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MODELS OF AST WITHOUT CHOICE
K. CUDA, B. VOITASKOVA

Abstract: In this paper, we present two models of the
alternative set theory with the negation of the axiom of choice;
in the second model even the negation of the weask esxiom of choi-
ce is valid., The constructions which in several aspects remind
the clessical method of symmetric models, lie, however, basic-
ally on topological means of AST and the fact (also proved here)
that there exists an increasing sequence of endomorphic univer-
ses with standard extension,

Key words: Alternative set theory, basic equivalence, fi-
gure, fully revealed class, endomerphic universe, standard ex~
tension, ultraproduct, model.

Claggification: Primaxry O3ET0

Secondary 03E35, O3E25

The axiom of choice (AC) is in fact in the alternative
get theory (AST) equivalent with the axiom of extensional cod-
ing (see LV], ch. II, § 3). However, its independence on the
other axioms of AST was, for a long time, an open question. A
partial anawer, not yet published, was given by the first au-
thor who constructed a model of AST in which the Godel s sche-
me, the weak form of the axiom of cardinalities (i.e. every two
infinite sets are equivalent) and the negation of the axiom ol
choice hold. A further contribution to this problem comes from
A, Vencovskd, Her paper (quite recently published): "Indepen-
dence of the axiom of choice in AST" contains a model of the

whole AST with the negation of the axiom of choice in which
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the weak axiom of choice (WAC) is valid. The construction uses
the axiom of reflection (mee [S-V3]). Some notions and results
from this paper will be used later.
Here, we give two interpretations in AST.
The first one i1s a model of
AST - AC + T AC + WAC,
the second one is a model of
AST - AC + ") WAC,
In addition, in both models the following assertion holds:
(%) Each uncountable class of the model contains a countable

class which is not a class of the model.

The following intuitive image gives a good picture of the
nature of both constructed models., Let us iterate countably ma-
ny times the ultraproduct construction on the universal class
V (the index set is FN). The "enlargements" of classes obtain-
ed from finite iterations and other "suitable"™ classes (e.g. so-
me countable classes) will represent classes of our models,

Just for the description of these "guitable” classes, we shall
use substantially topological techniques of AST, Into the se-
cond model, we add, moreover, a special class FR (and, of cour-
se, other classes which are obtained from FR, e.g. by Godelian
operations) such that dom (FR) = PN and for each n & FN the class
PR" {n} is the "enlargemeni" of PN from the n-th iteration of
tkhe ultraproduct. This class prevents the validity of WAC.

As to the validity of other axioms in our models, we shall
show that:

Axioms for sets follow from the fact the the ultraproduct
is an elementary superstructure of the starting structure;

the Morse's scheme will be obtained by a techmique similar
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to symmetric models;

~1AC and the axiom of cardinalities result from the fact
that the cardinality of the "enlargement" of every infinite
class (in classical sense, of every infinite set) is the con-
tinuumg

the axiom of prolongation is the consequence of the selec-
tion of countable classes. In our models, there are namely only
the countable classes which one can obiain already on a éertain
step of the iteration. This circumstance implies also the vali-
dity of the assertion (k).

Up to now, we have quoted the notion of the iterated ultre~
product which is more currently used in mathematical literature.
In our article we shall work, however, with another technique,
specifio for AST, namely with creating a system of endomorphic
universes with standard extension. This method lies in the exis-
tence (proved in § 4) of an increasing sequence of endomorphic
universes with standard extension., We shall understand the "small-
est"” member of the sequence as the universal class V and the fol-
lowing endomorphic universes as successive iterations of the ul-

traproduct construction.

Now we shall briefly recell some notions concerning our pro-

blems (see LV],[S~V1]),

A function F is an endomorphism iff dom (F) = V and for e-
very set-formula @(z,,...,z;) of the language FL, the normal
formula
(1 Vo (B) ~ (VX peee,xp€ dom (F))(g(xg,eee,xy) =

=@ (R(x)) e, P(x)))
holds,
If F is an endomorphism and rng (F) = V, we call P an auto-
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morphism,

A class A is an endomorphic universe iff there is an endo-
morphiem P with rng (F) = A.

Let A be an endomorphic universe., An operation Ex defined
for all subclasses of A is called a standard extension on A iff
for an arbitrary normal formula y(Zl,... ,Zn)e FL, and arbitra-
TY Xpseee X, €A we have

?*(xl,...,xn) = ¢ (BEx (Xl),...,Ex (x)),

where g)‘ denotes the formula resulting from ¢ by the restric-
tion ot all quantifiers binding set variables to the elements
of A and all quantifiers binding class variables to the subclas-

ses of A,

Let A, B be endomorphic universes, Ac B, An operation Ex
defined for all subclasses A is called a standard extension on
A with regpect to B x) iff for an arbitrary normal formula
74 (Zl,. .o ,Zn)a FL, end arbitrary Xy,...,X € A we have Ex (Xi)s B
(1 =1,...,n) and

o MEypeen X)) = PB(Ex (X)),...,Bx (X)),

If an endomorphic universe A has a standard extension (for
necegsary and sufficient conditions see [S-V1]), the extension
is uniquely determined - we shall denote it Ex,. Analogousdly,
we denote by ExA_)B the uniquely determined standard extension
on A with respect to B.

x) The notion was introduced by A. Vencovskd. Some of her (recen-

tly published) results will be used later here and denoted
by LAV].

- 558 -



From [S-V1] let us recall several assertions:

Let A3V be an endomorphic universe with standard exten-
sion, X,YE A. Then

(a1) X ¢ Ex, (X)

(a2) X = Ex,(X)nA

(A3) Ex,(A) =V

(A4) Ex, (FN)+ FN

(a5) Ex, (dom (X)) = dom (Ex,(X))

(A6) Ex, (Y"X) = (Ex,(¥))" Ex,(X)

(A7) (Ya)(ach =>Ex,(anh) = a)

(A8) Let FiX <—> Y; then Ex,(P): Ex,(X) <> Ex,(Y)
(A9) XsY= Ex,(X)s Ex, (Y)

(A10) If x is defineble by & normal formula from Ex,(X),
then x is definable, in A, by a normal formula from X

and x€ A,

All these facts, except (A4), are immediate consequences
of the definition of Ex. The assertion (A4) follows from the
facts thet A can be ordered by the type Q. and A<V,

§ 1. Some properties of endomorphic universe. In this

section we shall prove several assertions concerning endomorph-
ic universes and fully revealed classes, which we shall use la-
ter,

Up to the end of this paper let A, Al' A,e.. denote en-

domorphic universes with standard extension.

Lemma 1. [AV] Let (P be en automorphism)d, XcA and
P" X = X. Then Ex,(P) is an asutomorphism and the condition

(Ex, (F))" Ex,(X) = ExA(X)
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holds.

Proof. Let 'y?(l’) be formulas (1) from the definition of
endomorphisn. Since (P is an aufomorphiam)‘ the formulas
*ch‘(’) are valid. From the definition of standard extension
we obtain
y?‘m = ¥, (B5,(M),
which implies that Ex‘(!) is a similarity. Since dom (F) = A,
the following equality holds (mee (A5),(A3))

dom (Ex‘(!)) = Ex, (dom (F)) = ExA(L) =V,
Hence Ex‘(r) is an automorphism. Therefore - notice that F" X =

= X - we have

(Ex, (P))" Ex, (X) = Ex,(X).

Lemma 2. Let (F be an automorphism)X, Xca, P" X = X.
Then we have the following:
(1) (Bx,(P)" (X) =X
(i1) (Bx,(F))" (A) = A
(111)  (Ex,(P)) } Ex,(Def) is an identity.

Proof, Por (i) and (ii) notice that Ex,(F)2 F (see (Al));
hence (ExA(r))" (X) = X, The assertion (1ii) follows from the
fact that PP Def is an identity,

Lemma 3. Let A, A, be such endomorphic universes that
A\C A, and let XsAy. Then the following holds:

(1) ExAz(ExAl_,Az(x)) = ExAl(X) (commutativity of Ex)

(11) Exy >, (%) = ExAlcx)f\ A,

Proof. Since Ex‘g(E“l“’ ‘2(1)) is a standard extension
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on A,, the formula (i) is valid. The assertion (ii) follews
immediately from (A2).

The existence of endomorphic universes with properties
mentioned in Lemma 3 will be proved in the fourth section.

Por the following oonsiderations we shall recall two no-
tions (see [ V] ana [S-V1]).

A class X is revealed iff for each countable YS X there is
a set u such that Yc uEX.

A class X is called fully revealed iff for every mormal
formula ¢(z,2)G FLy the cless {x3 @(x,X)} is revealed.

Remark, Note that classes definable by normal formulas
of the language PI.' from & fully revealed class play the role
of a generalization of Sd classes. We ghall often use this ana-
logy for our proofs. Instead of giving precise argumentations,
we shall only quote the corresponding assertions from [ V] and
leave it to the reader to replace the words "a set formula of
the languege FL"™ by "a normal formula of the language n.m in

their proofs.
The following assertion is proved im [S-V1]:
(A11) The class Ex,(X) is fully revealed for every X< A.

To see this fact notice that Y is fully revealed 1ff FN
cannot be defined by any normal formula of the language !L' from
Y.

An immediate consequence of (All) asserts that: If AS A,

A

XEA,, then (ExAl._,Aa(x) is fully revealed) 2,

Theorem 1. Let X be a fully revealed class and let 11:

:012:... be a descending sequence of classes definable from X
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by a normel formula (end thus revealed). Then /N X; is a noa-

sapty and revealed class.
MO See [7), ch, II' ‘ Se

To the oconstruction of our models we shall need a new ty-
pe of the equivalence of indiseernibility,

Defipition [AV]. Let X be & class. We put x {')%! y iff for
each normal formula .y(s,z)erl. we have ¢(x,X) = ¢ (y,X).

Notice that each class X is a figure in 6%’ .

Remaxk, It follows from Theorem 1 that for any fully re-
vealed class X the equivalence &‘ is ocompact. In other words,

the equivalence &’-‘ bas, in this case (from topological point

of view), as "sensible” properties as the equivalence £ .
Lezma 4,

(1) Monads in {i.‘ are either trivial or they contain an

infinite set,
(11) Let (ua = {al, then a is definable by & normal for-
3

mle from X.
(111) There are only countably many trivial monads in &} .

Proof. See an "amalogous" theorem in [V], ch. V, § 1.

Lesma 5. Let P be such an automorphism that P* X = X, Then

) 4 .
(Vx) ¥(x) {%} x

2roof. See [V], ch, V, § 1 and adapt the proof of the

"analogous” theorem.

Lemma 5 implies that each sutomorphism which "preserves"
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the class X, “preserves" also monads and figures in {x§} .

Theorem 2 [AV]., ULet x {%} ¥s X be fully revealed. Then
there exists an automorphism P such that *(x) = y and ™ X = X.

Proof, Use the back and forth method., In greater details
- adapt the proof of the theorem on the exigstence of an auto-
morphism from [V], ch. V, § 1.

Lemma 6. Let X be fully revealed. Then

T T R T

Eroof. Suppose at first x {&! Y. We have to prove that
for every normel formule ¢ (x,X,F¥)e FL the formuls
(2) g (x,X,7) = ¢(y,X,F¥)
holds.

Prom our assumption it follows (see Theorem 2) that there
is an automorphism P such that P(x) = y and F" X = X, But
¢ (x,X,¥N) is e normal formula, Therefore (since F is an auto-
morphism) we obtain

¢ (x,X,PR) = ¢ (¥(x),’" X, F" FN),

(nee [ V], ch.V, § 1). We know, moreover, that P(x) =y, F*" X =
=X and P* PN = FN (which is the consequence of the assertion
that FN S Def). Therefore the formula (2) is valid.

Since the relation yZpy; is finer than 2 , the

converse implication is obvious.

Remark, Replacing PN by Ex (FN) in the previous lemma,
we obtain an uncorrect statement: It suffices now to put X = V3
-]
we have then that Ex (FN) is a figure in SESCFNE ° But the
clagss is not a figure in 2 gince Ex (FN) is not a reel class

(for details see [§-V]).
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Coxrol « Let X be a fully revealed class. Then it is
poesible to define a from X and FN if and only if a is definable
only from X.

Proof. Notice that {a} is a monad in ire fa% 1s

=
o £X, FN}
a monad in 5‘:‘ .

Our next observations will deal with a special type of the

equivalence of indiscernibility, i,e. with iﬁf'(xn » which we

shall use substantially in the next two sections.

Theorem 3. Let W be a monad in {Exf(X)} » XS A, Then we
have
(1) @nA=@or (unA is & monad in {%} ), moreover,
Bx,(wn A s .
(11) If a€eA, then
acUzZanis wni.

(111) If (X is fully revealed)!, then wn A+4.

Proof, For (1) it is sufficient to prove:
Let (Y = {t; @(+,X)})%, where @ is & normal formula; then

(In(@n A +g=>Ya(uwn )k

Suppose therefore YN ( @ N A)# @, Then ExA(Y) A @ +@, Prom this

(-]
it follows (since @ is a monad in {Ex:()()} and Bxl(!) is

definable from Bx‘(x)) that Ex‘(!) 2% o Thus Y = k‘(!)n A2
2WwnA,

Since w N AcY, we have that Ex‘(c.u N A)g ExA(Y) - see
(A9). The validity of Ex,(« n A) ¢ ¢+ follows now from the
fact that w = (eNEx,(Y;) for suitable Y, definable from X.

The implication == in (11) is trivial. The converse
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asgertion is an immediate consequence of (A7),(A9) and (1):
Since ac A and eNA S w N A, according to our assumption, we
have

a=Ex,(and)sEx(und)sw.

For proving (1ii) notice that “ '4,QFN k‘(li),

where !19 A and !1: !23 eee 13 a descending sequencs of classes
definable from X and hence (revealed)d. Then, saccording te The-
orem 1, we obtain that M Y;+ ¢ and hence (see (1)) alsme
wn A#d.

This completes the proof.

Lemma 7. Let (X be fully revoalod)‘, a,be A and

a S (b)o Then a < (b)n
(“{Ef,‘\ (69} (a'{eu,fk), Ex, (FN)}

Proof. To prove our statement by contredioction, let us as-

sume that there is te a such that ¢ b).
¢ QFTORE e ¢

Then for a normal formula ¥ both 1y (%,Bx,(X),Ex,(F¥)) snd
y (b,Ex, (X) +Bx, (FN)) hold. Denote
g (a,Bx, (X) ,Ex, (FN)) ~ (I tca) (1 ¥ (t,Ex, (X),Bx, (FN));

obviously ¢ is a normal formula,
Since

g (8,Ex, (X) ,Bx, (FN)) = pi(a,x,m),

we obtain that there is tcani sioch that
- v (%,Bx, (X) ,Ex, (PX).

We shall show that this fact is in contradiction with the
assumption a < “ ten *cxﬂ (b). Te¢ this end, notice that the
existence of T implies that {a $ w (v))4, But aceora-
ing to Lemma 6

£ Beuy
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s (D) = (v)
£X 5 FNI “ {f}

and thu v))A.
s (s § “o 8 (

For ocompleting the proof it suffices to show that

a <
H{fx;"mi

To see this, notice (use Theorem 3) that

M =(s ¢ @,y (0))4,

(e = (‘4‘{?} ()= ana = (“CExf(X)? (Mna =

a & (b) .
(u{e;: (X3

n

§ 2._Model of AST - AC + - AC + WAC. In this part, we
shall construct the first model. Por creating it we suppose to

have an increasing sequence Alc Azc eee of endomorphic univer-
ses with standard extension (for its construction see § 4). Let
us denote

vVFae U {4 ;ne PNt

The definition of classes in this model (we shall denote
them X*, Y*, xi‘ seeey tc.) lies substantially on the relation

(-]
£X3
sier typing we shall write further only Ex (Z) insteaed of
Ex, (2) and similarly Ex, ,p (Z) will be the abbreviation for

Ay
ExAk-»LL
Definition. Cgs*(X) 1ff X = XA V*, where X is a figure in
ZcA_,
an equivalence {Exi i’ A,. Moreover,

re precimely, on the relati 2 . F e
, more preecisely, on iExz'(Z)E or an ea~

(z).

(X*c* Y¥) = (X* = XAV*Q xc YY)

and
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(X* =¥ Y*) = (X* = Y¥),
Por the reader’ s convenience we shall - when there is no

danger of oonfusion - speak sometimes (when using the definiti-
on of CLs*(X)) only of X instead of X.

Remark. It is easy to see that, for each xeV*, xnV¥ is
& class in our model: Let x€V*, then x€A, for a suitable 2 .
Acoording to (A7) we have x = Exp(x). But x is @ figure in {fi
(see the note behind the definition of ). Thus
CLa¥(xnV¥).

Purthermore, we sghall denote by ¢* the formula which is
obtained from the formula ¢ by restricting all its quantifiers
to oclasses of our model and € to €* . If ¢ &es not oontain
subformmlas of the type Xc ¥, then ¢* is obtained by the res-
triction of all its quantifiers binding classes of our model

X1

and sets to sets of our model.

Before proving the validity of the above mentioned axioms
for our model, we shall formulate several lemmas which will ma~-

ke the proofs easier.

Lemma 1, Let 0!.-'(11).01-*(12),...,Clu*(xn). Then there
1s k¢ FN and a olass YS A, such that (Y 1is fully revealed)

¥ * = .
and xi = xinv s where Ii are figures in fEag MY

Proof, It follows directly from commtativity of Ex (see
Lemma 3, § 1) that we can suppose that Y; are figures in

2 ;s for a certain k¢ PN. But the finite se-
(e = (zpy * P15

quence of Z; ocan be coded by one class - let us demote it 2.
Put now Y = Exy_y_,(Z). According to (All) we have that (Y is
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fully rﬂoal'd)‘k. which completes the proof.

. Let t . = .
Lemma 2 »u€Ap , £ > k. Let further t{bhcz)!u

Then there exists an automorphism P such that P(t) = u and
P Ex, (2) = Bx, (2). Moreover F" V* = V* and OZs*(Fn V™),

Proof. Since (E‘k ") (2) 1s fully r-voa.ud)“‘ - see (All),

and since t E_(i(zn u we have (owing to commutativity of Ex)

4

that ¢ 3 U Therefore (see Theorem 3(i), § 1) we

£Bx, (Exy 0 (2))

obtain that (t < A“. Prom Theorem 2, § 1 we know that

L
Exgy @5
there exists (an automorphism G)‘l such that G(t) = u and

6" (Ex, ,, (2)) = Exy 5 (Z). Put now F = Ex, (G) and use Lemma 2,
$ 1.

Lemma 3, Let P be such an sutomorphism that P* V¥ = V*
and CLs*(PAV*). Then
CLs*(X) = Cos™(P* X).

Proof, It suffices to prove the following statements:

(1) (CLs*(Y) & CLs*(X)) = Cea*(Y" X)
(2) CLe*(X) =b Ces*(x~1),

We shall show only the validity of (1); the proof of (2)
is analogous.
Since X, Y are classes of our model, they are figures in

Q
{Eufcz)?; (see Lemma 1),

Let now ucY" X, tc V¥ and u t. Then for a suit-

2
{Ex‘.(zﬁ

able £ >k it is true that u,t<Ay . Let P be an sutomorphimm
from Lemma 2, This autdworphism "keeps® obviously also figures
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o o
in -{Ex,:ZZ)} = {E“l (F—f_;"k_,ga)iand therefore te Y™ X, Thus
" 2 £ 2
Y" X is a figure in {Eo;&CZH . Ag F" V V¥ we have hence
ces®(Y" X).

(Morse ‘& _scheme)* . For every formula ?(1'11""'11:)“- L

and for every X{,...,Xl’l‘ there exists & class Y such that
C£a*(Y) and
(VxeW)(xcY = cg*(x,l{,...,xg‘ )) .

Proof. We can suppose (see Lemma 1) that X sere X, are

figures in an equivalence where Z< A, and (2 is ful-

A

ly revealed) .,
Define
Y o= {xC VX g (x,X],e .0 X2 )3,

(-]
{Ex:CZﬁ

We shall prove C2s*(Y). To this end, it suffices to show that
2 *
Y is a figure in LB (2 ? i.e. that for every uc Y and te V¥

such that t-(ﬁxf(lﬁ u we have te Y,

Let £ >k be such & number that t,ucA, . Let further F
be an automorphism from Lemma 2, Since ucY, the formula
gv*‘(u,x{,...,xg ) holds.

We show the validity of the formuls
3 @*(W,XT,00 0, XF) = X (F(u),X],00., X2 ).

Notice that (3X¥)y means (3 X)(CLs*(X) % y ). Since (see
Lemma 3) CL£s™(X) = CLs™(F" X) and P" V¥ = V¥ according to
Lemma 2, § 1, we can replace (3 X)C£s*(X) by (I P" X)CZe™(F* X)
and (I x) xe V* by (3 x)F(x)e VX But then

G* (U,X] 5000 XX ) = ¥ (P(w) bFUAX) oes JFUXX )

- gsee LV]1, ch. V, § 1. Formula (3) follows now immediately from
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the fact that F"*Xy = Xf ({ =1,...,n). This completes the
proof,

Purther we gh8ll investigate countable classes in our model.

Lemma 4. PN* = PN,

Proof. Since FNcDef (see LV1, ch, V, § 1), the class FN
is a figure in each equivalence i%i « Moreover, FNEAz for
every £ 3 this follows from the fact that Def is a subclass of
each endomorphic universe (see [S-V1]). Therefore FNSV*, Hen-
ce C£s*(FN). Por proving FN* = FN notice that FN* 4 FN, since

in our model there is a smaller amount of classes than in AST,

Theorem 1. Let X* be a countable class of V¥ . Then there

exists an endomorphic universe A, such that X*c Ao

Proof. Since C£s*(X), the class X is & figure in

s
{Eyhcz)}

for Z<A, and (2 fully revealed)Ak. Moreover, since X* is a

N i -
countable class, all monads in {Esg (2% there are triviel - see
Lemma 4, § 1., Suppose now t¢ X* ., Then {tt = s is a monad in
{Ea%LZ)} « From Theorem 3, § 1 it follows that (wn A  is &

©
monad in i3 ) ®. Hence te A&'

Corollary. The property "to be countable" is absolute for

the classes of our model;i.e.

Count * (X*) = Count (X*),

Proof, From Lemme 4 we know that FN* = FN, Suppose at
first Count * (X*), Then there exists P* :FN<>X*, But F* is
a one-one mapping in AST, too.

If we assume Count (X*) we obtain - in accordance with
Theorem 3, § 1 - that X* ¢ A, for a suitable k. Therefore there
is such a mapping P that P:FN<«>X* and moreover, FcAy. From
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the axiom of prolongation in AST it follows that F = £} FN for
a certain fe A . But feV*, which completes the proof.

(Axiom of pgologgationz* . Let (P* be a countable funo-

tion)* , then there is a function £* such that P*c ¥,

Proof. Prom the Corollary of Theorem 1 it follows that F*
is a countable function. Now proceed similarly as in the second

part of the proof of the Corollary.

Before proving the axiom of cardinalities, we shall formu-

late a useful assertion.

Theorem 2. For each uncountable class X* there is a set
aeAk, for a suiteble k€ FN, such that e<X* and a2 is an infi-
nite set.

Proof. The class X* ig a figure in 30 where Z< Ay,

2
A‘k {Ex, (2)
(Z fully revealed) %, Since X* is an uncountable class and sin-

2
ce there is only a countable amount of triviel monads in {Exz %

(see Lemma 4, § 1), the class X* has to contain a non-trivial
monad. Such a monad contains, however, an infinite set - this

follows from Lemma 4, § 1 and Theorem 3, § 1.

(Axiom of cardinalities)* . Each uncountable class X* cen

be mapped by a one-one function onto V¥,

Proof. Owing to Theorem 2 and Cantor-Bernstein ‘s theorem
it is sufficient to prove: If ac V¥ and a is an infinite set,
then there exists FP* :a<>V*,

Let ae Ap . Then there is (G:a <->A2)A£. Put now F* =
= Exl (G)A V™,
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(Negation of the axiom of cboice)« . (There is no class X

guch that & P X is an orderiang of the type Q.)*

Iroof. Such a class X would have to be uncountable and
could not contain any infinite set, at the same time (mee LVJ,
che ITI, § 3 and Theorem Z).

(Wesk axiom of cholce)® . Let R¥ be a relation, dom (R¥) =

= FN. Then there is a functiua P*E R guch that dom (F¥) = PN.

Proof. R* 1s a figure in

fExQ:EZ)i for zZ¢ Ay, (Z fully

revealed)Ak. ¥e claim that dom (RX Ak) = FN, For this, 1t
suffices to realize that for each nc FN the class R"{n3 is a
fizure and moreover (see Theorem 3, (iii), § 1) R*"{alnA 4.
since the axiom of cholce holdsin the endomorphic universe
A {and, obvicusly, the weak axiom of choice, too), there exists
a function g€ Ak such that
gMFNSR¥n A CR*.

Put now F¥ = g } FN,

Theorem 3. Each uncountable class X¥ contains a countab-
le class Y such that 1 C€s* (Y).

Proof. Let T ={&;,8,,...] where a,€ A, a €4 -4 , for
m = 2,3,... « Obviously TS V¥.

We shall prove at first that - Cgs* (T). The claes T is,
evidently, countable. Suppqse C¢s*(T). Then - according to The-
orem 1 - there exists A, such that TS Ay . From the construction
of T it follows, however, that &y 1€ ALy = Ay, d.e B 0§ Ay,
and simulteneously g, +1€ T, which is a contradiction.

Since X¥ is an uncountable class, there is F* :V* &> X*,

Put now ¥ = F¥ v 1,
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Remark. The previous theorem implies that there exists s
countable systen of claeses in our model which sannot be coded,
Thig circumsience raiges hopes thet it could be possible to
create a model in whicn even the wesk axiom of choice does mot

hold, Such & mondel iz degeribed iv the following section.

§ 3. Model of AST -~ AU + 71 §AZ. Thia model will contain

all the classes from the first model. In addition, we join here
s gpecial clasg (and *herefsre zany sther classes tha’i we can
obtain from it, e.z., o7y 35delian ocverations) which prevents
the validity of WAC. The claes will be denoted FR (in fact, PR
is s relation created from standard extensions of FN) and defi-

ned as followa:
Definition. PR is such & class that dom (FR) = PN and
(VneFN)FR"{n§=Egﬁnﬂ.

Note that the larger the endomorphic universe An is, the
smaller is the extension Exn(FN).

Lemme 1. Por esach ne FN

FRM n = Ex (2),
A
where (Z is & fully revealed claess) .

Proof. From the definition of FR, (A2), Lemma 3, § 1 and
(A11) it follows that

FRMn = Ex (Ex (FRManA 1))

n-l-n

this completes the proof.

Now we shall introduce new relations of indiscernibility

in which the class FR will be a figure.

mwo

o
Let us denote {Y,FRhnkby {75
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Corollary, (YneFN) "2 = =
. 1Y} iy3
for a suitable Y.

Proof. It follows directly from Lemme 1.

Definition. Let us put

@o Mo
=2 = =
iy3y m&FN {v}
The relation "_;:y"--l is obviously a refinement of all rela-
Mo
tions ne FN,
e 7 N
o

Lemma 2, The class FR is, for each Y, a figure in {éi .

Proof. It is sufficient to realize (see the definition of

";;} ) that for each n¢ FN the class FRMn + 1 is a figure in

me
Y3
The next assertion that will further be used substantially,

is a generalization of Lemma 7, § 1.

Theorem 1., Let (X be fully revealed)An, a,beA , Y =

= Ex,(X) end @ & @p, (b). Then & ¢ Cag (v).
1v} 1y}
Proof. Obviously it suffices to prove that for each ke FN,

k>n, the inclusion a ¢ g, (b) holds. This fact follows -
1Y}
using induction ~ from Lemma 7, § 1 and the equality (see the

definition of FR):
PRMk + 1 = Ex ((FR} k)N Ay )y Ex (FN = {k}).

We shall create now the second model. The definitions of
classes, relations =* and ¢* are similar to those ones in the

first model. We have only to substitute there {E.‘ch)} by
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“eo . We leave the detailed reformulation to the reader.
{E&M(Z)§

Notice that X*, ¥Y*,... will mean now classes in the second
model., To prevent eny misunderstanding when further speaking
about classes of the first model, we then shall express this

explicitly.

Remark. Note that the definition of classes in this model
really ensures that each class in the first model is also a
class in the second one (the converse assertion is not, of cour-
se, true owing to FR), This fact will help us to verify here
the individual axioms (and auxiliary statements, too). If it is
possible, we shall not give further detailed argumentations but
only modify procedures of the analogous asgsertions from § 2.

Lemma 3. Let t,uedy , £ > k. Then

@, _ Lo
Y oteeg@n t =Y qe 2y U

Proof. The assertion is an obvious consequence of Theorem

1. Put there e.g¢ a ={tY and b = u,

A
Lemme 4. Let (Z be fully revealed) K, Then

@
(1) 1t x{Euf—EZ\} ¥, x*y and if x,yc A, , where £ Z k, then

there is a ¢ Fin, ac Ay such that e S 4 o (x).
{Exg, (233

(11) If wo, (x) =4x%, then xcAy.
{Ev.&(Zﬁ

Proof. For (i), at first, notice (see Lemma 3) that
@ lr_q.

x 2 = 2
1Exg 23y T = F4Eng (203

y. We claim that (x) is a

¢
¢, Exg (20}

non-trivial monad which contains an infinite Set from A, . This
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assertion follows (see Lemma 1 and Corollary) from the fact

_ A
that for & suitable Z, (Z fully revealed) &,

to e 2
{Exg (208 7 e (Z)3
end from Lemma 4, % 1 apnd Fheorem 3, § 1.

For proving (ii) let us egsume that £ , ( £ = k), is the
smallegt number fcr wnich xé hy o We show, by contradiction,
thet £ = k. Suppose therefore £ > k. Then ¢ g (x)n4ap =

{E_\J{(Z.)g
= {x} since for i,uc A4, we have - in accordance with Lemma 3 -
thst
Z, @,
t S == = le
Bzt B T et
Hence x is definable in Ap from Ex, p(Z) end Ex X, ]H)Z(FRPB N
P‘Aﬂ-l' Thus, ugilg, commutativity of Ex and (Al(), we obtain
that x is definable in AZ 1
which contradicts ihe choice of £ .

trom Ex,  , (2} end (FRTLN 4, 4),

“o
Lenma 5. iet t,uedy,, ¢ > k. Liet further t {E*iZZ)} u

Then there is un eutomorphism F such that F(t) = u and F" Bx (Z)=
= Ex, (2). Moreover, F" V¥ a V¥ and CLs¥(Fn V™).

Proof. Prom the definition of ,:%i and Lemma 1 it follows

that
’EO -

1By AEx (D),FRTLY  {Ex, (20, Ex, (223 7

lto

— A
where (2 is fully revesled) £ . Moreover, commtativity of Ex
implies that

flo

Ex (D,Ex (DY AEx (Ex (20, Ex (2D

Since Ex, L(Z) and Z are both atanderd extensions Ex,_ 1_,£(Zi)
for suitable Zi’ the same is valid for their couple, This coup-
le is therefore (a fully revealed class) b

Now put in mind Lemma 3 and proceed analogously to Lemme
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2, § 2, Let F be that automorphism., Then F(t) = u and also

bl Exk(Z) = Exk(Z) since Exk(Z) ig the firgt component of the
couple which is "preserved" by F. As V* ig the pame in both
models, we have that F" V* = V¥, The assertion CLs*(FAV¥) fol~

lows from the fact that PAV* is even a class of the first mno-

del.

Lemme 6. Let F be such an autouworphism that F? V¥ = V¥ und
CLe*(FA VX)., Then
CLa*(X) = Celas¥(F" X).

Proof. Modify the proof of Lemma 3, § 2 in such a way:

2 “g
replace {Exg, (203 by (Exg(Z)} and note that (there is, of courns,

Ay, L> k, such that t,ue 4, )

w £
t < u irf ot 2 u
{EkaZVs {EN’%(ZY&
Hence t . = u (see Corollary of Lemma 1).

{E%(iﬁ

(Morse g scheme)*, For every formula ¢ (xyXy,000,% )€ FL

and for every X¥,...,X* there exists a class Y such that CZa*(y)
1 n
and

(VxeV¥)(xeY = cf*(x,xi....,xg ).

Proof. It is enough to modify the proof of the llorse ‘s
[*]
. = b
scheme in the first model. Substitute there fExgc2)} Yy

w
{Exftzn end instead of Lemmas 2, 3 of § 2, consider now Lem-

mas 5, 6.
Lemma 7. FN* = FN,

Proof. Since PN is the class of the first model (see Lem-

ma 4, § 1), we have here CZs*(FN), too. The assertion FN* = FN
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follows now from the came o5:zlity in the first model and from
the fact that the second ..uiel contains a greatesr amount »f

classes,

Theorem 2. Let X* be a countable class of V*, Then the-

re is an endomorphic universe Ay such that * e A,

Proof. Cf8#(X) implies that X is a figure in T

{Exg(2)} 0

A
ZE Ay, (2 fully revealed) k. But X¥ {s a countable class. The-
refore (see Lemma 4 (1)) all monads of X* are trivial. For
proving the fact that X*e Ak' apply the second assertion of Lem-

ma 4.

Corollary. Count* (X*)= Count (X%),

troof., Modify, using Lemma 7 and the previous theorem, the

prroof of the anaslogous assertion from the first model.

Since sets and countable classes are the same in both mo-

dels, we obtain immediately that the following statement holds:

(Axiom of prolongation)* . Let (F¥ be a countable func-

tion)¥ , then there exisis & function £*¥ such that P*c £¥,

(Axiom of cardinalities)* . Each uncountable class X* can

be mapped by a one-one function onto V¥,

Proof. Lemma 4 (i) implies that each uncountable class of
our model contains an infinite sety let us denote it a, Since,
in the first model, there exists a function F such that F:a «—>
«—>V* , this function is also a class in the second model. Now

see the proof of the axiom of cardinalities in the first model.

(Negation of weak axiom of choice)* . There is such a
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relation R¥* with dom (R¥) = FN that for any function P* with
dom (F¥) = PN, the condition F¥c R¥ does not hold.

Proof. Put R¥ = FR - (FN<FN) and suppose that F* is such

a function that dom (F*) = FN and F¥*< R*™ . Let us prolong F?
and denote the new function by g¥ . Then F* = g*[ FN, Since
g*e A, for & suitable n, we have g¥(n)e A, (notice that ?EI%Q.
Therefore (Exn(FN) - FN)r\An4=¢ (according to (A2) we know tur:
Exn(FN)r:An = FN), which 1s & contradiction.

Theorem 3. Each uncountable class X* contains a countw .-
le class Y such that -1 C2s*(Y).

Proof. As both models have the same countable classes,

Theorem 3 follows directly from the validity of the anslogous
agsertion in the first model and from the axiom of cardinali-
ties,

§ 4. The consgtruction of an increasing sequence of endo-

morphic universes with standard extension., The con-

struction of both the models mentioned above lies substantial-
ly on the existence of an increasing sequence of endomorphic
universes with standard extension. The last section of our pa-
per will be devoted Just %o proving that such a sequence ex-~
igts., If the following text will remind someone of the const-
ruction of the iterated ultraproduct, we stress that the simi-
larity is quite accidental and that its content is but a pure
fiction,

At first we shall recall several notions amd results from

[S-V1] , we shall further need.
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For an arbitrary clasg A and arbitrary set d we put

Ald) = {£(d); feAl,

Theorem (A). Let A be an endomorphic universe and let
de U A, Then Ald) is the smallest endomorphic universe, the

subclass of which is the class Auddij.
Prom the definition of :[ld) it follows now:

Lemma 1., Let A be an endomorphic universe., Then for each
function fe A el <nch d € U A the condition
A L£(d)]c Atad
holds,

Theorem (B). Let A be an endomorphic universe and let
cyd € U A, Then Alc] = A[d) iff there is a one-one mapping fe A
with ¢ = £(d),

I£ A is an endomorphic universe, then we put for each XS A

Ey(X) = N{uei; Xcul,

Theoren (C). An endomorphic universe A hes & standard ex-
tension iff
V= U{E(X), Xea& X4 FNL

Now we shall introduce some notions which make our next
considerations easier,

Definition. An ultrafilter % is called an ultrafilter on
FN iff

(VX2 %)FNNnX+d,

Since we shall be further interested only in ultrafilters
on semisets (nmmely on the countable ones), we shall restirict
ourselves only on sets; ultrafilters are nowfully determined

by their sets.
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For ultrafilters on ¥ we b1 defire an ordevivy (iu
fact, it ig Rudin-Keealer s ordes ri; on wltrafilicray ef.
[c-H1).

Definition. Let ’J‘Jl, :(‘2 be nttrafilters on PN, We ehall
say that F, is stroncer lhmn %y with respect to n fou-‘ion f
(denotation :f'lis' ',4"2) iff dom (£)2 PN, fFHE RN ¢ nd. irv el
X € ffe, t"x e 9"1. We wnay, moreover, that 5’2 1a slroneir thon
§'} (denotation ¥, < ¥',) 127 there exists & function f such
that 9"1% %,

Let further A denote, simlilarly to previous paregraphs, an
endomorphic universe with standard extension.

Definition. TLet erxA(FN). The clasgs

{yy %< Ex, (Flin v}
will be called a filter determined by x snd denoted by & (x),

Obviously, for each x€ Ex,(FN), the cless FL(x) is sn
ultrafilter on FN.

Lemma 2, Let fe A be a function. Then
(Vasdom (£) 52 (2(0) & g0 (o).
Proof is evident.

Definition. Let {5’ be an ultrafilter on FN. Then the class
NiEx, (ynF)3 y e *3

is called & monad of ultrafilter 4 and denoted by w ().

Let us note that there is an ultrafilter ¥ on FN such that
s (F) =g,

From the definitions of ordering on ultrafilters and mon-

ads of ultrafilters, the next two assertions follow immediately.

Theorem 1. (i) Let x¢ Ex,(FN). Then x & ¢ ( &l (x)).
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{11) Let F be an ultrafilter on Fll. Then

tyxos () F o= oo,

Theorem »», Let f be an ultrafilter on Fl, xe€ ExA(FN).

Then
FLee(x)= (3tehiin,. L2FNQIVPNIFL G ¥ = 22 (2(0)).

Theorem 3. For each ultrafilter ¥ on FN there exists an
endomorphic universe A (il atandard extension) and x€ Ex, (FN)
guch that

v = Alx) W 5 = Rdr (g,

Proof, See 'S5-Vljy, 3 J.

Definition. We say the ¢y ig much graller than c, (de-
notation ¢; << c,) irf

(cye Bx, (FINA (7 £%A) e, r:::A(f"]'“mw)) i
= r(t(eq) € ¥V tie,) eyl
Definition. let « ¢ BEx,(FN) and let f6 A be & funciion
with dom (f)-) Fli, We say that f3 e ExA(FN) is the second com-

ponent of o< with respect to f iff o is the /3-th element of
1"
1 e ()t

Let erxA(z;‘), where © is a countable subclass of A.

Let f=# be & function with dom (f) o ¢ . We call 3 e Ex,(w)

the second component of x with respect to f and v iff x is

* ',
the 3 -th element of -1 1£(x)} in a fixed chosen ordering of
€ by the type <> .

Remark. Notice that all the above mentioned definitions
and assertions concerning ultrafilters on FN can be, in an ob-
vious menner, reformulated for ultrafilters on countable sub-

classes of A, We shall further suppose to have such modifica-
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tions.

Lemma 3. let xeLx, i« ) « - :ountable sibcleps of A, le
fe A be a functiacr with dom (£) > +  , Then fix)e EA(t"(h Y

Proof i3 oasv il cen ic left ts {he resder,

Theorem 4o 1ot A'd1 = Yy weon nEx, () Al 4 iy
countable, Let £& A e » funcilion with dom (f) > »md let i
€ Bx, (&) be the seccn) component of d with respect to £ and o .
If 3<< £(d), then AL £\ a): is nn endomorphic universe with
standard extension.

Proof. A{f£(d)] is evidently an endomorphic universe; the-
refore it remains to yrrove that A'f(d)]) can be ntandardly ext-
ended, Without loss of generality, we can suppose that G = FN
end L"FNS FN, Then deExA(FN). Tut ¢ = f(d). We show that 3 €
€ Eyred (FN), To this end it is necessary and sufficient to pro-~
ve

(xeAlel & xoFN) = 32 x.

Put o = max {d’; 9= x}, Then I & Alc]l and thus for a su-
iteble function g€ A, we have o= g(e). Since ,’5 << ¢, We Ob=

tain 3¢ & (J° 2 FN). But J' = x3 hence 3 e x,

Now we show that for suitable t‘)‘l, where 51 is a countab-
le subclass of AleJ, it is true that d&¢E,c.. (6, In nccordan-
ce with Lemma 3 it suffices to prove that there is such a func-~
tion g that ge Alc) and d = g(j3).

Let the function g be defined as follows: g(t,c) is the
o -th element of £-1"{t}, Obviously & A. Put now gl ) =
= 8(c,ycx),

For completing the proof it is now enough to realize that

for every x&V we heve x = h(d), for suiteble he Ac Alel, and
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apply once more Lemma 3,

Remark. Let us stress the fact that if £(d) << 3 , then
Al£(d)] has no standard extension. This result is not quite ob~
vious.

For the construction of an increasing sequence of endomor-
phic universes with standard extension it suffices now to find
a suitable endomorphic universe A with standard extension, a
suitable element d&V and such a sequence of functions fl,fz,...
from A for which the second component ﬁi (1€ PN) of d with
respect to f; and 5 (6 is a countable subclassA of A such that
deE,(6)) is much smaller 2ha.n £;(d) and £;(d) < £y,,(d).

We define the symbol < as follows:

xé% y=(3fear) x = £(y)s

A A
x< y=x<y and there is no function g& A such that g

1}

is a one-one mapping and x = g(y).
If we put nowhA; = A[fi(d)] , we obtain a sequence of endo-
morphic universes with standard extension for which Al i
=Cr A2$ ese o The ideas, Jjust described, will be now precised.

Firstly, we give a definition.

Definition. Let X, be ultrafilters on &;, ¥ be an

ultrafilter on 6 , where © , 6, aere counteble classes (i€
€ ). Then the ultrafilter ¥ = & - = &, is called n & -
gum of ultrafilters '3»"1 and defined in such a way:

% 1is an ultrafilter on S ¢y ={{x,i’; x e B &ie FN$
L eb
and

(YwueFl= (Ve)(toiurdiic F i=1 € F).

If J; are equal we write instead of Fag o= ’5/1
only # = ¥ X %
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Theorem 5. Let & c A be a countable class. Let F 10 Fa»
respectively, be non-irivial ultrafilters on & , FN resp. and
g = F, X F. Let turther d€Bx, (6 FN) end = FL(0).
Then (Pr denotes the projection function)

(1) Prp(d)<<Pri(d)

(1) (0% a

(111) Pr,(d) is the second component of d with respeot to Pr,
and 6 =< PN,

Proof. At first we shall prove an auxiliary assertions:
Under the assumptions of Theorem 5 it is true that
F, = Bl (Pry(Q)) (1 =1,2).
We have to show that
(Vu) u e F; =usPr,(d) (1 = 1,2).
Let 1 = 1, Then

ux Fi 2 $= uxFN>d= uePr,(d).

For 1 = 2, subatitute PN by 6 and proceed analogously.

To prove (i) suppose that fc A is such a function that
£(Pry(d))< Pry(d). Then the seme is valid for a set of the ul-
trafilter % . Thus, for & certain component J, we have (see the
definition of F'= & , <X F,) u"fj} & F,. Hence u"{j}a Pr,(a)
end therefore f(Pr(d)) = £(Pry(< Pr;(d),3>)) < J. Since J€ PN,
the validity of (i) is demonstrated.

We prove the assertion (ii) by contradiction. Let ge A be
& one-one mapping for which Pr;(d) = g(d). Then Pr,(d) =
= Pra(g"l(l’rl(d))) which contradicts Pr,(d)<< Prl(d) - see (1),

The statement (iii) is obvious.

It follows fxom [ V], ch. II, § 4 that there is a non-tri-
vial ultrafilter ¥ on FN.
Let us put
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PN w FNXFNx...x FN
e’
i-times

and define ultrafilters &, on FN' in such a way:
F1=F, &,y = FXFy

T i
Purther put F = F- = F, and denote p =ie>§'N FN". The
class go is, evidently, countable. From Theorem 3 we know that
tor ¥ on @ there is an endomorphic universe A (with standard
extension) and d€ Ex,( ) such that V = ALd) and F = XL (Q),

On P 5 we shell define functions fi: It x € p eare such
elements that Przs(x)7 i, (Prls denotes the last projection),
then f,(x) = { Pry(x),...,Pry(x)).

Denote Pri(d) = d; and put oy = {dl,...,di) . We would like
to show that, for every i, the class A[ci] is an endomorphic uni-
verse with standard extension.

Put further d = <<dyseeeyd;) ,<dy 9000 P> o Then Ald) =
= A[d) eince there exists a one-one mapping ge A such that d =
= g(3). If we denote ’3'<di+1"" > , we obtain that d =
={ey, B> .

Under the above stated denotations we prove

Lemma 4. £2(d) = FUL(B) X ZiL (cy)e

Proof. Let, at first, u € (2 (d). Then u> d, Let mz A be
such that
m2{xedom (F); u"{x’;.;ci§
(‘@ is obtained from @ by an obvious manner).
We prove that me FiL(f3); i.e. that m 2 3 , Since Cegs 37 =
= d, we have u"{f3} 2 c; and hence @€ m. Thus u € £ (3).X
X RLE (ey).
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For proving the statement:
ueZl(p) X xL (cq) = u e 32 (D),

follow the proof of the first part going "from bottom to top".

Theorem 6. A[ci] is, for each 1, an endomorphic universe

with standard extension (c__'~ are defined above).

Proof. Owing to Lemma 4 and Theorem 5 (iii), we know that
ﬁ; is the second component of ey with respect to Pri. Due to
Theorem 5 (i), we have further that @B < < c;. Hence (see Theo-
rem 4) A[ci] is an endomorphic universe with standard extensi-
on. Moreover A[ci] $ Ald) = V - gince, in accordance with The-
orem 5 (ii) - we have 01A< de

Theorem 7. (Vie FN) Alo,) § Aleg,q).

Proof. The inclusion Afcil € Aley,q] follows from the facts
that o -(Pr1(<ci+l,i+l)),... Pry({cy47,1+17)> and projecti-

ons are functions from A. For proving A[ci)# L[ci+1') it suffi-
ces to realize that
B0 (ey,q) = Fel (45,,) X Fil(og)s

it 1s namely c,,, "<°i'di+1) and (see Theorem 5 (ii))
°i& Ci41°

Remark. In [AV] there is constructed a model similar to
our first one, Its construction lies there on an increasing se-
quence {A_ ; ot € 1} of endomorphic universes with standard
extension., The existence of such a sequence is not, however,
shown there explicitly. If one supposes the second order choice,
i.e,

(V)3 ¢ (x,Y) = (AN (W) 9 (x, Y "Ix}),
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1t is possible to prove the existence of A 3 < ¢ 2% in such
a way: Starting from a fixed non-trivial ultrafilter on FN we
can create in AST the structure YL which is £l -times iterat-
ed ultraproduct, This structure is saturated, elementarily e-
quivalent to V and has cardinality £ . But V is, owing to the
axiom of prolongation, also a saturated struoture. Therefore
there is an isomorphism Pr ‘U0 <> V. Now we obtain A, as ima-
ges of o -th steps of the iteration process.

We have preferred in our psper, § 4, to avoid the second
order choice and, in addition, we have used the methods being
more fit for AST,

Problem. Thanks to WAC, in the first model, we know that
each countable union of countable classes is a countable class.
This assertion is also valld in the second model. A question
arigses: Is there such a model of AST - AC in which V is the
union of countably many countable classes ? Or, in a weaker
form, is it possible for V to be a union of countably many se-

misets there ? The answers are unknown to us.
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