*-£( (3); i . e . that m a /3 . Since <c i f /3> » 

a d, we have u^- tM 3 c± and hence j3 £ m. Thus u e £t£ (|3 ) X 

X JMX ( c i ) . 
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For proving the statement: 

u e <&£ ((i ) X 9JZ (c±) ==> u <s £Cl (d) f 

follow the proof of the first part going "from bottom to top". 

Theorem 6. AUĉ J i s f for each i f an endomorphic universe 

with standard extension ( c i are defined above). 

Proof. Owing to Lemma 4 and Theorem 5 ( i i i ) f we know that 

ft i s the second component of c i with respect to Pr i# Due to 

Theorem 5 (i)» we have further that / 3 < < c i . Hence (see Theo­

rem 4) ACĉ l i s an endomorphic universe with standard extensi­

on. Moreover Ale.,] $. Atd3 » V - since, in accordance with The-
A orem 5 ( i i ) - we have o i-^ d. 

Theorem 7. (Vi€PH) ALĉ ] $ A[c i + 13. 

Proof. The inclusion ATc^ S Atc i+13 follows from the facts 

that o± » < P r 1 « c i + l f i + l » f . . . P r i « o i + l f i + l > ) > and projecti­

ons are functions from A. For proving Atc^ -4s A.tei+1l i t suffi­

ces to realize that 

$ t e ( c i + 1 ) - $U (d i + 1 ) X&Zto±h 

i t i s namely c i + 1 » <c i f d i + 1 > and (see Theorem 5 ( i i ) ) 

c i ^ ° i + r 

Remark. In [AV] there is constructed a model similar to 

our first one. Its construction lies there on an increasing se­

quence i A^ f oc € il} of endomorphic universes with standard 

extension. The existence of such a sequence is notf however, 

shown there explicitly. If one supposes the second order choice, 

i.e. 

( V x K 3 Y ) y> (x,Y) -=* (37) (Vx) 9 (x,Y
M-Cxi), 
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i t i0 possible to prove the existence of -(A. | cG e-Q-lr in such 

a way: Starting from a fixed non-trivial ultrafi lter on FH we 

can create in AST the structure *0L which i s Si -times Iterat­

ed ultraproduct. This structure i s saturated, elementarily e-

quivalent to V and has cardinality H • But V i s , owing to the 

axiom of prolongation, also a saturated structure. Therefore 

there i s an ieomorphiom I t *&l «*-> V. How we obtain A^ as iraa-

ges of oc-th steps of the iteration process. 

We have preferred in our peper, 5 4, to avoid the second 

order choice and, in addition, we have used the methods being 

more f i t for AST. 

Problem. Thanks to WAC, in the f i rs t model, we know that 

each countable union of countable classes i s a countable class. 

This assertion i s also valid in the second model. A question 

arises: I s there suoh a model of AST - AC in which Y i s the 

union of countably many countable classes ? Or, in a weaker 

form, i s i t possible for V to be a union of countably many se-

misets there ? The answers are unknown to uo. 
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