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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,3 (1885)

A FUZZY MODIFICATION OF THE CATEGORY OF LINEARLY
ORDERED SPACES
A. SOSTAK

Abstract: Generalizing the well-known Hutton s comsiruc- |
tion of the fuzzy unit interval we define a functor F from the
category Ord of linearly ordered spaces into the category Fuz
of fuzzy topological spaces. Some properties of this functoxr
are established. Specifically, the conmnections between the pro-
perties of the linear order on X and the fuzzy topological pro-
perties of P(X) are studied. In case when X is connected, the
space F(X) is fuzzy homeomorphic to the space K(X) constructed
by A. Klein,

Key words: PFuzzy topological space, fuzzy unit interval
linearly ordered space. ' !

Classification: 54440, 54F05

§ 0. Introduction. In [16] we offered a construction which
for a givem linearly ordered topologicel space associates in a
definite way a fuzzy topological space F(X) - the so called
fuzzy modification of a linearly ordered topologicael space X.
In the cage when X = I (= [0,1]1), the space F(I) is fuzzy ho-
meomorphic with the fuzzy closed unit interval [7 which is one
of the most important and interesting examples of tazzy topolo-
glcal spaces (see e.g. [71,18),051,113],014],115]) e.a.). The
fuzsy spaces P(R) and F(10,1[) are fuzzy homeomorphic with the
fuzzy real line [5] and the fuzzy open unit interval [5] res-
pectively. In [16]) we began to study the properties of P(X).
In particular, there were established some connections between
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the topological properties of X and the fuzzy topologioal
properties of P(X).

The principeal aim of the present paper is to impart the
categorical character to this construetion. Namely, the main
object of the paper is a functor P from the category Ord of
linearly ordered topological spaces and increasing contimous
mappings into the category Puz of fuzzy topological spaces
and fuszzy continuous mappings (Section 4).

The paper begins with Section 1 containing the prelimina~-
ry information employed in the text. In Section 2 the defini-
tion of the fuzzy modification F(X) of & linearly ordered to-
pological space X from [16] is reproduced, Here we state also
the main results from [16] concerning the fuzzy topological
properties of F(X). The third section is devoted to a construc-
tion which allows to associate with an inereasing ocontinuous
mapping £:X —» Y & fuzzy continuous mapping F(f) = 2:2(x) —
—»> PF(Y). The relation F appears to be functorial (Section 4).
Section 5 contains the construction of a fuzzy modification
for the case of a decreasing mapping.

Our definition of the fuzzy modification of a linearly
ordered space is essentially based on the generalization of
the fundamental idea of B, Hutton [7] which he has used for
the construction of the fuzzy closed unit interval. An interes-
ting and quite different extension of B. Hutton s oconstruction
was carried out by A. Klein [10]. He assoociates with a& connec-
ted topological space X a fuzzy topological space K°(X) (our
denotation) in such & way that K°(I) and K°(R) are equivalent
with the fuzzy olosed unit interval and the fuzzy real line.
Moreover, the space X is contained in K°(X) as a fuzzy subspe-
ce. The aim of the last, sixth seotion is to show that if a
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topological space is both linearly ordered and connected, then
the both constructions F(X) and K°(X) may be considered as
equivalent.

§ 1. Preliminaries. A. Linearly ordered spaces. Let X be
a set and < & linear order on it (see e.g. [4], P. 17). As

usual, we write x4a if x<a or x = a, For a,beX let
Ja,~—[ = {xixeX, a<xt, Je~ ,b[ = {x:x6X, x<b}, Jo,b[ =
={xixeX, a<x< b}, la,b] = {x:x¢X, acx£b}, [a,bl =
= {xtxeX, 86x<b}, etc.

A subset X of X is called bounded in X if there exist
a,be X such that xoc [a,b]. Specifically, X is bounded if it
has a maximal and a minimal elements. By a cofinal character of

X we understand the least cardinal number k for which there ex-
ists a subset Ioc X of cardinality k such that for every xeX
there are ye X, y£x, and z€X , x&z (of. [4], p. 22).

One can easily check that B = {la,b[:a,beX{ 15 a base
for some topology J’ on the set X; it will be called "the topo-
logy generated by the linear order < ". Throughout the paper,
by & linearly ordered (topological) space, we understand & tri-
ple (X,<,7). It will be usually abbreviated as (X,< ) or just
as X if there can be no confusion. Thus in our context the 1i-
near order in a linearly ordered (topological) space is assumed
to be fixed (in contrast with the usual terminology acocording
to which a linearly ordered topological space is defined as a
pair (X,7’) where the topology ¥’ can be generated by some 1li~
near order <« on X (see e.g. [ 4], p. 82)).

Let (X,<) and (Y,<) be two linearly ordered spaces. A
mapping f£:X—> Y will be called increasing if xy< X, implies
2(x4) & 2(x,). Decreaging mappings are defined analogously.

- 423 -




It is obvious that linearly ordered spaces and increasing
continuous mappings between them form a category; this category
will be denoted Ord.

B. Puzzy topological spaces. The terminology used in fuzzy
topology is rather unsteady yet and various euthors proceed so-
metimes from different basic definitions. Therefore everyone
working in this field hes to specify first the frames in which
he carries his studies out. As in our previous papers [163,[17],
{18], we work chiefly in the R, Lowen’s category Fuz of fuzzy
topological spaces (mee the definition (1.3) below).

(1.1) Remark. Our preference of R. Lowen’s definition on

the whole was explained in {16] and [17]. However, all the re-
sults of this paper have obvious equivalents in the more general
category Fuz® of fuzzy topological spaces in the sense of C.
Chang (definition (1.3)° below). The most importent of these
equivalents are formulated explicitily and numerated with the sa-
me pumber but with an additional superseript "o". The proofs
of theorems in the case of Fuz® are ommited since they can be ob-
tained just by obvious and insignificant changes in the proofs
of the corresponding theorems for Fuz. Notice, however, that
both the versions are logically independent,

(1.2) Remark. The question whether the main results of this

paper can be transferred to the category of L-fuzzy topological
spaces ([6], see also 171,[5] e.a.) is more problematic. The au-
thor has only partial results in this direction and they are not
reflected in this paper.

(1.3) Definition [111,{12], A fuzzy topology on a set X is
a femily ¥ of its fuzzy subsets (i.e. T C Ix). satisfying the
following three axioms:

() 12 w,y e then@w AV € T;
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(2) if wmge T for ell ach, then V { mugtacriapwet
(3) T contains all constants c:X—> I.
A fuzzy topological space is & pair (X, ) where X is a set and
€ 1is a fuzzy topology on it.

(1.3)° Definition [3]). A fuzzy topology on a set X is a

femily 1 of its fuzzy subsets, satisfying the axioms (1) and
(2) of Definition (1.3) and the following axiom

(3)° @« contains the constants 0:X —> I and 1:X—>I.
A fuzzy topological space is & pair (X,t ) where X is e set and
< 1is & fuzzy topology on it.

(1.4) Definition (31,0111, Let (X,v) and (Y, &) be fuzzy
topological spaces (either in the sense of R. Lowen or in the
sense of C,L, Chang). A mapping £:X —> Y is called fuzzy conti-
mous 1f £~ (v ) € ¥ for all » € 6.

(1.5) Denotation. The category of fuzzy topological spa~-

ces in the sense of R. Lowen and fuzzy continuous mappings be-

tween them will be denoted Fuz.

(1.5)° Denotation. The category of fuzzy topological spa~
ces in the sense of C. Chang and fuzzy continuous mappings be-
tween them will be denoted Fuz®.

§ 2. Puzzy modification of a linearly ordered space. Ba~
sing on the fundamental idea of B, Hutton [7] we have defined

in {167 a construction which in e definite way associates with

every linearly ordered space X a fuzzy topological space F(X).

In this section we first reproduce the construction and then

following [16] state the theorems which establish some connec-

tions between the properties of the space X and the fuzzy %to-

pological properties of its fuzzy modification F(X). All the
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proofs are omitted since they oan be found in [16],

(2.1) The congtruction of F(X) [16). Let Z(X) denote the
set of all decreasing functions z:X —> I such that syp z(x) = 1
and i"z‘lf. z(X) = 0. For every x€X let

inf z(%), if x4min X
%2(x7) = { bex and
2(x) =1, it x = min X

2™ .{:3 z(t), if x$max X

z(x) = 0, if x = max X,
Por z,5'e Z(X) we write s~ 5  1ff z(x") = z'(x") gnd z(x") =
= 2°(x%) for every xcX. Obviously, ~» is an equivalence relas-
tion on Z(X). Let [zl = $3°¢ 2(X):z~2 '} and let F(X) denote
the set of all equivalence classes [z], i.e. P(X) = Z(x)/~

Por all a,bcX let fuzzy sets A, and ®a of F(X) be defined
by the equalities A, [zl =1 - £(d7), and @ (2] = s(at). 1t
¢&I, then we umse the same symbol for the conatant function

e1?(X) —» I, Let & be the fuzzy topology on F(X) having o =
= {Ayps Pat8sbeXIUL f{otoe I} as & subbase, The fuzzy topolo-
gloal space (F(X),n ) will be usually written just as P(X) and
oalled the fuzzy modification of the linearly ordered space X.

(2.1)° The gonstruction of P°(X). In the category Fuz®,
the fuzzy modification F°(X) of a lineerly ordered space X is

defined just as in (2.,1) with the only difference that the fusnzy
topology < ® on P(X) is defined by the subbase or° =
» $A P8P EXY (instead of ).

(2.2) Examples [16]. The fuzzy spaces F(R), P(I) and
?(]0,1() are fuszy homeomorphic with the stratified fuzzy resl
line {14], the stratified furzy closed unit intervel [14]1 and
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the stratified fuzzy open unit interval [14] respectively.

(2.2)° Examples. The fuzzy epaces P°(R), FO(I) ana
r°(jo,1[) are fuzzy homeomorphic with the fuzzy real line [5],
the fuzzy closed unit interval [ 7] and the fuzzy open unit in-
terval [7] respectively.

R. Lowen has defined and widely used the embedding functor
 :1Top — FPuz (see e.8. [12]). For a topological aspace X the
fuzzy topological space @ (X) can be in a natural way conasider-

ed as a fuzzy copy of X.

(2.3) Theorem (161, If X is a linearly ordered spacae,
then ¢o(X) 1s fuzzy homeomorphic to a (proper) fuzzy subspace
of F(X).

Since the category Top of topological spaces and continuous
mappings may be in sn obvious way considered as a subcategory of
l‘uz°, the corresponding equivalent of the previous theorem is

even more lucid:

(2.3)° Theorem. If X is a linearly ordered space, then X

ie fuzzy homeomorphic to a (proper) fuzzy subspace of FO(X).

(2.4) Theorem [16], If X is an infinite linearly ordered
space, then its weight is equal to the fuzzy weight of F(X),

(The fuzzy weight of a fuzzy topological space is natural-
ly defined as the minimal ocardinality of the bases of its fuzzy
topology 116]1.)

We shall not state explioitly the equivalent of (2.4) as
well as the equivalents of (2.5) - (2.9) below for the category
ruz°"becmuo one oan obtein them just by replacing F(X) with
r°(x).
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(2.5) Corollary (cf., [13]). The fuzzy spaces F(R), F(I)
and F(10,1[) have countable fuzzy weights.

(2.6) Theorem [16]. If a linearly ordered space X is boun-
ded, then P(X) is fuzzy oc~-compact for all «« € [ 0,1[. Conver-
sely; 1f F(X) 1s fuzzy o¢ -compact for some «C € [ 0,1[, then
X is bounded.

(Por the definition of fuzzy o¢ -compactness see [5] or
£121.)

(2.7) Corollary (cf. [51,[13)). F(I) is fuzzy o< -compact
for all owe [ 0,1[; P(R) and F(]0,1[) are not fuzzy o -compact

for any o« e [0,1[.

(2.8) Theorem [16]. If X is an unbounded linearly ordered
space, then the fuzzy Lindelof number of F(X) is equal to the
cofinal character of X (see § 1.4).

(The fuzzy Lindelof number of a fuzzy space Y is defined
as the minimal cardinal k such that for every ~ & [0,1[ every
o ~shading [5] has an of -subshading of cardinality less or
equal to k.)

(2.9) Theorem [16]. The following conditions are equiva-

lent for & linearly ordered space X:

(a) X bas & Gy -diagonal;

(b) X is stratifiable;

(¢) X is metrizable;

(d) F(X) is fuzzy stratifiable.

(The equivalence of the first three conditions is a well-~
known fact of general topology (see e.g. [4) and [11.) For the
definition of a topological a;:ratifiable space see [2] and (1]
fuzzy stratifiable spaces were introduced and studied in [17],
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[18].. The author is sorry about the confusing consonance of the
two completely differemt notions of a fuzzy stratifiable space
and a stratified fuzzy topological space ([19],[13]) e.a.).)

§ 3. Puzzy modification of an increasing continuous mapping
(3.1) Let (X,<) and (Y,<) be linearly ordered spaces and
£:X —> Y an increasing continuous mapping. FPor every z ¢ Z(X)
let £¥(z) = u:Y—>1I be defined as follows:

inf 2(x), if Je,y1n 2(X)+ @
u(y) = {F(x)én;.

1, if Je ,y1Nn 2(X) = 4.

(3.2) Proposition. Let 24,2,& Z(X) and u; = t*(z,),
u, = tx (2,)e If z4~g, in Z(X), then uy~ru, in Z(Y).

Proof. Let y,<¢ Y and let ucz(Y). To show that u,(y;) =
= uz(y;) consider the following possible cases:

a) f"]*-— ,yof#-- # and there is no maximal element in

-1 -
7 Je— ,y,[. Then u(yy) = %2:% u(y) = int

int z(x) =
y<y f(0€y

oy, D ey, W

b) There exists x; = max £~ ] «— Lo Let yy = £(x)) <
< Yo Then either x4 is the maximal element in X and hence
u(yy) = u(yy) = z(xq) = 0, or there exists x,€X, X< X,, such
that there is a jump [4] between x; and x, (otherwise f cennot
be continuous) and therefore u(y;) = u(y,y) = z(xy) = z(xa).

¢) 1-134—— ,yol = @, Then u(y) = 1 for every y< y, and
hence u(y;) = 1.

Thus in every case we conclude that u, (y;) - uz(y;).

It remains to show that u, (y;) = ua(y;). Consider the next
possible cases:

a) f”]yo. —» [ # and there is no minimal element in this

et. Then u( +) - - ' - -
y 70 ';‘:gto u(y) 9 A':"qu %\‘I’Z(X) «C'g(l),w‘.,Z(X)
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= mp z(x*).
£(x)> M

b) There is xy = min ¢~ ] Yoo —> [ . Let ¥, = £(z{). Then
either x, is the minimal element of X and hence u(yy) = u(y,) =
= z(xy) = 1, or there exists x,€ X, X,< x4 such that there is
a jump between x, and x4 (otherwise £ cannot be continuous) and

+ - - ) =
therefore u(yg) T uy %o %&&“z(x) %ﬂhﬂx
- z(x.‘) = z(xe).

c) =1 1V >0 = @#. Then obviously u(y) = 1 for every
¥>7Y, and hence u(y:) =1,
Thus again in every case u, (y;) = ua(y;).

This proposition ensures the correctness of the following
definition:

(3.3) Definition. Let £:X -—> Y be an increasing continuous
mepping. The squality £Lz] = {u)l where [z]1CF(X), u = £%¥(z)
and [ul ¢ P(Y) defines a mapping ?:F(X)—r!‘(!).

The mapping £ will be called a fuzzy modifioation of the
mapping f£.

(3.4) Theorem. The mapping ?:r(x)-—» P(Y) is fuzzy continu-
ous.

Proof. Let x = {7, p.1e,b€Xju icicel} be the stan-
dard subbase of the topology on F(X) (see (2.1)), and let ana-
logously 1= XL..Bd:o,de‘I}u {o:0 eI} be the standard subbase
of the topology on F(Y). (Here the fuzzy sets DLg,Rg:®(Y) - I
are defined by the equalities L [ul =1 - u(e”™), Ry[ul] = u(a*)
for all {uleF(Y).) Since the preimage of every constant
c1?(Y) —» I under ¥ 1is obviously the same constent ¢ = (o)
1F(X) — I, to show the continuity of f 1% suffices to check
that the preimage of ell L, and Ry are open in (X).

Teke some L, and let [zle F(X). Then Fak (L) L2] =
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- I..'f [8) = L, Cu) = 1 = u(e”) where u = £%(z). Consider the
following possible cases:

a) 13 «—, e[+ ¢ and there is no maximal element in

f'1]<—- sel. Then u(e”) = inf in? 2(x) = inf 2(x) =
Y<e tha<y fix<e

= inf z(x~). Hence ?‘1(]‘; Ylzle1l e A z(x") =
fix)<e e fixi<e

= ‘&(“'(1 - z(x7)) = ;(x\ﬁeax[zl.

b) x; = mex £”' J«— ,e[. Then the contimuity of £ implies
that either x; is the maximal element of X and hence u(e™) =
= z(x1) =0, i.e, ?'RL.) [2] = 1, or there exists X6 X, X< X,
such that there is & jump between x, and x,. In this case u(e )= ‘

= 2(xy) = z(xg) and therefore £~ (I..) [2) =1 = z(x.'z') - ﬁxa[z].

e) £ e— s = #. Then u(y) = 1 for every y<e, hence
u(e™) = 1 and ?'1(L.) = 0,

Thus in every case the preimage e (I..) is an open fuzzy
subset of F(X).

Now take some Ry, Then f™'(R,) [2] = R,f (2] = RyLu] =
= u(a*), where u = £* (z). Consider the following possible ca-
ses:

1) 27114, —» [+ ¢ and there is no minimel element in it,

+
Then u(d”) = :’;pd. u(y) = 5u>pd %‘MZ(I) = ;'(‘:S,d, z(x) =

+ 1
£§>dz(x ), and hence fal (Rd) ‘%d‘ ®xe

2) x, =min £7'3d,—+[ . Then the contimuity of f implies
thet either x; = min X and hence u(d*) = z(xy) =1, 1,0
?‘1 (Rd) = 1, or there is X,< x; such that there is & jump bet-
ween x, and xy. In this case u(d*) = z(xq) = z(x;), i.e.
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3) f"]d, —>[ = @, Then u(y) = 0 for every y> d and hence
u(a*) = 0. Therefore £~ (Ry) = 0.

Thus in every case the preimage ok (Ry) is fuzzy open in X.
This completes the proof of the theorem.

(3.3)° Since the fuzzy modifications F(X) and PO°(X) (see
(2.1)°) coincide as sets, the mapping f defined in (3.3) may be
considered also as a mapping £:7°(x) — FO(Y).

(3.4)° Theorem. The mapping £:F°(X)— P°(Y) is fuzzy con-

tinuous,

(3.5) Proposition. If f:X—> Y is en increasing homeomor-
phism, then :’.‘:F(x)—-r F(Y) is a fuzzy homeomorphism,

Proof. Let £71:¥ — X be the inverse of f. We shall first
show that (£-1)* o £*(2) = z for every ze Z(X) and
Lx (1’1)* (u) = u for every uc Z(Y). This will precisely mean
that (£~1)* ;2(¥)—> 2(X) is the inverse of £* :2(X)— z(¥).

Since £ is a bijection, the equality £* (z) = u means in
this case that z(x) = u(y) for x = £(y). Hence (=¥ £% (z)(x) =
= z(x) for every ze€ Z(X) and all x¢ X3 thus, (1"1)* £¥(2) = z.
The equality £* (f’1 )* (u) = u for every uc Z(Y) can be proved
similarly,

Since (!'1)" is the inverse of £* , it is easy to conclude
now that (£1):P(Y) — F(X) is the inverse of £:F(X)—> P(Y).
Moreover, since the mappings f and =1
rem (3.4) it follows that £ enda 2

are continuous from Theo-
are fuzzy continuous. Hence

Tisa fuzzy homeomorphism.

(3.5)° Proposition. If f:X—» Y is an inoreaging homeo-
morphism, then :P°(X)—» P°(Y) is & fuzzy homeomorphism,
(3.6) Remark. One may consider that it is more natural to
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define £* (z) = u:¥Y—> I in the following way (which is obvi-
ously not equivalent with (3.1)):

inf 2(x), 1f Je— ,y[ N 2(X) 9
u(,) - { f(ﬂ<4‘-

1 y 12 Je— ,yln 2(X) = &,
The analog of Proposition (3.2) holds for £* defined in such a
way, too, and, moreover, the assumption of continuity of £ is
superfluous in this cese. However, on the other hand, the ana~
log of Theorem (3.4) does not hold for the oorresponding £ even

if £ is continuous. This is one of the reasons for our choice

of Definition (3.1) as the basic one.

$ 4. Functor P.

Let Ord be the category of linearly order-
ed topological spaces and increasing continuous mappings. In

this section we define basing on the results of the two previous
sections an embedding functor F:Ord —» FPuz (see 1.5)). Inciden-
tally we consider also an embedding functor F°:0rd—> Fuz® (see
(1.5°) which is the natural analog of P for the case of Chang ' s
definition of fuzzy topological spaces.

(4.1) Definition of F:0rd —» Fuz, PFor every object X of
Ord let P(X) be the fuzzy modification of X (see (2.1)) and for
every morphism £:X—»Y in Ord let P(£) = fiF(X)—> F(Y) (see
(3.3)).

(4.2) Theorem.
the category Mus.

P is a functor from the category Ord into

Proof: follows immediately from the next two lemmas.

(4.3) Lemma.

Let (X,<), (¥,<) eand (T,<) be linearly
ordered spaces and £:X—>» Y, g:Y —> T increasing continuous
mappings. Then F(go £) = P(g)o P(£).
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Proof. Dencte h = gof and let zeF(X), u = £*(3)¢ 2(Y),
v=g*¥(u)eZ(T), w=h¥*(z)e 2(T). To prove the lemma it suffi-
ces to show that v = w, From the definition (3.1) it follows
that for every teT

inf 2(x), 1£Je— , t1n h(X)aupd

w(t) = hiasat
’ 12 ] & ’ tJﬂ h(X) =g Y
inf u(y), ifle—, t1n g(Y¥) 4
v(t) = { ¥et
o 12)e—, tIngly) « 9@ .

Moreover, for every ye Y

in? , it , 2(x
{ By z(x) le—, yl n 2(X) 40
1

() =
hd 11, 31N 2(X) = 0 .

Fix teT. The two possible cases are:
a) Je—, t1Nh(X)w@ Then w(t) = 1, IfJe—, t1n g(Y) =
= @, then v(t) = 1, too. Otherwige ]J<— ,t1 N g(Y)4 ¢ and hence
Je— ,¥1n 2(X) = ¢ for every ye 3‘1]4-- »%], and therefore
also v(t) = inf u(y) = 1,
Fipst

b)) Je— ,t1N W(X)+$@. In this case w(t) = .@ifé)ét z(x), On

the other hand, in this case le— ,y1 N £(X)4 @ for some

-1 :
t)s Theref t) = inf = inf inf z(x)=
y6 &8 le— ,t). Therefore v(t) «t u(y) ot i )

- %\ﬁt‘(xh Hence in every case v(t) = w(t).

(4.4) Lemma, If 1:X —>X is the identical mapping, thun
P(1)1P(X) ~» P(Y) ir also the identity.
Proof: is obvious.

(4.5) Proposition. If £4,f,:X—» Y are two increasing
contimious mappings and fq4 f,, then ?14- ?2'
Proof. Take x,a& X such that t1(x°) =T :z(xo) =y, sud
assume for definiteness that y < y,. Let ze Z(X) be defined by
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the equality

1, it x<x,
z2(x) = {
0, 1t xZX) ,

and let uy = £5(z), u, = £ (z). It is obvious that u,(y;) <
£u,(y)% g(x,) = O while u,(y3) = #gvz u(y) =
- - A
- }‘2‘,"’ %)‘q‘(x) = 1. Thus u,(y;)+ u,(y;) and hence ?14;22.
Theorem (4.2) and Proposition (4.5) immediately imply the
main result of this section:

(4.6) Corollary, P:Ord —> Puz is an embedding functor.

(4.1)° Definition of P°:0rd — Fus®. Por every object X
of Ord let P°(X) be defined as in (2.1)° and for every morphism
£:X —» Y in Ord let ¥°(2) = £:7°(X) — 2°(Y) (see (3.3)°).

(4.6)° Theorem. *° is an embedding funotor from the oate-
gory Ord into the oategory Fuz®.

§ 5. Puszy modification of & decreasing continuous mepping,
Since the composition of two decreasing mappings is not decreas-

ing except for some special cases, it is impossible to develop
the previous theory to the full extent for the case of deoreas-
ing mappings. However, there are some ways in which one can
partially extend the study of tiu fuzzy modification of a mono-
tone ocontimnuous mapping to the case of a decreasing mapping.
One of tl;uo ways is sketched below.

Let (X,<) and (¥,<) be two linearly ordered spaces and
let <’ be the inverse order on ¥, i.e. yy<'y, iff y,<¥y.
The pair (¥, <’) will be usually abbreviated to Y',

It is obvious that ue Z(Y) iff 1 - uez(Y’).

(5.1) Lemma. Let u,,u,€2(Y). Then wy~u, in z(Y) 1ff
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1=~ - u, in z(x").

2roof is obvious.
This lemma ensures the correctness of the following defi-
nition:

(5.2) Definition. The equality ¢ [ ul = [1 - u) determines
a mepping ¢ 1Y) — P(Y).

(5.3) Lemma. The mapping @~ :P(Y) —» P(Y’) defined by
the equality 9'1. [ul = [1 -~ u) 18 the inverse of ¢ . Speoci-
tically, ¢ 1F(Y)— P(Y) is a bijection.

Proof is obvious.

(5.4) Proposition. @ s¥(Y')—> F(Y) is a fuzzy homeomor-
phism,

Proof, Show directly that ¢ and ¢~

are fuzzy oonti-
nuous and apply the previous lemma,

A decreasing continuous mepping £:X —- Y can be obviously
considered as an increasing continuous mapping £ :X— Y  with
the same values. Applying (3.3) we obtain a fuzzy contimuous
mapping £ :F(X) — F(Y).

(5.5) Definition. Let f£:X-—»> Y be a decreasing con tinuous
mapping, Then 1ts fuzzy modification £:F(X) —> P(Y) is defined
by the equality £ = gof.

(5.6) Theorem, If £:X-—> Y 1s a decreasing continuous map-
ping, then its fuzsy modification £:7(X) — F(Y) is fuzzy oon=-

tinuous,

Proof follows immediately from (3.4) and (5.4).

(5.7) Proposition. If £:X-—> Y is a decreasing homeomor-
phism, then ?:r(x)-——» F(Y) is a fuzzy homeomorphism,
Broof. Use (3.5) and (5.4).
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It is quite obvious how to reformulate the results of thig

section for the case of the category Puz®,

§ 6. Fuzzy modification of a linearly ordered connected
space. Taking as a basis the fundamental ideas of B. Hutton

[71, A. Klein [10) has generalized the comstruction of fuzzy
unit interval in & completely different way than ours, For e~
very connected topological space X he has defined a fuzzy topo-
logical space which we shall denote K°(X) and which has some
important properties (see Definition (6.9)° and Remark (6.15)
below). Specifically, the spaces K°(I), K°(30,1() and XK°(R)
are fuzzy homeomorphic with the fuzzy closed unit interval, the
fuzzy open unit interval and the fuzzy real line respectively
(cf. (2.2)°). The space X is contained as & fuzzy subspace in
K°(X) (cf. (2.3)°).

If both constructions K°(X) and F°(X) ere suitable and
natural generslizations of Hutton’'s fuzzy unit interval, one
could hope that for a linearly ordered connected space X the
fuzzy spaces K°(X) end F°(X) are to be isomorphic. The aim of
this section is to show that this is really the case, We be-
gin with a brief outline of the construction from [10] but in
a form appropriately modified for the case when the space is
both linearly ordered and connected.

Thus, let X be a linearly ordered connected space and let
M(X) denote the set of all monotone mappings (both increasi ng
and decreasing) z:X—> I such that sup 2(x) = 1 and inf z(x)=

XEX x6 X

= 0. (Specifically, Z(X)c M(X).)
The following two lemmas can be easily proved.
(6.1) Lemma (cf. [10], Proposition 1.1)¢ z:X—> I is
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monotone iff for all « , e I the set 2 L, 3] is comnec-
ted.

(6.2) Lemma., If € 10,1 and £~'(x )@, then X\ £~ (x)
is disconneoted,

(6.3) Definition (cf. [10], def. 1.3). PFor z &M(X) and
o€ [0,1[ let

1, lAsT
B‘(Z)-{ .

z'1[o,d,]r\ PR | ~x,l,1f 0z 5,

Yo -l , i w <3

(6.4) Definition. For z,,z,€ M(X) let z, = z, 1iff H (z4)=

= B (z,) for every « € LO,1[.
It is obvious that =~ 1is an equivalence relation on M(X).
If z€ M(X) ket (z) = §2 722 € M(X), 2~ z}.

(6.5) Definition. Let K(X) demote the set of all = -equi-
valence classes, i.e. K(X) = M(X)/, .

Assune that « 2 -;-. Since X is connected, there exist a,be X

such that s~ [0,x] = [a, [ and s~ - ,1] = Je— ,bl

(see [4]). Moreover, a<¢b in this case (otherwise for yelb,al
the inequality 1 = « < %(y) < ¢ would imply o¢ > ). Therefo-
re H (z) =[a,b).

Applying similar reasonings, one can easily show that in
cage < % , « 4O there exist 8,bcX, a<b such that K (z) =
= [{a,bl, but Ko(s) has one of the following four forma: [a,b],
{a, [ , Je—,b) or X. Since X is connected, applying L4), pp.
281, 457, we get from the above the next

(6.6) Lemme (of. {9), Lemma 3.5). If o« % 0, then H (2)
is ocompact.
It < % and o¢ *= 0, then the monotoness of z allows %o
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conclude that Ja,b[ ¢ el s 1 = [c[a,b]l. Moreover, sin-
ce X 1s connected, 1a,bl = Int 2”1 s 1 =~ [ . Similar in-
oclusions may be written also for Bo(z). For example, if Ho(z)-
= [a,—[ then Jsa,—[c 1w s 1 =xlcla,—[ and

Int 571 s 1 = =]lec ,— [ . Hence we derive the fol-

lowing two statements.

(6.7) Lemma, If ot < %, then either

E"(z) - Int s~ ) s 1 -l or Boc(z) is a singleton,

(6.8) Lemma., If ¢ < %and z,.zacu(i) then H (z,) =
= H (s,) implies that Int 57 16 , 1 = o[ = Int 23 Jec, ol .

From the previous three lemmas one notices that the set
K(X) ocoincides with the set X(I) defined by A. Klein in L101.
Let *° be the fuzzy topology on K(X) = X(I) defined exactly as
in [10],

(6.9)° Demotation. The fuzzy topological space (K(X), ©°)

will be denoted K°(X).
Our next goal is to establish a natural fuzzy homeomorphism

between P°(X) and K°(X).

(6.10) Lemma, If z€M(X), then gz =1 - g,
Proof is easy (of. also [10), Lemma 3.3).

(6.11) Corollary. Bvery olass (z)€ K(X) contains a decre-
asing member s € (%).

(6.12) Lemme. Let 3,3, €%(X). Then sy~ 3z, 1ff H (5;) =
- q‘(zz) for all < € [0,1[.

(6.13) Definition. Define the mapping ¢ :P(X) —» K(X)
by the equality ¢ [ sl = (z).

Lemme (6.12), Definition (6.4) and Corollary (6.11) enmure
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that the mapping @ is one-to-one and onto.

Reagonings quite similar to the ones used in the proof of
L10], Theorem 3.4, show thet the mapping @ :F°(X) — K°(X) is
fuzzy ocontinuous and fuzzy open. Now we can sum up the obtained
information in the following

(6.14)° Theorem. Let X be a linearly ordered connected

space. Then the mapping ¢ :P°(X) — K°(X) defined by the equa-
ity o lz]l = (z) is & fuzzy homeomorphism,

(6.15) Remark, In this section as everywhex"e in the paper

the superscript "o" is used to mark those statements and const-
ructions which deal with the category Puz® (in contrast with
the category Fuz (see (1.5)°, (1.5))). Since the originel ocon-
struction of A. Klein wag fulfilled just for Fuz°, the exposi-~
tion of this section is presented in the form of Puz°, o0,
However, quite obvious changes in the text allow to obtain the
corresponding analogs for the category Fuz.

Namely, let = be the weskest fuzzy topology on K(X) which

contains 7 ° and all constants.

(6.9) Denotation. The fuzzy topologicel space (K(X),~r)
will be denoted just K(X). .

Since the preimege of a constant fuzzy set is the same
constant fuzzy set and since preimages preserve suprema and in-
tima of fuzzy sets, from (6.14)° we can now obtain the follow-
ing

(6,14) Theorem. Let X be a linearly ordered connected
space. Then the mapping @ :F(X) — K(X) defined by the equali-
ty @ [2) = (2) is a fuzzy homeomorphism.
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