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INITIAL-BOUNDARY VALUE PROBLEMS DESCRIBING
MOBILE CARRIER TRANSPORT IN SEMICONDUCTOR DEVICES
K. GROGER

Abstract: In this paper the system of partial differential
equatIons describing mobile carrier transport in semiconductor
devices with constant or varying densities of ionized impurities
is investigated. Under appropriete assumptions there are indica-
ted proofs of the global existence, uniqueness and the exponen-
tial stability of solutions to corresponding systems.

Key words: Initial-boundary yalue problem, asymptotic beha-
viour of solutions, ven Roosbroeck s equations, semiconductors,
carrier transport, varying densities of ionized impurities.

Classification: 35Q20, 35D05, 35B40

Introduction. These lectures consist of two parts. In Part
I we shall be concerned with a gystem of partial differential
equations proposed in 1950 by van Roosbroeck [17] as a model for
the transport of mobile carriers in a semiconductor device, A
large number of numerical experiments has shown that this model

is quite useful for purposes of device design and device analy-
sis (see, e.g.,[3]1). Its analytical investigation started rather

late with a series of papers of M.S. Mock 112, 13, 14].

Mock also tried to justify some of the commonly adopted numeri-
cal methods, and he summed up his results in a book [15] that
appeared in 1983, Further results were obtained by Seidman [18]
and Gajewski [4,5,6]. In our presentation we follow closely a
recent paper of Gajewski-Groger [7] dealing with global existen-

ce, uniqueness, and asymptotic behaviour of solutions to van

This paper was presented on the International Spring School on
Evolution Equations, DobFichovice by Prague, May 21-25, 1984
(invited paper).
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Roosbroeck ‘s equations under reasonable initial and boundary
conditions.

Van Roosbroeck ‘s model assumes that the densities of ioni-
zed impurities in the semiconductor are known and do not vary
during the process under consideration. In Part £I we shall deal
with a generalization of van Roosbroeck ‘s model allowing the
densities of ionized impurities to change according to simple
kinetic equations. The results of this part are new. Since their
proofs are similar to the proofs of the results of Part I we

shell indicate only the necessary modifications.

I. Semiconductors with constant dengities of ionized
impurities

I.1. Provigional formulation of the problem. Let G CKRN,

N&3, be the domain occupied by a semiconductor device., We are
looking for functions u;, u,, and v of t € R := [O,+ 00l and
x € G satisfying van Roosbroeck ‘s equations

du

. -.&l + aiv 3;(uy,v) + R(w) =0, i=1,2,
- div (e gred v) = £ +u; - Uy,
where

u=(u1,u2) represents the densities of holes and electrons,
v is the electrostatic potential,

3jCuy,v) = -Di(grad u; + qusgrad v), i=1,2, qy=-q, = 1,
are the hole and the electron current densities,

D1, D2 are the diffusion coefficients of holes and elec-
trons,

R(u) is the net recombination rate,

© 1is the dielectric permittivity of the semiconductor

material,
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f is the net density of the charge of impurities.
The equations (1) are to be supplemented by appropriate side
conditions. We assume that the boundary QG is the union of two
disjoint parts ¥ and M and that
u="1-= (T, 5), vaVon R, x T,
(2) ov
I (ug,v)-? = jo(uy,v)-v =0, 5y tav=gon R, xT,

(3) u(0,x) = u(x), x€G.

Here v denotes the outward unit normal at a point of " , and
?1', ¥, a, and g are functions representing the interaction of the

gsemiconductor device with its environment.

For a detailed discussion of these equations see [15,3].
We remark only that Ji(ui,v) = -Dyu,; grad ¢ 4 if we define
$4:= log u; + qyv. The variables §,, i=1,2, are to be inter-
preted as the electrochemicel potentials of holes and electrons,

respectively.

I.2., Precise formulation of the problem. If E is any Banach
space and S an interval of the real axis then C(S;E),c1(S;B),Lp(S;E),

I{oc(s;E), 1£p £ 0 , denote the usual spaces of E-valued func-
tions defined on S. If E carries a natural lattice structure
then we denote by E, the positive cone in E, and for u€E we de-

+

fine u':= sup {u,0}, u := sup {-u,0}.

In what follows we assume that

Gc IRN, N4£3, is & bounded Lipschitzian domain,

(4) ~ ~
3c=Tul , AT =4, nes(f) >0,

sy D,>0, D,>0, & >0, q =-q, =1, aeL’(T), geLY(T),
£e L®(G), R(u) = k(uyu, - 1), k20,
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~ ~ g-q'; ~
(6) FeEUOAL®(@), T, =et 1, T,ewrP(q), 11,2,

The last assumption means that the boundary values on f" appe-
aring in (2) can be extended to sufficiently nice functions on G.
Let V:= «szH1(G)=w \f: = 0%, and let V¥ be its dual, We de-
fine Ayt (H'(G)ALP(8)) xH'(6) —> V¥, 1=1,2, and B:H' (G) —» V*
by
(Ai(w,v) y,hVe= fG D (grad w + q w grad v)gred h dx,

(7 {Bv,h) := fG €& grad v grad h dx + L (av-g)db6,

weH (G)A L®(G), veH'(G), heV.

Purthermore, we introduce F, = P,;L%(G; [R%) —r V¥ by

(®  (Fy,hd:im £ k(1-uuy)h ax, ue 16 &), heV,

i=1,2,

(By IP(Gy R®), ne N, 14p 4 00 , we denote the ususl space of

IRP-valued functions defined on G.) Finally, let

(9 we LP (63 B?).

The problem (1)-(3) can now be written precisely as follows:
¥t >0: ug(t) + 43 (u(1),v(8)) = Fyau(t)),

(1) Bu(t) = f+(uy-uy)(8), wy-¥ys 15 (R, 3V A LI (IR,3LP (),

uje I (IR,3V9), 1=1,2, w(0) = u°, v-¥aC( RV,
where u;_ denotes the derivative of uy with respect to time in
the sense of V¥-valued distributions. It is easy to check that

sufficiently smooth functions u, v are a solution to (I) if and
only if they satisfy (1)-(3).

The stationary problem corresponding to (I) reads as fol-
lowa:
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an A;(uf,v®) = P (u¥), u} = 'Ki.‘“i. (4 € VALP(G), 1=1,2,

Bv* = £+ - uf, vF - VeV,

I.3. Results

Theorem 1. Let the conditions (4)-(9) be satisfied. Then
there exists a unique solution (u,v) to the initial-boundary
value problem (I). This solution has the property uz 0.

Theorem 2. Suppose that (4)-(8) hold and that in addition
~ ~
(10) grad §; =0, 11,2, §,+§, =0,

Then there exists a unique solution (u*,v*) to the boundary va-
lue pmblemN(II). This solution has the properties

& =q v
. el

u‘;‘_ ’ ji(ui'v*) = 0, i=1,2, R(u¥) = k(li%ug-“) = O,

Theorem 3. Suppose that (4)-(10) hold. Furthermore, let
(11) ugl const> 0, 1i=1,2,

If (u,v) and (u¥*,v*) are the solutions to (I) and (II), respec-
tively, then there exist A > 0, ¢>0, Co> 0, c4< 00 such that
Yte R:c du(t)dc,, ia1,2,

Ru(t)-u* “Lz > +hv(t)-vx| M,

£
(a;R2) 2 (&nL?(e)

Remarks. 1. The main result of Theorem 1 is the global ex-
istence of the solution despite the quadratic nonlinearity of
the operators ‘:I. and 1"1. Of interest is also the boundedness
property of the densities u; since the equations (1) are inac-
ceptable if the uy become too large.

2. Condition (10) means that the driving forces for the
flows of holes and electrons and for the net recombination ra-
te vanish at the ohmic contacts of the device. By Theorem 2
this implies that the flows and the net recombination rate
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vanish everywhere in G.

3. We presented a result on the stationary problem (II) on-
ly as & preparation for Theorem 3. An existence result for Prob-
lem (II) avoiding the hypothesis (10) can be found in Gajewski
L53.

4. In his papers Mock considered only the case a = g = 0,
thus excluding contacts celled gates. He never proved that uy be-
longs to Lo (IR,3L%(G)) or to L®(IR,3L%°(G)), not even in the
context of asymptotic behaviour. He assumed that for some p>N
the relations Bv = h, he LP(G), v-¥&V imply that veWw2*P(G).
This assumption clearly restricts the considerations to special
geometries (see, e.g., Grisvard [9]). Similar assumptions were ma-
de by Seidmen [18] and Gajewski [4-6].

5. The results stated above remain true if the constants k,
Dy are replaced by k(u,v) and D(i’ + Dl(igra.d vl), where
k: R°x R—> IR, is Lipschitzian and Dl: R, —> IRy is such that
¥y Dl(y)y. ye IR, is Lipschitzian and bounded.

I.4. Essential steps of the proofs. We shall outline the
main ideas of the proofs of Theorem 1 - Theorem 3. For details we
refer to Gajewski-Groger [71.

1. The existence of a solution to (I) has been proved as follows:
The operators Ai and Fi have been replaced by A,_(Lr ), Pgr), where

r>0 is a regularization parameter and

(Agr) (w,v),h) := fG Di(grad w+qy min {'w"',r} grad v)grad h dx,
(P:(Lr)(u),h) t= fG k(1 - min {(u1u2)+,r2})h ax,

weH'(G), veH'(G), ueL2(Gy R%), hEV.

The solvability of the regularized problem has been shown by means
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of Schauder’s fixed point theorem. Next by methods to be descri-
bed below there were derived a-priori estimates for uy in

L% (R, 3L%(G)) uniformly with respect to r. Thus, for a given
compact interval S = {0,T) one can choose r>0 so large that a
solution to the regularized problem is a solution to the original
problem on S. The uniqueness of a solution to (I) can be proved
by standard arguments.

For the sake of simplicity we describe the proof of a~prio-
ri estimates only for the original problem (I). At first one pro-
ves uiz O by means of the test function uI. Next one uses the

function H:12(G3 R?) = H'(G)—> IR defined by
2 Ay, 1
H(u,v):= fG =, f log &; dy dx + » {Bv-B¥,v-¥>
1= ";“L

(cf. Gajewski [4]1). Almost the same function had been introduced
already by Gokhale [8]. Corresponding functions were used also
in the theory of reaction systems and diffusion-reaction sys-
tems (see Horn-Jackson [111, Groger [101). If (u,v) is a soluti-
on to (I) such that uy Z const>0 then

2 . ~

- §5 BOB),v(8) =73, Cui(0), §;(0-F,2,
and this is the dissipation rate of the system. Under the assum-
ptions of Theorem 3 the semiconductor device is a closed system
in the sense of thermodynamics. Hence one would expect in this

case H to be decreasing along the trajectories of the system.

Indeed, one can prove
Lemma 1, If (u,v) is & solution to (I) then for tZsZ0

v
H(u(t),v(t)) £ H(u(s),v(s)) + ¢ f,a (1+H(u(x ),v(z)))dx -

If (10) is satisfied then this inequality holds with ¢ = O.
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Prom Lemma 1 and the properties of H it follows that

Vvt eR,s Ru(t)ll flv(t é et
43 Bu(s) 2 (o) + llw( )“1{1(6) ve

where 9 , ¢ depend only on the data of the problem and ¢ = O if
(10) is setisfied.

Lemma 2. If (u,v) is a solution to (I) and S = [0,T] then

ful £ c(llul Livll
s, 176 gR?) ) tha 193,11 (6R2))" | LUS;H' (@)

where C is a continuous function of its arguments depending only
on the data of the problem.

The proof of this lemma is rather complicated. It uses an
iteration technique introduced by Moser [161 (cf. also Alikakos
L1]). One derives for n=1,2,... bounds for the norm

n
l\uiﬂ a by means of the test function ((ui-ll)+)2 "1. M
(531 ()
sufficiently large. Lemma 2 completes the proof of the a-priori

estimates.

2, If (u¥,v*) is a solution to (II) then one proves by means of
the test function 1og(u;/c{1) that A, (u},v*) = F,(u*) = 0, u} =
§i-qyv*

=el 1 4.1,2, ana

~ o~

S,=-v¥ S +v¥
(12) Bv¥=f +e! -e2 | v¥_.¥eV.
Conversely, using standard maximum principle and monotone opera-
tor arguments one can show that (12) has a unique solution., This

leads to the unique solvability of Problem (II),

3. By an iteration technique similar to that in the proof of Lem-
ma 2 one obtains uig const > 0 under the hypotheses of Theorem 3.
This can be used to show that %-{ H(u(t),v(t)) & - AH(u(t)vit))

for sufficiently small \ > 0, if H is defined by means of u’;_



instead of ﬁ'i. Hence H decreases exponentially along the trajec-
tory (u,v). The assertions of Theorem 3 are easy consequences
of this fact.

II. Semiconductors with varying densities of ionized
impurities

II.1. The kinetics of impurities, holes, and electrons.

In Part I there was no need to distinguish between different
impurities. In this part we have to take into account that the
densities of some of the ionized impurities may vary during the

process under consideration.

Let IJ. J=1,...,m, be species taking part in the process as
impurities. By et and e~ we denote holes and electrons conside-
red as species. If xj is a donor and x; the corresponding ion
then the reactions taking place can be written symbolically as

follows:
+ k + - + m
(13) e+ 1, ij—Tj-ng, o« + 1) m:‘%xr

This means that we have mass action kinetics with reaction con-
stants as assigned to the reaction arrows. For the sake of sim-
plicity we assume that each molecule supplies only one electron.
Similarly, it Id is an acceptor and x; its ion then the reactions

are

k
(14) et +x‘5 &zx‘,‘, e +xj.=£kx3.
5% M

Due to the choice of units made tacitly already in Part I we have
KJMJ =1 (K;j"j is the square of the intrinsic carrier density).
It xj is a donor (an acceptor) we denote by W 441 the density of

-83 =



xj (o2 x'j') and by U442 the density of I; (o2 xd). Accordingly
we define

0 ir xj is a donor

s q. = 1 + q, .
2341 3= { -1 if X4 is an acceptor R A 23+

With this notation the reaction equations for the impurities ta-
ke the form (see, e.g., [21)
ouy

"‘é‘{ = Pi(u), 1.3,0-- oy
where n:= 2m + 2, uz= (uj,e..,u)), and
Fo g1 (Wem ky(ugy 5 q +Kqus 5,0)% my (o1 5, 5-M3 5490
!23+2:- - 121+1, J=1,...,m.

(15)

Simul taneously we have to redefine P,, F2 as follows:

Fy(w:= k(1-uqu,) +%>=:1 kj(-u1u23+1 + Kjuﬁ_,,z),
(16) m
Fplu)e= k(luquy) +,>, my(-usyg,p + Myupyg,q)e

II.2. Formulation of the problem. Let again (4)-(7) be sa-
tisfied, and let

m €N, ni= 2m#23 Qpyuq = 0 OF Qpguq = =1, Q4= 1405541,
an
k3>0. m3>o, K3>0, Kjuj =1, j=1,e..,m

The mappings P,, !'2 defined by (16) will be considered as mappings
from L(G3 IR®) o0 V* (cf. (8)), whereas Fy,e..,F, will be consi-
dered as mappings from L°(G; IR™) to L®°(G). Let

(18) u’e L2(G; R™).

The evolution of the system under consideration is described by
the following equetions and side conditions:
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VE>0: u/(t) + A, (u(£),v() = P, (u(¥)),
u - € I‘ioc( R,3V)n I'lcooc( R, ;L9(6)),
(I uje1d (R, 1=1,2; ul(t) = P, (u(t)),
uge ' (RI2(E))A L2 (R, 3192(6)), 1=3,...,n,
w(0) = u®, Bu(¥) = £ +.%, qu;(+), v-FeC(R,3V).

The function f takes into account that we may still have fixed
ionized impurities. The corresponding stationary problem reads

ags follows:

Ai(d’:‘t,v") = Pi(u‘), u’; = ﬁieﬁ', € VAL®(G),i=1,2;
(v) F;(u*) = o, u’;e LP(G), i=3,...,n,

17
Bv¥ =t +.>, qqui, v¥*- VeV,

II.3. Results

Theorem 4. Let the conditions (4)-(7), (15)-(18) be satis-
fied. Then there exists a unique solution to Problem (III). If

(u,v) is this solution then uZ 0 and
(19) VE6 IR,z (Uyg a4y 4,5)(8) = ugj+1+ugj+2. 321 eee oM

Theorem 5. Suppose that (4)-(7),(10), and (15)-(17) hold.
Yoreover, let fy& 1°(6), j=1,...,m, be given. Then there exists
a unique solution (u*,v*) to Problem (IV) such that “;3*‘ +
+ u§j+2 = 3, j=1,...,m. Por this solution it holds

§4-9,v*
uisei 1 s 1=1,25 lﬁ'ugs“'

“§j+1 = fj(1 + "31#)-1' J = 1yece,me

Theorem 6. Let (4)-(7),(10),(11), and (15)-(18) be satis-
fied. If (u,v) is the solution to (III) amd (u¥,v¥) is the
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solution to (I¥) such €that

k J o

Waer * Wyep = Iyim Uogyq + 0345, Il 0m,
then there exist A > 0, ¢>0, 6,>0, ¢; < ® such that

VteliR o #u,(t)ho,, 11,2,

fu(t)~u*l tv(t)-v*| 4o ot
u(®)-u 2 (™) v(8)-v B @)A1

Remarks. 1. If (u*,v¥) is & golution to Problem (IV) un-
der the hypotheses of Theorem 5 then we have equilibrium for
each pair of reactions in (13),(14) and R(u*) = 0.

2. Another natural choice of 123 41 18

$1+%541 . Yoge2 ALY TORN P
Prya (u,v)z= kj(-o Ky )+ mj(e -Mye ) =
Q5427 Q3417
= kye (muup 341 +Egip 542) + mye (0 oMy 541
where $,:= log u; + q.V and the constants in this definition
satisfy the conditions (17). Therefore it is of interest that
the results of Theorem 4 - Theorem 6 remain true if the const-

ants kj, mj are replaced by strictly positive locally Lipschitz-

ian funotions of u and v.
3. If the ions of impurities can accept or supply more than

one electron then one has to modify the definition of the func-~

tions ri somewhat, but the results are essentially the same.
II.4. Comments on the proofs. The proofs of Theorem 4 -

Theorem 6 are similar to those of Theorem 1 - Theorem 3. We res-

trict ourselves o short comments.
1. Let (u,v) be a solution to (III), The assertion uzZ O can be

proved esgain by means of the test function uI. Prom uZ0 it fol-
lows immediately (cf. [191))

My gys f IR, 1°(6)) % ! “gj+1*“§j+2' o(g) 3=1se..,m, 1=1,2.
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The main problem is once more to find bounds for uy, Uy. One can
prove an analogue to Lemma 1 if one defines
H(u,v):ﬂf g f:’q log L- dy dx + l(Bv-BV,v-?),
G V=1 g C 2
for use LE(G; RY), ver! (@), -where ﬁi = o“i, 4y & L% (a),

i=3,...,n, are such that '&'1'\‘1’23” = Kjﬁ23+2° J=1,...,m. Subsequ-
ently one can obtain bounds for [lui(t)le , i=1,2, almost 1i-

(8)
terally as under the hypotheses of Part I.

2, If (u*,v¥) is a solution to (IV) satisfying the relations
u;j” + u§j+2 = 24, J=1,...,m, then by means of the test functi-
ons log(u{/&;) one can prove that A,(uw§,v¥) = 0, 1=1,2, P, (u¥) =

= 0, i=1,...,n, and

-~
I S ~v¥
of - SHTUT, 1a1,2, Wiy = £y(14 e 17791, jal,eee,m,
§,-v* Toave m -r*
Bv¥ = f + e ! o2 v +‘3§.4 tj(q23+2-(1+llaes1 )-1), vi-veV,

Conversely, the last equation can easily be handled by maximum
principle and monotonicity arguments. This leads to the asserti-

ons of Theorem 5.

3. Under the hypotheses of Theorem 6 one proves at first as in
Part I that ui(t)z const> 0, i=1,2, t& 0. Next one shows that
for every to>0 there exists c°>~0 such that

Ytz tozuzjﬂ_(t)z ootj, j=l,0e0,m, i=1,2,

o o
where fi:= Uz4iq * Up4io, Thus, for t> O it makes sense to define

Wy (t)
1 2
H(u(t),v(t))e= E(Bv(t)—Bv‘,v(t)-v*)-&-f"; £, j‘% log % dy dx +
%2304 Mgy ()
A e T e w) e
2176 Wi Y3541 “23+2 Y2342
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where Gyi= {xeG:ity(x)> 0%. It t,>0 end A > 0 is sufficient-
ly small then

VEZt,: $5 H(®),v(£) & ~ AHu(t),v(t).

The proof of this inequality is, however, somewhat more compli-
cated than the proof of the corresponding assertion of Part I.
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