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COMMENTATIONES MATHEMATICAE UNIVERS.TATIS CAROLINAE 
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THE FARKAS LEMMA OF GLOVER 
Charles SWARTZ 

Abstract: We use standard functional analys is techniques 
to e s tab l i sh a resu l t of Glover which he employs to obtain a non­
l inear version of the c l a s s i c a l Parkas Lemma. 

Key words; Parkas Lemma, convex functions, subgradients, 
Krein-femulian Theorem. 

Class i f i cat ion: 90C25 

In t h i s brief note we present a proof of a theorem which 

has been used in optimization to es tab l i sh a nonlinear version of 

the Parkas Lemma ( 1 1 ] , Lemma 3) and to es tab l i sh Kuhn-Tuoker Theo­

rems (t3l 2.1,141 2 . 3 , 2 .4)* The proof given by Glover i n f1] uses 

machinery from set-valued mappings; we present a proof below which 

only employs standard topics from functional ana lys i s , namely,the 

Krein-Smulian Theorem* 

Let X and Y be loca l l y convex spaces with S a closed con­

vex cone i n Y. Let g*X —-* Y be pos i t ive homogeneous, S-convex 

and such that s'o g - s 'g i s lower semi-continuous for each 

s V S* , where S* «• -{a**. Y*s ( s ' , s ) z O V s c S$ i s the dual cone of 

S. As usual we write a f (0) for the subgradient of a convex func­

t ion ftX - * © at 0 (£71). Glover shows that i f A - U 3 ( s g ) ( 0 ) , 

then - (g ( - S ) ) * « A, where the closure i s i n the weak* topology 

of Y ' (£11 Lemma 1 ) , and then uses t h i s resul t to e s tab l i sh a 
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general nonlinear Farkas Lemma CC13 Theorem 1). Glover's Farkas 

Lemma contains the linear Farkas Lemmas of Zalinescu (162) and 

Schirotzek ([5]). In order to obtain a sharper form of the Far­

kas Lemma, Glover gives sufficient conditions which guarantee 

that the set A above is weak* closed (t1] Lewna 3). We state and 

prove a version of this result which uses only standard functi­

onal analysis techniques whereas Glover s proof uses results of 

Robinson on set-valued mappings. Our proof also covers the case 

when X is only metrizable and not necessarily a normed space, 

but we must assume that the range space is barrelled although 

not necessarily normed. 

Theorem 1. Let X be complete, metrizable and let Y be bar­

relled and suppose that g(X) + S « Y. Then - (g~1(-S))* * A so 

in particular A is weak* closed; 

Proof; By Lemma 1 of tU it suffices to show A is weak* 

closed and by the Krein-Smulian Theorem (C2], 3.t0.2) it suffi­

ces to show that An U° is weak* closed for each closed, absolu­

tely convex neighborhood of 0, U, in X. Let (xy ) be a net in 

AnU° such that (x^ ) is weak* convergent to x'. It suffices to 

show that x'c AnU°. Let p be the Minkowski functional of U. 

Choose sjc S* such that x' e 3(s^ g)(0) and let y« Y. By hy­

pothesis, y • g(x) + s for some xcX, seS. Then 

0> <Sy »y> - <s^ ,g(x)> + <s^ ,s>£<Xy ,x>*-p(x). 

Also -y • g(x) + s for some xc X, s c S so <s^ ,-y> • <*^ ,g(5?)>+ 

+ <s^ ,s>E<x^ ,I>r -p(x) and 

(2) <s^ ,yHp(x). 

Thus, if r » max ?p(x) ,p(x*H , (1) and (2) imply that 

K a J ty>l £ r. Hence, -tsyl is weak* bounded and, therefore, 

relatively weak* compact by the barrelledness (123, 3.6.2). 
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Thus, i s \ has a subnet, which we continue to denote by i s ' } f 

which i s weak*- convergent to some y ' e Y% Since < s ' , s > 2 0 for 

s c S, < y ' f s > e O so that y'e S* • For x e X , we have 

<y'tg(x)> •» lim <o^ fg(x)> Z lira < x ' fx> -= <x ' , x> so x ' c 

e. &(y 'g ) (0 ) and x ' e AnU° since U° i s weak*4 c losed . 

In Glover's version he assumes that X i s a Banach space and 

X i s a normed space, but there i s no completeness assumption on 

Y. 

If f :X —> IR i s lower serai continuous and sublinear and 

x'c x ' f then under the assumptions of Theorem 1 Glover's Farkas 

Lemma ( U 3 , Theorem 1) i s : x ' e a f ( 0 ) + A i f f - g ( x ) € S imp l ies 

f (x) 2*<x'fx>. For the case when f and g are l inear , t h i s y i e l d s 

the Parkas Lemmas of Zalinescu (C63) and Schirotzek ( [53 ) . 
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