Commentationes Mathematicae Universitatis Caroline

Karel Čuda; Blank Vojtášková
Models of AST without choice

Commentationes Mathematicae Universitatis Caroline, Vol. 25 (1984), No. 4, 555--560,561--564,565--568,569--589

Persistent URL: http://dml.cz/dmlcz/106326

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

MODELS OF AST WITHOUT CHOICE

K. ČUDA, B. VOJTÁŠKOVA

Abstract

In this paper, we present two models of the alternative set theory with the negation of the axiom of choice; In the second model even the negation of the weak axiom of choice is valid. The constructions which in several aspects remind the classical method of symmetric modela, lie, however, basically on topological means of AST and the fact (also proved here) that there exiats an increasing sequence of endomorphic universes with standard extension.

Key words: Alternative set theory, basic equivalence, figure, fully revealed class, endomorphic universe, standard extengion, ultraproduct, model.

Classification: Primary 03E70 $\begin{aligned} \text { Secondary 03E35, 03E25 }\end{aligned}$

The axiom of choice (AC) is in fact in the alternative set theory (AST) equivalent with the axiom of extensional coding (see [V], ch. II, § 3). However, its independence on the other axioms of AST was, for a long time, an open question. A partial answer, not yet published, was given by the first author who constructed a model of AST in which the Gödel's scheme, the weak form of the axiom of cardinalities (i.e. every two infinite sets are equivalent) and the negation of the axiom ${ }^{f}$ choice hold. A further contribution to this problem comes from A. Vencovaká. Her paper (quite recently published): "Independence of the axiom of choice in AST" contains a model of the whole AST with the negation of the axiom of choice in which
the weak axiom of choice (WAC) is valid. The construction usem the axiom of reflection (see [S-V3]). Some notions and results from this paper will be used later.

Here, we give two interpretations in AST.
The first one is a model of

$$
A S I-A C+\neg A C+W A C
$$

the second one is a model of

$$
A S T-A C+7 \text { WAC. }
$$

In addition, in both models the following assertion holds: (*) Each uncountable class of the model contains a countable class which is not a class of the model.

The following intuitive image gives a good picture of the nature of both constructed models. Let us iterate countably many times the ultraproduct construction on the universal class V (the index set is FN). The "enlargements" of classes obtained from finite iterations and other "suitable" classes (e.g. some countable classes) will represent classes of our models. Just for the description of these "suitablen classes, we shall use substantially topological techniques of AST. Into the aecond model, we add, moreover, a special class FR (and, of course, other classes which are obtained from FR, e.g. by Gödelian operations) such that dom (PR) $=P N$ and for each $n \in F N$ the class FR" $\{n\}$ is the "enlargement" of $F N$ from the n-th iteration of the ultraproduct. This class prevents the validity of WAC.

As to the validity of other axioms in our models, we shall show that:

Axioms for sets follow from the fact the the ultraproduct is an elementary superstructure of the starting structure;
the Morse's scheme will be obtained by a technique similar
to symmetric models;
ㄱC and the axiom of cardinalities reault from the fact that the cardinality of the "enlargement" of every infinite class (in classical sense, of every infinite set) is the continuma;
the axion of prolongation is the consequence of the selection of countable classes. In our models, there are namely only the countable classes which one can obtain already on a certain step of the iteration. This circumstance implies also the validity of the assertion ($*$).

Up to now, we have quoted the notion of the iterated ultrom product which is more currently used in mathematical literature. In our article we shall work, however, with another technique, specific for AST, namely with creating a system of endomorphic universes with standard extension. This method lies in the existence (proved in § 4) of an increasing sequence of endomorphic universes with standard extension. We shall understand the "mallest" member of the sequence as the universal class V and the following endomorphic universes as successive iterations of the ultraproduct construction.

Now we shall briefly recall some notions concerning our problems (see [V],[S-VI]).

A function F is an endomorphism iff dom $(F)=V$ and for very set-formula $\varphi\left(z_{1}, \ldots, z_{n}\right)$ of the language $F L$, the normal formula

$$
\begin{gather*}
\psi_{\varphi}(F) \sim\left(\forall x_{1}, \ldots, x_{n} \in \operatorname{dom}(F)\right)\left(\varphi\left(x_{1}, \ldots, x_{n}\right) \equiv\right. \tag{1}\\
\equiv \varphi\left(P\left(x_{1}\right), \ldots, F\left(x_{n}\right)\right)
\end{gather*}
$$

holds.
If F is an endomorphism and rag $(F)=V$, we call F an auto-
morphism.
A class A is an endomorphic universe iff there is an endomorphism F with rng (F) $=A$.

Let A be an endomorphic universe. An operation Ex defined for all subclasses of A is called a standard extension on A iff for an arbitrary normal formula $\varphi\left(Z_{1}, \ldots, Z_{n}\right) \in P L_{A}$ and arbitrary $X_{1}, \ldots, X_{n} \subseteq A$ we have
$\varphi^{A}\left(X_{1}, \ldots, x_{n}\right) \equiv \varphi\left(E x\left(X_{1}\right), \ldots, E x\left(X_{n}\right)\right)$,
where φ^{A} denotes the formula reaulting from φ by the restriction of all quantifiers binding set variables to the elements of A and all quantifiers binding class variables to the subclasses of 1 .

Let A, B be endomorphic universes, $A C B$. An operstion Ex defined for all subclasses A is called a standard extension on A with respect to B^{x}) iff for an arbitrary normal formula $\varphi\left(Z_{1}, \ldots, Z_{n}\right) \in F L_{A}$ and arbitrary $X_{1}, \ldots, X_{n} \subseteq A$ we have $E x\left(X_{i}\right) \subseteq B$ $(i=1, \ldots, n)$ and

$$
\varphi^{A}\left(X_{1}, \ldots, X_{n}\right) \equiv \varphi^{B}\left(E x\left(X_{1}\right), \ldots, E x\left(X_{n}\right)\right)
$$

If an endomorphic universe A has a standard extension (for necessary and sufficient conditions see [S-V1]), the extension is uniquely determined - we shall denote it Ex A_{A}. Analogously, we denote by $E x_{A \rightarrow B}$ the uniquely determined standard extension on A with respect to B.
x) The notion was introduced by A. Vencovská. Some of her (recently published) results will be used later here and denoted by $[A V]$.

From [S-VI] let us recall several assertions:
Let $A \neq V$ be an endomorphic universe with standard extension, $X, Y \subseteq A$. Then
(11)

$$
X \subseteq E X_{A}(X)
$$

(A2)
$X=E x_{A}(X) \cap A$
(A3)
$E x_{\mathbf{A}}(\mathbf{A})=V$
(14)
$E X_{A}(F H) \neq F H$
(A5)
$E x_{A}(\operatorname{dom}(X))=\operatorname{dom}\left(E X_{A}(X)\right)$
(A6)
$E x_{A}\left(Y^{n X}\right)=\left(E x_{A}(Y)\right)^{n E x_{A}}(X)$
(A7)
$(\forall a)\left(a \in \mathbb{A} \Rightarrow E x_{A}(a \cap A)=a\right)$
(A8)
Let $F: X \longleftrightarrow Y$ then $E x_{\mathbf{A}}(F): E x_{A}(X) \longleftrightarrow E x_{A}(Y)$
(A9) $X \subseteq Y \subseteq E x_{A}(X) \subseteq E x_{A}(Y)$
(A10) If x is definable by a normal formula from $E x_{A}(X)$, then x is definable, in A, by a normal formula from X and $x \in A$.

All these facts, except (14), are immedate consequences of the deflnition of Ex. The assertion (A4) follows from the facts that A can be ordered by the type Ω and $A \neq V$.

8 1. Some properties of endomorphic universe. In this section we shall prove several assertions concerning endomorphic universes and fully revealed classes, which we shall use later.

Up to the end of this paper let $A_{1} A_{1}, A_{2}, \ldots$ denote endomorphic universes with standard extension.

Lemma 1. [AV] Let (F be an automorphiam), $X \subseteq A$ and $P^{\prime \prime} X=X$. Then $E X_{A}(F)$ is an automorphism and the condition

$$
\left(E x_{A}(F)\right) n E x_{A}(X)=E x_{A}(X)
$$

holds.

Proof. Let $\psi_{\rho}(F)$ be formulas (1) from the definition of endomorphian. Since (F is an automorphism) ${ }^{\boldsymbol{A}}$ the formulas
$\Psi_{\varphi}{ }^{\mathbf{A}}(\boldsymbol{F})$ are valid. From the definition of atandard extenaion we obtain

$$
\psi_{\varphi}^{A}(F) \equiv \psi_{\varphi}\left(\mathrm{Ex}_{\Lambda}(F)\right),
$$

whioh implies that $E x_{A}(P)$ is a similarity. Since dom $(F)=A$, the following equality holds (see (A5),(A3))

$$
\operatorname{dom}\left(E x_{A}(F)\right)=E x_{A}(\operatorname{dom}(F))=E x_{A}(\Lambda)=\nabla
$$

Hence $\mathrm{Bx}_{\boldsymbol{A}}(\mathrm{F})$ is an automorphism. Therefore - notioe that $\mathrm{FN} \mathbf{I}=$ = I - we have

$$
\left(E x_{A}(F)\right) n E x_{A}(X)=E x_{A}(X) .
$$

Lemma 2. Let (\mathbf{F} be an automorphism) ${ }^{\mathbf{A}}, \mathbf{X} \subseteq A, F \| X=X$. Then we have the following:

$$
\begin{equation*}
\left(E x_{A}(F)\right) n(X)=X \tag{i}
\end{equation*}
$$

(ii) $\quad\left(B x_{A}(F)\right) "(A)=A$
(iii) ($\left.E x_{A}(F)\right) \uparrow E x_{\Lambda}$ (Dei) is an identity.

Proof. For (1) and (i1) notice that $E X_{A}$ (F) \supseteq F (see (Al)); hence ($\left.\mathrm{Ex}_{\mathrm{A}}(\mathrm{F})\right)^{n}(\mathrm{X})=\mathrm{X}$. The assertion (iii) follows from the fact that $P \Gamma$ Def is an identity.

Lemma. 3. Let A_{1}, A_{2} be such endomorphic universes that $A_{1} \subset A_{2}$ and let $X \subseteq A_{1}$. Then the following holds:
(i)

$$
E x_{A_{2}}\left(E x_{A_{1} \rightarrow A_{2}}(X)\right)=E x_{A_{1}}(X) \quad \text { (commutativity of } E X \text {) }
$$

$$
\begin{equation*}
E x_{A_{1} \rightarrow A_{2}}(X)=E x_{A_{1}}(X) \cap A_{2} \tag{ii}
\end{equation*}
$$

Proof. Since $E x_{A_{2}}\left(E X_{A_{1} \rightarrow A_{2}}(X)\right)$ is a standard extension
on A_{1}, the formula (i) is valid. The assertion (ii) followe immediately from (A2).

The existence of endomorphic universes with properties mentioned in Lemma 3 will be proved in the fourth eection.

For the following considerations we shall recall two notions (see [V] and [S-VI]).
A class X is revealed iff for each countable $Y \subseteq X$ there is a set u such that $Y \subseteq u \subseteq X$.

A class X is called fully revealed iff for every mormal formula $\varphi(z, Z) \in P L_{p}$ the class $\left\{x ; \varphi\left(X_{i} X\right)\right\}$ is revealed.

Remaris. Note that classes definable by normal formulas of the language FIV from a fully revealed olase play the role of a generalization of Sd classes. We shall often use this anelogy for our proofs. Instead of giving precise argumentations, we shall only quote the corresponding assertions from [V] and leare it to the reader to replace the words maset formula of the language FI" by "a normal: formula of the language $\mathrm{FI}_{\{x}$ in in their proofa.

The following assertion is proved in [S-FI]:
(A11) The class $B x_{\Lambda}(X)$ is fully revealed for eveny $X \in \Lambda$.
To see thin fact notice that Y is fully revealed iff FI cannot be defined by any normal formula of the language FIr from Y.

An immediate consequence of (All) asserts that: If $\mathcal{A}_{1} \leq \mathcal{A}_{2}$ 。 $X £ A_{1}$, then $\left(E x_{A_{1} \rightarrow A_{2}}(X)\right.$ is fully revealed) ${ }^{A_{2}}$.

Theorem 1. Let X be a fully revealed class and let X_{1} ح $\supset X_{2} \supset \ldots$ be a descending nequence of classen definable from X
by a normal formula (and thus revealed). Then $\cap X_{i}$ is a nonempty and revealed clacs.

Preaf. See [V], ah. II, \& 5.
To the construction of our models we whall need a new type of the equivalence of indiscernibility.

Definition [AV]. Let I be a clase. We put $x_{\left\{X_{X}\right.} \frac{\circ}{}$ iff for cach normal formula $\varphi(x, z) \in$ FL we have $\varphi(x, X)=\varphi(y, X)$.

Hotice that each class X is a figure in $\frac{\circ}{\left\{\frac{D_{X}}{3}\right.} \cdot$
Remari. It follow from Theorem 1 that for ony fully rerealed clase I the equivalence $\frac{g_{X}}{\{x}$ is compact. In other words, the equivalence $\left\{\frac{0}{\bar{X}\}}\right.$ has, in this case (from topological point of नiew), as "sensible" propertien an the equivalence $\stackrel{\circ}{ }$.

Leqman 4.
(i) Monads in $\frac{\rho}{\left\{\frac{X}{X}\right\}}$ are edther trivial or they contain an infinite aet.
 mula from x.
(iii) There are only countably many trivial monade in $\left\{\frac{0}{X}\right\}$.

Proof. See an "analogoug" theorem in [V], oh. $V, \delta 1$.
Leman 5. Let \bar{y} be much an automorphiam that $\mathrm{FM}^{\prime \prime} \mathrm{I}=\mathrm{X}$. Then

$$
(V x) P(x)_{\left\{\frac{2}{X}\right\}} x_{0}
$$

Proof. See [V], oh. V, 1 and adapt the proof of the "analogous" theorem.

Lema 5 implies that each automorphimem which "preaerves"
the class X, "preserves" also monads and figures in $\left\{\frac{0}{\bar{x}}\right\}$.

Theorem 2 [AV]. Let $x{\left.\underset{\{1}{ } \frac{0}{\bar{X}}\right\}}_{y}, X$ be fully revealed. Then there existe an automorphism F such that $F(x)=y$ and $F^{n} X=X$.

Proof. Uae the back and forth method. In greater detail: - adapt the proof of the theorim on the exiatence of an automorphism from [V], ch. ∇, \& 1.

Lemme 6. Let I be fully rovealed. Then

$$
\left.\mathbf{x}_{\left\{\frac{0}{X}\right\}} \mathbf{y} \equiv \mathbf{x}_{\{X,}, \frac{0}{\mathcal{F}} N\right\}
$$

Proof. Suppose at first $x_{\left\{\frac{0}{X}\right\}}$ J. We have to prove that for every normal formula $\varphi(x, X, F I) \in \operatorname{FL}$ the formula (2)

$$
\varphi(X, X, P H) \equiv \varphi(Y, X, P H)
$$ holds.

From our assumption it follows (see Theorem 2) that there is an automorphism F such that $F(x)=Y$ and $F^{n} \mathbf{X}=X$. But $\varphi(x, X, F I)$ is a normal formula. Therefore (since F is an automorphian) we obtain

$$
\varphi(X, X, P H)=\varphi(P(X), F \| X, P n F H),
$$

(mee [V], ch. $V, \& 1$). We know, moreover, that $F(x)=Y, F i x=$ = I and F" MI = MI (which is the consequence of the assertion that $M \subseteq \subseteq D e f$). Therefore the formula (2) is valid.

Since the relation $\left\{X, \frac{\circ}{,} \mathrm{FN}\right\}$ is finer than $\left\{\frac{0}{x}\right\}$, the converse implication is obvious.

Remark. Replacing FI by Ex (FH) in the previous lemma, we obtain an uncorrect atatement: It suffices now to put $X=V$; we have then that $E x$ (FN) is a figure in $\left\{E=\frac{0}{\bar{x}(F N)}\right\}$. But the class is not a figure in 으 since EX (FH) is not a real class (for detaila see [Č-V]).

Corollary. Let X be a fully revealed class. Then it is possible to define a from X and FI if and only if a is definable only from X.

Proof. Notice that $\{a\}$ is a monad in $\{X$, 응 $\}$ iff $\{a\}$ is a monad in $\left\{\frac{0}{\bar{X}\}}\right.$ -

Our next observation: will deal with a special type of the equivalence of indiscernibility, i.e. with $\left\{_{\left\{x_{A}\right.}(x)\right\}$, which we shall use substantially in the next two sectione.

Theorem 3. Let μ be a monad in $\left\{E_{X_{A}}(x)\right\}, X \subseteq A$. Then we have
(1) $\mu \cap \Lambda=\$ \operatorname{or}\left(\mu \cap A \text { is a monad in }\left\{\frac{o}{X}\right\}\right)^{A}$ moreover,

$$
B x_{\Lambda}(\mu \cap \Delta) \subseteq \mu
$$

(ii) If $a \in A$, then

$$
a £ \mu \equiv a \cap A \subseteq \mu \cap A
$$

(1ii) If $\left(X\right.$ is fully revealed) ${ }^{\mathbf{A}}$, then $\mu \cap A \not$ q. $_{0}$
Proof. For (1) it is auficient to prove:
Let $(Y=\{t ; \varphi(t, X)\})^{4}$, where φ is a normal formula; then

$$
(I \cap(\mu \cap \Delta) \neq \phi \Rightarrow Y \supseteq(\mu \cap \Delta))^{\Delta}
$$

Suppose therefore $Y \cap(\mu \cap A) \neq \phi$. Then $E X_{A}(Y) \cap \mu \neq \phi$. From this it follows (aince μ is a monad in $\left\{E X_{A}(X)\right\}$ and $B x_{A}(Y)$ is definable from $\left.E x_{A}(X)\right)$ that $E x_{A}(Y) \geq \mu$. Thas $Y=B x_{A}(Y) \cap \mathbb{P}$ $2 \mu \cap \Lambda$ 。

Since $\mu \cap \mathbb{A} \subseteq Y$, we have that $E x_{A}(\mu \cap A) \leq E x_{A}(Y)$ - wee (A9). The validity of $E x_{A}(\mu \cap \Delta) \equiv \mu$ follown now from the
 The implication \rightarrow in (ii) is trivial. The converse
assertion is an immediate consequence of (A7),(A9) and (i)s Since $a \in A$ and $a \cap A \in \mu \cap A$, according to our ammuption, we have

$$
a=B x_{\Delta}(a \cap A) \subseteq E x_{A}(\mu \cap \Delta) \subseteq \mu
$$

For proving (iii) notice that $\mu=\bigcap_{i} \in \mathcal{F N}_{i}\left(Y_{i}\right)$,
where $Y_{i} \subseteq \Delta$ and $Y_{1} \supset Y_{2} \supset \ldots$ is a desconding sequence of clasees definable from X and hence (revealed) ${ }^{\boldsymbol{A}}$. Then, eccording to The orea 1, we obtain that $\cap Y_{1} \neq \phi$ and hence (see (1)) alto $\mu \cap A \neq \phi$.

This completes the proof.
Lemma 1. Let (x be fully revealed) ${ }^{\boldsymbol{A}}, a, b \in \wedge$ and $\left.a \leq \mu_{\left\{E x_{A}\right.}^{\mu}(x)\right\}$ (b). Then $a \in \mu_{\left\{E_{X_{A}}(X), E_{X_{A}}(F N)\right\}}$ (b).

Proof. To prove our statement by contradiotion, let an assume that there is $t \in a$ such that $t \nmid \mu_{\left\{E_{X}(x), E_{X_{A}}(F N)\right\}}$ (b). Then for a normal formula ψ both $7 \psi\left(t_{g} E x_{A}(X), E x_{\lambda}(F I)\right)$ and $\psi\left(b, H x_{A}(X), E x_{A}(F H)\right)$ hold. Denote

$$
\varphi\left(a, E x_{\Lambda}(X), E x_{\Lambda}(F H)\right) \sim(\exists t \in a)\left(\neg \psi\left(t, E x_{A}(X), E x_{A}(F I)\right)_{i}\right.
$$

obviously φ is a normal formula.
Since

$$
\varphi\left(a, B x_{A}(X), B x_{A}(F H)\right) \equiv \varphi^{\Lambda}(a, X, F H),
$$

we obtain that there is $\bar{t} \in a \cap A$ such that

$$
\dashv \psi\left(F_{,} E x_{A}(X), E x_{A}(F I)\right.
$$

We shall show that this lact is in contradiotion with the ansumption a $s \mu_{\left\{E_{x} \frac{q}{(x)\}}\right.}$ (b). Te this and, notice that the existence of \bar{t} implies that $\left\{a \notin \mu_{\{X,} \sum_{F N\}}(b)\right)^{\Lambda}$. But aceording to Lemma 6

$$
\mu_{\{X, F N\}}(b)=\mu_{\{\overline{\bar{X}}\}} \text { (b) }
$$

and thua $\left(a \neq \mu_{\left\{\frac{8}{X}\right\}}(b)\right)^{4}$ 。
For completing the proof it suffices to whow that
$a \leqslant \mu_{\left\{E_{x_{A}}(x)\right\}}$
(b) \equiv (a $\varepsilon \mu_{\left\{\frac{8}{x}\right\}}$
(b) $)^{4}$.

To see this, notice (use Theoren 3) that

$$
\begin{aligned}
& \left(a \leq \mu_{\left\{\tilde{x}^{\circ}\right\}}(b)\right)^{A} \equiv \operatorname{an} A \leq \mu_{\left\{\operatorname{Lx}_{A}(x)\right\}}(b) \cap A \equiv \\
& \equiv a \leq \mu_{\left\{E_{x_{A}}(x)\right\}} \text { (b). }
\end{aligned}
$$

8 2. Model of $A S T$ - $\triangle C+\neg \triangle C+$ VAC. In this part, we shall construct the first model. For creating it we suppose to have an increasing sequence $A_{1} \subset A_{2} \subset \ldots$ of endomorphic univer ses with standard extension (for its congtruction see \& 4). Let us denote

$$
\nabla^{*}=U\left\{A_{n} ; n \in F H\right\}_{0}
$$

The definition of classes in this model (we shall denote them $\left.X^{*}, Y^{*}, X_{1}^{*}, \ldots, t_{c}\right)$ lies substantially on the relation $\left\{\frac{0}{\bar{X}}\right\}$, more precisely, on the relation $\left\{E_{x_{A_{n}}}^{\circ}(Z)\right\}^{\circ}$. For an ear sier typing we shall write fuxther only $E x_{n}(Z)$ instead of $\mathrm{Ex}_{\mathbf{h}_{\mathbf{n}}}$ (Z) and gimilarly Ex $k \rightarrow \ell$ (Z) will be the abbreviation for $\mathrm{Ex}_{\boldsymbol{A}_{\mathbf{Z}} \rightarrow \boldsymbol{A}_{\boldsymbol{\ell}}}(\mathrm{Z})$.

Definition. Cls* (X) iff $X=\bar{X} \cap \nabla^{*}$, where \bar{X} is a figure in an equivalence $\left\{E_{x_{n}}(Z)\right\}^{\circ}, Z \subseteq \mathcal{A}_{n}$. Moreover,

$$
\left(X^{*} \epsilon^{*} Y^{*}\right) \equiv\left(X^{*} \equiv X \cap \nabla^{*} \& x \in Y^{*}\right)
$$

and

$$
\left(\mathbf{I}^{*}=* \mathbf{Y}^{*}\right) \equiv\left(\mathbf{I}^{*}=\mathbf{Y}^{*}\right) .
$$

For the reader's convenience we shall - when there in no danger of confusion - apeak sometimea (when using the definition of Cle*(X)) only of X instead of \bar{X}.

Remaric. It is easy to see that, for each $x \in \nabla^{*}, x \cap \nabla^{*}$ is a clase in our model: Let $x \in V^{*}$, then $x \in \Lambda_{l}$ for a suitable ℓ. According to (A7) we have $x=B x_{l}(x)$. But x is a figure in $\left\{\frac{0}{\bar{x}\}}\right.$ (see the note behind the definition of $\left\{\frac{0}{\bar{X}\}}\right.$). Thus C $\ell{ }^{*}{ }^{*}(x \cap V *)$.

Furthermore, we shall denote by φ^{*} the formula which is obtained from the formula φ by restricting all its quantifiora to elasses of our model and ϵ to ϵ^{*}. If φ does not contain subformulas of the type $X \in Y$, then φ^{*} is obtained by the restriction of all its quantifiers binding classea of our model and sets to sets of our model.

Before proving the validity of the above mentioned aciona for our model, we shall formulate several lemas which will make the proofs easier.

Leman 1. Let $C \ell s^{*}\left(X_{1}\right), C \ell s *\left(X_{2}\right), \ldots, C l s *\left(X_{n}\right)$. Then there is $K \in F I$ and a class $Y \subseteq A_{k}$ such that (Y is fully revealed) ${ }^{A_{k}}$ and $X_{i}^{*}=Y_{i} \cap \nabla^{*}$, where Y_{1} are figures in $\left\{E x_{k}(y)\right\}$.

Proof. It follows directly from commatativity of Bx (see Lemas 3, 8 1) that we can suppose that Y_{i} are figurea in
 quence of z_{i} can be coded by one class - let us denote it Z. Put now $Y=\mathrm{EK}_{\mathrm{K}}^{\mathrm{l}} \mathrm{l} \rightarrow \mathrm{k}(\mathrm{Z})$. According to (All) we have that (Y is
fully revealed) ${ }^{\mathbf{A}}$, which completes the proof.

Leman 2. Let $t, n \in \Lambda_{\ell}, l>k$. Let further $\left.t_{\left\{E x_{k}\right.}(z)\right\}^{\circ} u_{0}$ Then there exists an antomorphism F such that $F(t)=u$ and

Proof. Since ($\mathrm{K}_{\mathrm{L}}^{\mathrm{z} \rightarrow \ell} \mathrm{L}(\mathrm{Z})$ is fully revealed) ${ }^{\boldsymbol{A}_{\ell}}$ - see (111), and since $t_{\left\{E_{x_{k}}\right.}^{\stackrel{\circ}{\#}(Z)\}}$ w wave (owing to commutativity of $E x$)

 there axiets (an automorphim G) ${ }^{A_{l}}$ ach that $G(t)=u$ and
 81.

Lemma 3. Let F be auch an automorphism that $\mathrm{F}^{*} \mathrm{~V}^{*}=\nabla^{*}$ and CRE*(P $\left.\cap V^{*}\right)$. Then

$$
C \ell s^{*}(X)=C \ell w^{*}\left(F^{m} X\right) .
$$

Proof. It guffices to prove the following statements:
(1) $\quad\left(C \ell s^{*}(Y) \& C \ell s^{*}(X)\right) \Rightarrow C \ell \varepsilon^{*}\left(Y^{n} X\right)$
(2) $\quad C \ell s^{*}(X) \Rightarrow C \ell s^{*}\left(x^{-1}\right)$.

We shall show only the validity of (1): the proof of (2) is analogous.

Since X, Y are classes of our model, they are ifgures in $\left\{E x \stackrel{\circ}{g_{0}}(Z)\right\}$ (see Lemma 1).
 able $l>k$ it is true that $u, t \in A_{l}$. Let F be an sutomorphisn Irom Lemma 2. This automorphiam "keeps" obviousiy also ifgures
 $Y^{n} X$ is a figure in $\left\{E_{x_{k}}^{2}(Z)\right\}^{2}$. As $F^{\prime \prime} V^{*}=V^{*}$ we have bence $C \ell s^{*}\left(Y^{\prime \prime} X\right)$.
(Morsés scheme)* For every formula $\varphi\left(x, I_{1}, \ldots, X_{n}\right)$ ह $F L$ and for every $X_{1}^{*} \ldots, X_{n}^{*}$ there exists a class I such that C ℓ a* $^{*}(Y)$ and

$$
\left(\forall x \in V^{*}\right)\left(x \in Y \equiv \varphi^{*}\left(x, x_{1}^{*}, \ldots, x_{n}^{*}\right)\right)
$$

Proof. We can suppose (see Lema 1) that X_{1}, \ldots, X_{n} are figures in an equivalence $\left\{E_{x_{k}}^{\circ}(Z)\right\}$ where $Z \subseteq A_{k}$ and (Z is fulm is revealed) ${ }^{\text {A/ }}$.

Define
$Y=\left\{x \in V^{*} ; \varphi^{*}\left(x, X_{1}^{*}, \ldots, X_{n}^{*}\right)\right\}$.
We shall prove Chs*(Y). To this end, it euffices to show thet Y is a figure in $\left\{E_{x_{k}} \stackrel{\circ}{=}(Z)\right\}$, i.e. that for every $u \in Y$ and $t \in V^{*}$ such that $\left.t_{\left\{E_{x_{k}}\right.} \stackrel{c}{=}(Z)\right\}$ we have $t \in Y$.

Let $\ell>k$ be such a number that $t, u \in \mathbb{A}_{\ell}$. Let further F be an automorphism from Lemma 2. Since $u \in Y$, the formuls $\varphi^{*}\left(u, X_{1}^{*}, \ldots, X_{n}^{*}\right)$ holds.

> We show the validity of the formula

$$
\begin{equation*}
\varphi^{*}\left(u, X_{1}^{*}, \ldots, X_{n}^{*}\right) \equiv \varphi^{*}\left(P(u), X_{1}^{*}, \ldots, X_{n}^{*}\right) \tag{3}
\end{equation*}
$$

Notice that $\left(\exists X^{*}\right) \psi$ means ($\left.\exists X\right)\left(C \ell s^{*}(X) \& \psi\right)$. Since (see Lemma 3) $C \ell s^{*}(X) \equiv C \ell s^{*}\left(F^{n} X\right)$ and $F^{n} V^{*}=\nabla^{*}$, according to Lemma 2, 81 , we can replace ($\exists \mathrm{X}) C \ell \mathrm{~s}^{*}(X)$ by ($\left.\exists \mathrm{F}^{n} X\right) C \ell \mathrm{E}^{*}\left(\mathrm{~F}^{*} \mathrm{X}\right.$) and $(\exists x) x \in \nabla^{*}$ by $(\exists x) P(x) \in V^{*}$. But then

$$
\varphi^{*}\left(u, X_{1}^{*}, \ldots, X_{n}^{*}\right) \equiv \varphi^{*}\left(F(u), F^{n *} X_{1}, \ldots, F^{n} X_{n}\right)
$$

- see [V], ch. V, § 1. Formula (3) follows now immediately from
the fact that $P^{n} * X_{1}=X_{1}^{*}(1=1, \ldots, n)$. This completes the proof.

Further we ghall investigate countable classes in our model.

Lemma 4. $\mathrm{FN}^{*}=\mathrm{FN}$.
Proof. Since FN \subseteq Def (see [V], ch. V, § 1), the class FN is a figure in each equivalence $\left\{\frac{0}{\bar{X}}\right\}$. Moreover, $F N \subseteq A_{\ell}$ for every ℓ; this follows from the fact that Def is a subclass of each endomorphic universe (see [S-VI]). Therefore FN $\subseteq V^{*}$. Hence CRs*(FN). For proving FN* $=$ FN notice that $F N^{*} \notin F N$, since in our model there is a smaller amount of classes than in AST.

Theorem 1. Let X^{*} be a countable class of V^{*}. Then there exists an endomorphic universe A_{k} such that $X^{*} \subseteq A_{k}$.

Proof. Since Cls* (X), the class X is a figure in $\left\{E x_{k}^{\circ}(Z)\right\}$ for $Z \subseteq A_{k}$ and (Z fully revealed) ${ }^{A_{k}}$. Moreover, since X^{*} is a countable class, all monads in $\left\{E_{x_{k}}^{\circ}(Z)\right\}$ there are trivial - see Lemma $4, \delta$. Suppose now $t \in X^{*}$. Then $\{t\}=\mu$ is a monad in $\left\{E_{x} \xlongequal{\circ}(Z)\right\}$ - From Theorem 3, § 1 it follows that ($\mu \cap A_{k}$ is a monad in $\left\{\frac{0}{\bar{\Sigma}\}},{ }^{A_{k}}\right.$. Hence $t \in A_{k}$.

Corollary. The property "to be countable" is absolute for the classes of our model;i.e.

$$
\operatorname{Count}^{*}\left(X^{*}\right) \equiv \operatorname{Count}\left(X^{*}\right)
$$

Proof. From Lemma 4 we know that FN* $=$ FN. Suppose at first Count* $\left(X^{*}\right)$. Then there exists $\mathrm{F}^{*}: \mathrm{FN} \leftrightarrow \mathrm{X}^{*}$. But F^{*} is a one-one mapping in AST, too.

If we assume Count (X^{*}) we obtain - in accordance with Theorem 3, § 1 - that $X^{*} \subseteq A_{k}$ for a suitable k. Therefore there is such a mapping F that $F: F N \leftrightarrow X^{*}$ and moreover, $F \subseteq A_{k}$. From
the adiom of prolongation in AST it follows that $F=1 / F N$ for a certain $\mathcal{I} \in \mathbb{A}_{k^{*}}$ But $f \in V *$, which completes the proof.
(Axiom of prolongation)* . Let (F^{*} be a countable function)* , then there is a function f^{*} such that $\mathrm{P}^{*} \subseteq \mathrm{f}^{*}$.

Proof. Prom the Corollary of Theorem 1 it follows that F^{*} is a countable function. Now proceed similarly as in the second part of the proof of the Corollery.

Before proving the axiom of cardinalities, we shall formulate a useful assertion.

Theorem 2. For each uncountable class $X *$ there is a set $a \in A_{k}$, for a suitable $k \in F N$, such that $a \subseteq X^{*}$ and a is an infinite set.

Proof. The class X^{*} is a ifgure in $\left\{E_{x_{k}}(z)\right\}$, where $Z \subseteq A_{K}$, (Z fully revealed) ${ }^{A} k$. Since X^{*} is an uncountable class and since there is only a countable amount of trivial monads in $\left\{E_{x_{k}}(Z)\right\}$ (see Lemma 4, 81), the class X^{*} has to contain a non-trivial monad. Such a monad contains, however, an infinite set - this follows from Lemma 4, § 1 and Theorem 3, § 1.
(Axiom of cardinalities)* . Each uncountable class X^{*} can be mapped by a one-one function onto $V *$.

Proof. Owing to Theorem 2 and Cantor-Bernstein's theorem it is sufficient to prove: If $a \in V^{*}$ and a is an infinite set, then there exists $F^{*}: Q \leftrightarrow V^{*}$.

Let $a \in A_{l}$. Then there is $\left(G: a \leftrightarrow A_{\ell}\right)^{A_{\ell}}$. Put now $F^{*}=$ $=E x_{\ell}(G) \cap \nabla^{*}$.
(Negation of the axion of choice) ${ }^{*}$. (There is no class X such that $\in \Gamma X$ is an orderizg of the type Ω.)*

Froof. Such a class X would have to be uncountable and could not contain any infinfte set, at the same time (see [V], ch. II, § 3 and Theorem 2).
(Weak axiom of choice) ${ }^{*}$. Let R^{*} be a relation, dom (R^{*}) a $=$ FN. Then there is a function $\mathrm{E}^{*} \subseteq \mathrm{R}^{*}$ guch that dom (F^{*}) $=\mathrm{PN}$.

Proof. R^{*} is a figure in $\left\{E_{x_{2}}(Z)\right\}$ for $Z \subseteq A_{k}$, (Z fully revealed) ${ }^{A_{k}}$. We claim that dom ($R^{*} \cap A_{k}$) $=$ FN. For this, it suffices to realize that for each $n \in F N$ the class $R^{n}\{n\}$ is a \{igure and moreover (see Theorem 3, (iii), § 1) $\mathbb{R}^{* n}\{n\} \cap A_{s} \neq \phi$.
since the axiom of choice holds in the endomorphic iniverse A_{s} (and, obvicusly, the weak axiom of choice, too), there exists a function $g \in A_{k s}$ such that

$$
g \wedge F N \subseteq R^{*} \cap A_{K} \subseteq R^{*}
$$

Fut now $\mathrm{F}^{*}=\mathrm{g} \uparrow \mathrm{FN}$.

Theorem 3. Each uncountable class X^{*} contains a countable class Y such that 7 Cls* (Y).

Proof. Let $T=\left\{a_{1}, a_{2}, \ldots\right\}$ where $a_{1} \in A_{1}, a_{m} \in A_{m}-A_{m-1}$ for $\mathrm{m}=2,3, \ldots$. Obviously $T \subseteq \mathrm{~V}^{*}$.

We shall prove at first that 7 Cls* (T). The class T is, evidently, countable. Suppose Cls*(T). Then - according to Theorem 1 - there exists A_{k} such that $T \subseteq A_{k}$. From the construction of T it follows, however, that $a_{k+1} \in A_{k+1}-A_{k}$, i. e. $a_{k+1} \notin A_{k}$, and simultaneously $a_{k+1} \in T$, which is a contradiction.

Since X^{*} is an uncountable class, there is $F^{*}: V^{*} \leftrightarrow X^{*}$. Put now $\mathrm{Y}=\mathrm{F}^{*}$ " T .

Remark. The previous theorem inplies that there existe countable gysten of classea in our model which sannot be coded. This circumstence reises bopes thet i coula be possible to create a model in whicn even the weak axiom of choice does not holz. Such a rodel is degcribed in the followng section.

```
§ 3. Model of ASI - \(A_{0}+7\) This. This model mill contain all the classes firm the ilrgt moiel. In addition, we foin here a special class (and thereize ary other clasaes that we can
```



``` the validity of NAC. The claas will be denoted FR (in fact, Fa Is a relation created from standard extensions of \(P N\) ) and defined as follows:
```

Definition. $F R$ is such a class that dom $(F R)=P Y$ and

Note that the larger the endomorphic universe A_{n} is, the smaller is the extension $E x_{n}$ (FN).

Lemma 1. For each $n \in P N$

$$
F R P n=E x_{n}(Z)
$$

where (Z is a fully revealed class) ${ }^{A_{n}}$.
Proof. From the definition of FR, (A2), Leams 3, 81 and (All) it follows that
$F R P n=E X_{n}\left(E x_{n-1 \rightarrow n}\left(F R \upharpoonright n \cap A_{n-1}\right)\right) ;$
this completes the proof.
Now we shall introduce new relations of indiscernibility in which the class $F R$ will be a figure.

Corollary. $\quad(\forall n \in F N)^{n} \stackrel{0}{\{\bar{y}\}}=\frac{0}{\{\overline{\bar{y}}\}}$
for a suitable $\overline{\mathrm{Y}}$.
Proof. It follows directly from Lemma 1.
Definition. Let us put
$\omega_{\left\{\overline{\bar{y}}_{\}}\right.}=\bigcap_{m \in F N}{ }^{m_{0}} \stackrel{O}{\bar{y}\}}$
The relation ${ }_{\{\hat{y}} \frac{0}{y}$ is obviously a refinement of all relations ${ }_{\{\underline{\bar{y}}\}}^{n}, n \in$ FN.

Lemma 2. The class FR is, for each Y, a figure in ${ }^{\omega_{0}} \underset{\overline{\bar{y}}}{3}$.
Proof. It is sufficient to realize (see the definition of $n_{n_{0}}^{\left\{_{y_{3}}\right.}$, that for each $n \in F N$ the class $F R i n+1$ is a figure in n $\frac{0}{\overline{y_{3}}}$.
The next assertion that will further be used substantially, is a generalization of Lemma 7, § 1.

Theorem 1. Let (x be fully revealed) ${ }^{A_{n}}, a, b \in A_{n}, y=$ $=E x_{n}(x)$ and $a \leq \mu_{\left\{\frac{g}{y}\right\}}$ (b). Then $a \in \mu_{\left\{\frac{\omega_{0}}{y}\right\}}$ (b).

Proof. Obviously it suffices to prove that for each $k \in P N$,
 using induction - from Lemma 7, § 1 and the equality (see the definition of FR):
$\operatorname{PRNK}+1=E x_{k}\left((P R P k) \cap A_{k}\right) \cup E x_{k}(F N \times\{k\})$.

We shall create now the second model. The definitions of classes, relations $=^{*}$ and ϵ^{*} are similar to those ones in the first model. We have only to substitute there $\left\{E_{n} \frac{\underline{o}}{n}(Z)\right\}$ by
$\left.\boldsymbol{\omega}_{\mathcal{E X}_{m}}(Z)\right\}$. We leave the detailed reformulation to the reader.
Notice that X^{*}, Y^{*}, \ldots will mean now classes in the second model. To prevent any misunderstanding when further speaking about classes of the first model, we then shall express this explicitly.

Remark. Note that the definition of classes in this model really ensures that each class in the first model is also a class in the second one (the converse assertion is not, of course, true owing to PR). This fact will help us to verify here the individual axioms (and auxiliary statements, too). If it is possible, we shall not give further detailed argumentations but only modify procedures of the analogous assertions from § 2.

Lemma 3. Let $t, u \in A_{\ell}, \quad \ell>k$. Then

$$
\left.t_{\left\{E_{x_{k}}\right.}^{\omega_{o}^{o}}(Z)\right\},
$$

Proof. The assertion is an obvious consequence of Theorem 1. Put there e.g. $a=\{t\}$ and $b=u$.

Lemma 4. Let (Z be fully revealed) ${ }^{A_{k}}$. Then
(i) If $x_{\left\{E_{x_{k}}{ }^{\omega_{0}}(z)\right\}} y, x \neq y$ and if $x, y \in A_{l}$, where $\ell \geq k$, then
there is $a \notin \operatorname{Fin}, a \in A_{\ell}$ such that $a \subseteq \underset{\left\{E x_{\chi_{\ell}}(Z)\right\}}{\omega_{0}}(x)$.
(ii) If $\int_{\left\{E_{x_{k}}^{q}(Z)\right\}}^{\omega}(x)=\{x\}$, then $x \in A_{k}$.

Proof. For (i), at first, notice (see Lemma 3) that
 non-trivial monad which contains an infinite set from A_{ℓ}. This
asertion follows (see Lema 1 and Corollary) from the fact
 and irom Lemma 4, f 1 and Pheorem 3, § 1.

For proving (ii) let ug assume that $\ell,(\ell \geq k)$, is the amallest number $\mathcal{L O}$ wnich $x \in h_{\ell}$. We show, by contradiction, that $\ell=k$. Suppose therefore $\hat{\ell}>k$. Then $\mu_{\mathcal{K}_{\underline{O}}}(x) \cap A_{\ell}=$ $\left\{E_{x_{k}} \underline{O}(z)\right\}$ - $\{\leq\}$ since for $t, u \in A_{\chi}$ we have - in eccordance with Lemae 3 thet

$$
\mathrm{t}_{\left\{\mathrm{Ex}_{k_{k}}(Z)\right\}}^{\kappa_{g}} \mathrm{u} \equiv \mathrm{t}_{\left\{E_{x_{k}}\right.}^{\omega_{0}}=
$$

Hence x is definable in A_{ℓ} from $E x_{k \rightarrow \ell}(Z)$ and $E x_{\ell \rightarrow 1 \rightarrow \ell}$ (FRTV) \cap $\cap A_{\ell-1}$. Thus, usins cummutativity of Ex and (AlO), we obtain that x is definable in $A_{\ell-1}$ from $E x_{k \rightarrow \ell-1}(2)$ and (FRr $\ell_{\ell-1} A_{\ell-1}$, which contradicts, the choice of ℓ.

Lemna 2. L\& $t, u \in A_{\ell}, \ell>k$. Let further $t_{\left\{E_{x_{2}}(Z)\right\}}^{\omega_{0}}$ u. Then there is un automorphian F such that $F(t)=u$ and $F^{n} E x_{k}(z)=$ $=E_{k}(2)$. Moreover, $F^{n} V^{*}=V^{*}$ and $C \ell_{s}{ }^{*}\left(F \cap V^{*}\right)$.

Fropl. Prom the definition of $\frac{n_{0}}{\{\bar{y}\}}$ and Lemma 1 it follows that

$$
\underset{\left\{E_{x_{k}}^{\ell}(Z)\right\}}{\circ}=\left\{E_{x_{k}}\left(\frac{\circ}{\bar{Z}}\right), F R r \ell\right\}=\left\{E_{x_{k_{k}}}\left(\frac{c}{\bar{Z}}\right), E_{x_{l}}(\bar{Z})\right\},
$$

where (\bar{Z} is fully revealed) ${ }^{A} \hat{l}$. Moreover, commutativity of Ex implies that

$$
\left\{E x_{\ell_{\ell}}(\stackrel{0}{\bar{Z}}), E x_{\ell}(\bar{Z})\right\}=\left\{E_{\ell}\left(E x_{x_{k} \rightarrow \ell}^{\stackrel{0}{=}}(Z)\right), E x_{\ell}(\bar{Z})\right\}
$$

Since $E x_{k \rightarrow \ell}(Z)$ and \bar{Z} are both standard extensions Ex $x_{\ell-1 \rightarrow \ell}\left(Z_{1}\right)$ for suitable Z_{i}, the same is valid for their couple. This couple is therefore (a fully revealed class) ${ }^{A_{l}}$.

Now put in mind Lemma 3 and proceed analogously to Lemme
2. § 2. Let F be that automorphism. Then $F(t)=u$ and also F' $E x_{k}(Z)=E x_{k}(Z)$ since Ex $X_{k}(Z)$ is the first component of the couple which is "preserved" by F. As V^{*} is the same in both models, we have that $F^{\prime \prime} V^{*}=V^{*}$. The assertion $C \ell^{* *}\left(F \cap V^{*}\right)$ follows from the fact that $F \cap V^{*}$ is even a class of the firet nodel.

Lemme 6. Let F be such an autonorphimm that $F^{n} V^{*}=V^{*}$ und $C \ell \mathbf{s}^{*}\left(F \cap V^{*}\right)$. Then

$$
C \ell s^{*}(X) \equiv C \ell s^{*}\left(F^{\prime \prime} X\right) .
$$

Proof. Modify the proof of Lemma 3, § 2 in such a way: replace $\left\{E_{x_{k}} \stackrel{\circ}{=}(Z)\right\}$ by $\left\{E_{x_{k}}(Z)\right\}$ and note that (there is, of cournef, $A_{\ell}, \ell>k$, such that $\left.t, u \in A_{\ell}\right)$

$$
t_{\left\{E_{x_{k}}(Z)\right\}}^{\omega_{g}} u \quad \text { iff } \quad t_{\left\{E x_{k}(Z)\right\}}^{\ell_{o}} u
$$

Hence $t_{\left\{E_{x_{k}}(\bar{\Sigma})\right\}}^{\stackrel{O}{=}}$ (see Corollary of Lemma 1).
(Morse s scheme)*. For every formula $\varphi\left(x, X_{1}, \ldots, X_{n}\right) \in F I$, and for every $X_{1}^{*}, \ldots, X_{n}^{*}$ there exists a class Y such that $C \ell^{*}(X)$ and

$$
\left(\forall x \in V^{*}\right)\left(x \in Y \equiv \varphi^{*}\left(x, X_{1}^{*}, \ldots, X_{n}^{*}\right)\right)
$$

Proof. It is enough to modify the proof of the Morse s scheme in the first model. Substitute there $\left.\left\{E_{x_{k}} \stackrel{0}{=} Z\right)\right\}$ by $\left\{E_{x} \stackrel{O}{=}(Z)\right\}$ and instead of Lemmas 2, 3 of $\S 2$, consider now Lemmas 5, 6.

Lemma 7. $F N^{*}=F N$.

Proof. Since FN is the class of the first model (see Lemma 4, § 1), we have here $C \ell \varepsilon^{*}(F N)$, too. The assertion $F N^{*}=F M$
follows now from the dame er ality in the first model and from the fact that the aecond ay el contains a ereater mount of classes.

Theorem 2. Let X^{*} bo a countable class of V^{*}. Then there is an endomorphic universe A_{k} such that $X^{*} \subseteq A_{E}$.

Proof. $C \ell s^{*}(X)$ implies that X is a figure in $\left\{\omega_{x_{k}}(Z)\right\}$ for $Z \subseteq A_{k}$, (Z fully revealed) ${ }^{A_{k}}$. Eut X^{*} is a countable class. Therefore (see Lemma 4 (i)) all monads of X^{*} are trivial. For proving the fact that $X^{*} \subseteq A_{k}$, apply the second assertion of Lemma 4.

Grollary. Count* (X*) \equiv Count (X^{*}).
Yroof. Modify, using Lemma 7 and the previous theorem, the proof of the analogous assertion from the first model.

Since sets and countable classes are the same in both models, we obtain immediately that the following statement holds:
(Axiom of prolongation)* Let (F^{*} be a countable function)* , then there exists a function f^{*} guch that $F^{*} \subseteq f^{*}$.
(Axiom of cardinalities)* . Each uncountable class X^{*} can be mapped by a one-one function onto V^{*}.

Proof. Lemma 4 (i) implies that each uncountable class of our model contains an infinite set; let us danote it a. Since, In the first model, there exists a function F such that $F: a \longleftrightarrow$ $\leftrightarrow V^{*}$, this function is also a class in the second model. Now see the proof of the axiom of cardinalities in the first model.
(Negation of weak axiom of choice)* There is such a
relation R^{*} with dom $\left(R^{*}\right)=F N$ that for any function F^{*} with dom $\left(F^{*}\right)=F N$, the condition $F^{*} \subseteq R^{*}$ does not holl.

Proof. Put $R^{*}=F R-(F N \times F N)$ and suppose that F^{*} is guch a function that dom $\left(F^{*}\right)=F N$ and $F^{*} \subseteq R^{*}$. Let us prolone F^{+} and denote the new function by g^{*}. Then $P^{*}=g^{*} P \mathrm{FN}$. Nince $g^{*} \in A_{n}$ for a suitable n, we have $g^{*}(n) \in A_{r}$ (notice that $n \in A_{n}$). Therefore ($\left.E X_{n}(F N)-F N\right) \cap A_{n} \neq \emptyset$ (according to (AZ) we know tik: $\left.E x_{n}(F N) \cap A_{n}=F N\right)$, which is a contradiction.

Theorem 3. Each uncountable class X^{*} contains a countat.. le class Y such that $\neg C \ell s^{*}(Y)$.

Proof. As both models have the same countable classes, Theorem 3 follows directly from the validity of the analogous assertion in the first model and from the axiom of cardinalities.
§ 4. The construction of an increasing sequence of endomorphic universes with standard extension. The construction of both the models mentioned above lies substantialIy on the existence of an increasing sequence of endomorphic universes with standard extension. The last section of our paper will be devoted just to proving that such a sequence exists. If the following text will remind someone of the construction of the iterated ultraproduct, we stress that the similarity is quite accidental and that its content is but a pure fiction.

At first we shall recall several notions and results from [S-V1], we shall further need.

For an arbitrary class A and arbitrary set d we put

$$
A[d]=\{f(d) ; f \in A\}
$$

Theorem (A). Let A be an endomorphic universe and let $d \in U A$. Then $A[d]$ is the smallest endomorphic universe, the subclass of which is the class $A \cup\{d\}$.

From the definition of $:[d]$ it follows now:
Lemme 1. Let A be an endomorphic universe. Then for each function $f \in A$ \& anch $d \in U A$ the condition

$$
A[f(d)] \subseteq A[d]
$$

holds.
Theorem (B). Let A be an endomorphic universe and let $c, d \in U A$. Then $A[c]=A[d]$ iff there is a one-one mapping $f \in A$ with $c=f(d)$.

If A is on endomorphic universe, then we put for each $X \subseteq A$

$$
E_{A}(X)=\cap\{u \in A ; X \subseteq u\}
$$

Theorem (C). An endomorphic universe A has a standard extension iff
$V=U\left\{E_{A}(X), X \subseteq A \& X \preceq F N\right\} 。$

Now we shall introduce some notions which make our next considerations easier.

Definition. An ultrafilter \mathbb{F}° is called an ultrafilter on FN iff

$$
(\forall X \in \mathcal{F}) F N \cap X \neq \emptyset
$$

Since we shall be further interested only in ultrafilters on semisets (namely on the countable ones), we shall restrict ourselves only on sets; ultrafilters are now fully determined by their sets.

For ultrafiltatg on fir we wil defire an osdexing (fin fact, it is Rudin-keenler's ordeame on ultrafiltora; of. [$\mathrm{C}-\mathrm{H}]$).

Definition. Let f_{1}, ** be nttrailleas on PN, we eball say that \mathscr{H}_{2} is gtronezer han \mathcal{F}_{1} wth reapect to fontion

 \mathcal{F}_{1} (denotation $\mathcal{F}_{1} \approx f_{2}^{\prime}$) iff there exists a function f moh that $\mathcal{F}_{1} \stackrel{f}{\imath} \mathcal{F}_{2}$ 。

Let further A demote, similarly to previous paragraphs, an endomorphic universe with standard extension.

Definition. Let $x \in E x_{A}(F N)$. The clags

$$
\left\{y ; x \in E x_{A}(F N \cap y)\right\}
$$

will be called a filter determined by x and denoted by fil (x).
Obviously, for each $x \in E x_{A}(F N)$, the class fith (x) is on ultrafilter on FN.

Lemma 2. Let $f \in A$ be a function. Then

Proof is evident.
Definition. Let \mathcal{F}^{2} be an ultrafilter on FN. Then the class $\cap\left\{E x_{A}(y \cap F N) ; y \in \mathcal{F}\right\}$
is called a monad of ultrafilter \mathcal{F} and denoted by \mathfrak{i} (\mathcal{F}).
Let us note that there is an ultrafilter \mathcal{F} on $F N$ such that $u\left(x^{\prime}\right)=\varnothing$.

From the definitions of ordering on ultrafilters and monads of ultrafilters, the next two assertions follow immediately.

Theorem 1. (i) Let $x \in E x_{A}(F N)$. Then $x \in \mu\left(\mathcal{F}_{i} i l(x)\right)$.
(11) Let f be an ultrafilter on FIN. Then

$$
\left(y^{\prime} x=, \because\left(\because^{\prime}\right)\right) \quad ;=\text { fi, }
$$

Theorem : Let f ba an ultrapilter on $F N, x \in E x_{A}(F N)$. Then

Theorem 3. For escl: ultrafilter \mathcal{F} on F!l thare exists an endomorphic universe A (wh vil standard extension) and $x \in E x_{A}$ (FN) such that

$$
V=A[x] \text { 汽 } F=\sin (x)
$$

Proof. See's-V1/, 3 .
Definition. We say thes c_{1} is much simpler than c_{2} (denotation $c_{1} \ll c_{1}$) iff

$$
\begin{aligned}
& \left.\left(c_{1} \in E X_{A}(F N)\right) \chi_{N}(\forall \rho \in A) \text { i } c_{2} \approx 5 X_{A}\left(f^{-1^{\prime \prime}} F N\right)\right)= \\
& =\Rightarrow\left(f\left(c_{7}\right) \in \operatorname{FH} \cup f\left(c_{2}\right)-c_{1}\right) l .
\end{aligned}
$$

Depinition. let $\alpha \div E x_{A}(F N)$ and let $f \in A$ be a function with dom (f) $)$ PH. We say that $\beta \in E x_{A}(F N)$ is the second component of o with respect to f iff α is the $;-$ th element of $\mathrm{f}^{-1 "}\{\mathrm{f}(\mathrm{c})\}$.
I.et $x \in E x_{A}\left(\sigma^{\prime}\right)$, where k is a countable subclass of A. Let $f f_{2} A$ be a furiction with dom $(f) \supset t^{\prime}$. We call $\beta \in E x_{A}\left(t_{5}\right)$ the second component of x with respect to f and t iff x is the β-th element of $f^{-1 \prime}\{f(x)\}$ in a fixed chosen ordering of 6 by the type ω.

Remark. Notice that all the above mentioned definitions and assertions concerning ultrafilters on FN can be, in an obvious menner, reformulated for ultrafilters on countable subclasses of A. We shall further suppose to have such modifica-
tions．

Proof iz ensv ont con ie Irft，t，the refipr．
 countable．Let $\mathrm{IE} A: \operatorname{ti}$ sunction ：ith dom（f），心 inis let is $E E x_{A}(\sigma)$ be the sec⿻口卄日l voponent af d with respect to 1 and \because ． If $3 \ll f(d)$ ，then $A L(1) ;$ is nn endomorphic universe with standard extension．

Proof．$A[f(d)]$ is evidently an endomorphic universe；the－ refore it remains to rrove that $A!f(d)]$ can be atandardly ext－ ended．Without loss of generality，we can suppose that $\sigma=F N$ and f＂FNE \subset FN．Then $d \in E x_{A}(F N)$ ．Iut $c=f(d)$ ．We show that $\beta \in$ $E E_{A[c]}(F N)$ ．To this end it is necessary and sufficient to pro－ ve
$(x \in A[c] \& x \supset F N) \Longrightarrow 3 E x$ ．
Put $\gamma=\max \left\{\delta^{\prime} ; J^{\circ}=x\right\}$ ．Then $\delta^{\circ} \in A[c]$ and thus for a su－ itable function $G \in A$ ，we have $\sigma^{\prime \prime}=G(c)$ ．Since $\beta \ll c$ ，we ob－ $\operatorname{tain} \beta \in \sigma^{\circ}\left(\alpha^{2} \mathrm{FN}\right)$ ．But $J^{\prime}=x$ ；hence $; \in \mathrm{x}$ 。

Now we show that for suitable ir ${ }_{1}$ ，where＂ 1 is a countab－ le subclass of $A[c]$ ，it is true that $\left.\left.d \in E_{A} \int^{(}\right)^{(\sigma)}\right)_{0}$ In accordan－ ce with Lemma 3 it suffices to prove that there is such a func－ tion g that $g \in A[c]$ and $d=g(3)$ ．

Let the function \bar{g} be defined as follows：$\vec{G}(t, \alpha)$ is the $x-$ th element of $\mathrm{P}^{-1 \prime}\{t\}$ ．Obviously $\overline{\mathrm{g}} \in \mathrm{A}$ ．Put now $\mathrm{g}(\infty)=$ $=\bar{g}(c, c x)$ ．

For completing the proof it is now enough to realize that for every $x \in V$ we have $x=h(d)$ ，for suitable $h \in A \subset A[c]$ ，and
apply once more Lemma 3.
Remark. Let us stress the fact that if $f(\alpha) \ll \beta$, then $A[f(d)]$ has no standard extension. This result is not quite obvious.

For the construction of an increasing sequence of endomorphic universes with standard extension it suffices now to find a suitable endomorphic universe A with standard extension, a suitable element $d \varepsilon V$ and such a sequence of functions f_{1}, f_{2}, \ldots from A for which the second component $\beta_{i}(i \in F N)$ of d with respect to f_{i} and $5(5$ is a countable subclass of A such that $\left.d \in E_{A}(\sigma)\right)$ is much smaller then $f_{i}(d)$ and $f_{i}(d) \stackrel{A}{\prec} f_{i+1}(d)$.

We define the symbol \xrightarrow{A} as follows:
$x \stackrel{A}{\sim} y \equiv(\exists f \in A) x=f(y)$;
$x^{A_{\alpha}} y=x^{A} \underset{\&}{ } y$ and there is no function $g \in A$ such that g
is a one-one mapping and $x=g(y)$.
If we put now $A_{i}=A\left[f_{i}(d)\right]$, we obtain a sequence of endomoruhic universes with standard extension for which $A_{1} \underset{*}{C}$ $\stackrel{c}{\neq A_{2}} \subset \neq \ldots$. The ideas, just described, will be now precised.

Firstly, we give a definition.
Definition. Let \mathcal{T}_{1} be ultrafilters on σ_{i}, F^{\prime} be an ultrafilter on $Б$, where σ, σ_{i} are countable classes (i \in 6). Then the ultrafilter $\overline{\mathcal{F}}=\mathfrak{F}-\sum \mathcal{F}_{i}$ is called an $\mathcal{F}-$ sum of ultrafilters Nin $_{i}$ and defined in such a way:
$\overline{T^{\prime}}$ is an ultrafilter on $\underset{i \in \sigma^{\prime}}{X_{i}}=\left\{\langle x, i\rangle ; x \in \sigma_{i} \& i \in F N\right\}$ and
$(\forall u)(u \in \bar{F}) \equiv(\forall t)\left(t د\left\{1 ; u "\{i\} \in \mathbb{F}_{i}\right\} \Rightarrow t \in \mathcal{F}^{\prime}\right)$.
If \mathcal{F}_{i} are equal we write instead of $\mathcal{F}^{\boldsymbol{F}} \mathfrak{F}^{\prime}-\sum \mathcal{F}_{1}$ only $7 \times 3 \times 3$

Theorem 5. Let $\sigma \subset \mathbb{A}$ be a countable clasa. Let \boldsymbol{F}_{1}, \mathcal{F}_{2}, respectively, be non-trivial ultrafilters on σ, FI resp. and $\mathcal{F}^{\prime}=\mathscr{F}_{2} \times \mathcal{F}_{1}$. Let further $\mathrm{d} \in \mathrm{Bx}_{\mathrm{A}}(\sigma \times \mathrm{FI})$ and $\mathcal{F}^{\prime}=\mathcal{F i}^{\prime} \mathrm{C}$ (d$)$. Then (Pr denotes the projection function)
(i) Pr_{2} (d) $\ll \operatorname{Pr}_{1}$ (d)
(ii) $\operatorname{Pr}_{1}(d) \stackrel{A}{\leftrightharpoons} d$
(iii) $\mathrm{Pr}_{2}(\mathrm{~d})$ is the second component of $\mathrm{d} w$ th reapect to Pr_{1} and $\sigma \times \mathrm{FH}$.

Proof. At first we shall prove an auxiliary assertions Under the assumptions of Theorem 5 it is true that

$$
\mathcal{F}_{1}=\mathcal{F}^{i l}\left(\operatorname{Pr}_{i}(d)\right) \quad(1=1,2) .
$$

We have to show that

$$
(\forall u) u \in \mathcal{F}_{i} \equiv u \ni \operatorname{Pr}_{i}(d) \quad(i=1,2)
$$

Let $i=1$. Then
$u \times F N \ni \mathfrak{F} \equiv u \times F N \ni d \equiv u \in \operatorname{Pr}_{1}(d)$.
For $1=2$, substitute FN by σ and proceed enalogousiy.
To prove (i) suppose that $f \in \mathbb{A}$ is such a function that $f\left(\operatorname{Pr}_{1}(d)\right)<\operatorname{Pr}_{2}(d)$. Then the same is valid for a set of the ultrafilter \mathcal{F}^{\prime}. Thus, for a certain component j, we have (see the definition of $\left.\mathcal{F}=\mathcal{F}_{2} \times \mathcal{F}_{1}\right) \quad u n\{j\} \in \mathcal{F}_{1}$. Hence $u \boldsymbol{n}\{j\} \neq \operatorname{Pr}_{1}(d)$ and therefore $f\left(\operatorname{Pr}_{1}(d)\right)=f\left(\operatorname{Pr}_{1}\left(\left\langle\operatorname{Pr}_{1}(d), j\right\rangle\right)\right)<j$. Since $j \in P N$, the validity of (i) is demonstrated.

We prove the assertion (ii) by contradiction. Let g\&A be a one-one mapping for which $\operatorname{Pr}_{1}(\mathrm{~d})=\mathrm{g}(\mathrm{d})$. Then $\mathrm{Pr}_{2}(\mathrm{~d})=$ $=\operatorname{Pr}_{2}\left(g^{-1}\left(\operatorname{Pr}_{1}(d)\right)\right)$ which contradicts $\operatorname{Pr}_{2}(\mathrm{~d}) \ll \operatorname{Pr}_{1}(\mathrm{~d})$ - see (i).

The statement (iii) is obvious.
It follows from [V], ch. II, § 4 that there is a non-trivial ultrafilter \mathcal{F}^{\prime} on FN .

Let us put
$\mathrm{FH}^{i}=\underbrace{\mathrm{FN} \times \mathrm{FN} \times \ldots \times \mathrm{FN}}_{i-\text { times }}$
and define ultrafilters \mathscr{F}_{1} on FN^{i} in such a way：

$$
\mathcal{F}_{1}=\mathcal{F}^{\prime}, \mathcal{F}_{i+1}=\mathcal{F}^{\times} \mathcal{F}_{i}
$$

Further put $\bar{F}=\mathcal{F}^{\prime}-\sum \mathcal{F}_{i}$ and denote $\rho={ }_{i \in F N} X^{\prime} N^{i}$ ．The class δ is，evidentiy，countable．From Theorem 3 we know that for $\overline{F^{\prime}}$ on ρ there is an endomorphic universe A（with standard extension）and $d \in E x_{A}(\rho)$ such that $V=A[d]$ and $\overline{\mathcal{F}}=\mathcal{F i}(d)$ ．

On ρ ，we shall define functions $f_{i}:$ If $x \in \rho$ are such elements that $\operatorname{Pr}_{\ell s}(x)>1,\left(\operatorname{Pr}_{\ell s}\right.$ denotes the last projection）， then $f_{i}(x)=\left\langle P r_{1}(x), \ldots, \operatorname{Pr}_{i}(x)\right\rangle$ 。

Denote $\operatorname{Pr}_{i}(d)=d_{i}$ and put $c_{i}=\left\langle d_{1}, \ldots, d_{i}\right\rangle$ ．We would like to show that，for every i ，the class $A\left[c_{1}\right]$ is an endomorphic uni－ verse with standard extension．

Fut further $\bar{d}=\left\langle\left\langle d_{1}, \ldots, d_{i}\right\rangle,\left\langle d_{i+1}, \ldots\right\rangle\right\rangle$ ．Then $A[d]=$ ＝$A[\bar{d}]$ since there exists a one－one mapping $g \in A$ such that $d=$ $=g(\bar{d})$ ．If we denote $\beta=\left\langle d_{1+1}, \ldots\right\rangle$ ，we obtain that $\bar{d}=$ $=\left\langle c_{i}, \beta\right\rangle$ ．

Under the above stated denotations we prove
Lemma 4．Fil $(\overline{\mathrm{d}})=\operatorname{Fi\ell }(\beta) \times \operatorname{Fil}\left(c_{i}\right)$ ．
Proof．Let，at first，$u \in \mathcal{S i l}(\tilde{d})$ ．Then $u \Rightarrow$ d．Let $m \in A$ be such that

$$
m \supseteq\left\{x \in \operatorname{dom}(\bar{\rho}) ; \quad u^{\prime \prime}\{x\} \ni c_{i}\right\}
$$

（ $\bar{\rho}$ is obtained from ρ by an obvious manner）． We prove that $m \in S i \ell(\beta)$ ；i．e．that $m \Rightarrow \beta$ ．Since $\left\langle c_{i}, \beta\right\rangle=$ $=\bar{d}$ ，we have $u^{\prime \prime}\{\beta\} \exists c_{i}$ and hence $\beta \in \mathrm{m}$ ．Thus $u \in$ 解 $\mathcal{R}(\beta) \times$ $\times \operatorname{FiC}\left(c_{1}\right)$ 。

For proving the statement:
$u \in \operatorname{Fil}(\beta) \times$ Jil $\left(c_{i}\right) \Rightarrow u \in \operatorname{Kil}(\bar{d})$,
follow the proof of the first part going "from bottom to top".

Theorem 6. $A\left[c_{i}\right]$ is, for each 1 , an endomorphic universe with standard extenaion (c_{1} are defined above).

Proof. Owing to Lemma 4 and Theorem 5 (iii), we know that β is the second component of c_{i} with respect to Pr_{i}. Due to Theorem 5 (i), we have further that $\beta \ll c_{i}$. Hence (see Theorem 4) $A\left[c_{i}\right]$ is an endomorphic universe with standard extension. Moreover $A\left[c_{i}\right]$ ¢ $A[d]=V$ - since, in accordance with Theorem 5 (ii) - we have $c_{i} \stackrel{A}{\}}$ d.

Theorem]. $(\forall i \in F N) \mathbb{A}\left[c_{i}\right]$ 卆 $\mathbb{A}\left[c_{i+1}\right]$ 。
Proof. The inclusion $A\left[c_{i}\right] \subseteq A\left[c_{i+1}\right]$ follows from the facts that $c_{1}=\left\langle P r_{1}\left(\left\langle c_{i+1}, i+1\right\rangle\right), \ldots \operatorname{Pr}_{i}\left(\left\langle c_{i+1}, i+1\right\rangle\right)\right\rangle$ and projections are functions from A. For proving $A\left[c_{1}\right] \neq A\left[c_{1+1}\right]$ it suffices to realize that

$$
\operatorname{Fil}\left(c_{i+1}\right)=\operatorname{Fil}\left(d_{i+1}\right) \times F i l\left(c_{1}\right) ;
$$

it is namely $c_{i+1}=\left\langle c_{i}, d_{i+1}\right\rangle$ and (see Theorem 5 (ii)) $c_{i} \stackrel{A}{ } c_{i+1}$.

Remark. In [AV] there is constructed a model similar to our first one. Its construction lies there on an increasing sequence $\left\{A_{\alpha} ; \alpha \in \Omega\right\}$ of endomorphic universes with standard extension. The existence of such a sequence is not, however, shown there explicitly. If one supposes the second order choice, 1.e.

$$
(\forall x)(\exists Y) \varphi(x, Y) \Rightarrow(\exists \bar{Y})(\forall x) \varphi\left(x, \bar{Y}{ }^{\prime \prime}\{x\}\right)
$$

It is possible to prove the exdstence of $\left\{\Lambda_{\alpha} ; \alpha \in \Omega\right\}$ in such a way: Starting from a fixed non-trivial ultrafilter on PN we can create in AST the structure of which is Ω-times iterated ultraproduct. This structure is saturated, elementarily oquivalent to V and has cardinality Ω. But V is, owing to the axiom of prolongation, also a saturated structure. Therefore there is an isomorphism Fr Cl \longleftrightarrow V. Now we obtain \mathbb{A}_{∞} as images of \propto-th steps of the iteration process.

We have preferred in our peper, \& 4, to avoid the second order choice and, in addition, we have used the methods being more fit for AST.

Problem. Thanks to WAC, in the ifrst model, we know that each countable union of countable classes is a countable class. This assertion is also valid in the second model. A question arises: Is there such a model of AST - AC in which V is the union of countably many countable classes ? Or, in a weaker form, is it possible for ∇ to be a union of countably many semisets there ? The answers are unknown to us.

References
[V] P. VOPĚNKA: Mathematics in the Alternative Set Theory, Teubner-Texte, Leipzig 1979.
[Č-KI] K. ČUDA and B. KUSSOVA: Basic equivalences in the alternative set theory, Comment. Math. Univ. Carolinae 23(1982), 629-644.
[Č-K2] K. ČUDA and B. KUSSOVÁ: Monads in basic equivalences, Comment. Math. Univ. Carolinae 24(1983), 437452.
[S-VI] A. SOCHOR and P. VOPĚNKA: Endomorphic universes and their standard extensions, Comment. Math. Univ. Carolinae 20(1979), 605-629.
[Č-V] K. ČUDA and P. VOPĚNKA: Real and imaginary classes in the alternative set theory, Comment. Math. Univ. Carolinae 20(1979), 639-653.
[S 1] A. SOCHOR: Metamathematics of the alternative set theory I, Comment. Math. Univ. Carolinae 20(1979), 697-722.
[S-V3] A. SOCHOR and P. VOPĚNKA: The axiom of reflection, Comment. Math. Univ. Carolinae 22(1981), 689699.
[AV] A. VENCOVSKÁ: Independence of the axiom of choice in the alternative set theory, Open days in model theory and set theory, Proceedings of a conference held in September 1981 at Jadwisin; W. Guzicki, W. Marek, A. Pelc, C. Rauszer (Leeds 1984).
[C-H] G. CHERLTNG and J. HIRSCHELD: Ultrafilters and ultram products in non-standard analysis, Contributions to Non-Standard Analysis, Studies in Logic, vol. 69, North-Holl. Publ. Company, 261-279.

Matematický ústav, Universita Karlova, Sokolovaká 83, 18600 Praha 8, Czechoslovakia

