Commentationes Mathematicae Universitatis Caroline

Kateřina Trlifajová; Per Vopěnka
 Utility theory in the alternative set theory

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 4, 699--711

Persistent URL: http://dml.cz/dmlcz/106408

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSTTATIS CAROLINAE

26,4 (1985)

UTILITY THEORY IN THE ALTERNATIVE SET THEORY K. TRLIFAJOVA, P. VOPENKA

Abstract. Theory of utility in the alternative set theory enables us to comprehend more delicately a preference relation, especially its infinitesimal differences. We prove that there is a valuation for any class with a preference relation .New, nontraditional, but natural questions arise and we solve some of them.

Key words: Alternative set theory, utility theory, preference relation, valuation.

Classification: 03E70, 90A06, 90A12.

Introduction. Utility theory was formulated by John von Neumann and Oscar Morgenstern in 1943. In the present paper we develop it from the point of view of the alternative set theory. The both theories are compared in § 4 . We modify the approach of von Neumann and Morgenstern in the following way.

Let S be a class of objects. Let us imagine a man before whom we put various elements of this class and he chooses among them. When we put before him two elements of S he is able to choose one of the two.

Let us extend this picture. Let him choose not only between objects, but also between their combinations with stated probabilities. A combination of n elements u_{1}, \ldots, u_{n} ($n \in F N$) of S with probabilities $\alpha_{1}, \ldots, \alpha_{n}\left(\alpha_{i} \in \operatorname{FRN}, \alpha_{i} \geq 0, \sum \alpha_{i}=1\right)$ represents a game in which α_{1} is a probability of gaining u_{1}, α_{2} is a probability of gaining u_{2}, etc. We denote this game by
$\alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n}$ or ${ }_{i n} \sum_{i=1}^{m} \alpha_{i} u_{i}$. Thus when we put before the man two combinations $\sum_{i=1}^{m} \alpha_{i} u_{i}, \quad \sum_{j=1}^{m} \beta_{j} v_{j}$, he either prefers $\Sigma \alpha_{i} u_{i}$ to $\Sigma \beta_{j} v_{j}\left(\Sigma \alpha_{i} u_{i} \succ \Sigma \beta_{j} v_{j}\right)$ or vice versa $\left.\left(\Sigma \beta_{j} v_{j}\right\rangle \Sigma \alpha_{i} u_{i}\right)$ or he considers them to be indifferent $\left(\Sigma \alpha_{i} u_{i} \sim \Sigma \beta_{j} v_{j}\right)$.

We use notions defined in [V]. N denotes the class of natural numbers, $Z N$ of integers, $R N$ of rational numbers. $F N$ is the class of finite natural numbers, $F R N$ of finite rational numbers.
§ 1. Class S and a Preference Relation. In what follows we shall denote the class of objects by S .

Definition. Let \propto be an element of FRN such that $0 \leq \propto \leq 1$. Then we call \propto a probability coefficient.

Definition.Let $S_{F R N}$ be a linear space with the basis S over FRN. Let us denote $S[1] \leq S_{F R N}$ the class of all convex combinations of elements of S, i.e.
$S[1]=\left\{\sum_{i=1}^{m} \alpha_{i} u_{i} ;(\forall i)(1 \leq i \leq n)\left(u_{i} \in S \& \alpha_{i}\right.\right.$ is a probability coefficient \& $\left.\sum_{i=1}^{n} \alpha_{i}=1\right\}$.

S[1] is a class of games described in the introduction. We write $\sum \alpha_{i} u_{i}$ instead of $\sum_{i=1}^{m} \alpha_{i} u_{i}$ for some $n G F N$ and letters u, v, w, u_{i}, \ldots for elements of S and a, b, c, a_{i}, \ldots for elements of S[1] in the short-hand notation.

Definition. ℓ is a preference relation on 5 , provided $\zeta \subseteq S[1] \times S[1]$ and it holds: if a, b, c are elements of $S[1], \propto$ being a probability coefficient, then (P1) $\neg(a \subset a)$,
(P2) $(a>b \& b \subset c) \Rightarrow a \not c c$,
$(P 3)(\neg(a \succ b) \& \neg(b \curlyvee c)) \Rightarrow \neg(a \succ c)$,
(P4) $a \succ b \equiv \alpha a+(1-\alpha) c \nmid \alpha b+(1-\alpha) c$.

In what follows let S always be a class of objects with a preference relation \succ.

Theorem 1.1. Let a, b, c, d be elements of $S[1], \propto$ be a probability coefficient. Then
$(a \succ b \& c \succ d) \Rightarrow \propto a+(1-\propto) c \not c \propto b+(1-\propto) d$ and $(\neg(a \succ b) \& \neg(c \not \subset d)) \Rightarrow \neg(\alpha a+(1-\alpha) c \succ \alpha b+(1-\alpha) d)$.

Remark. Assuming (P_{4}), these two assertions are equivalent to (P 2) and (P 3).

Definition. Let a, b be elements of $S[1]$. $a \sim b$ (a is indifferent to b) if $\neg(a \nvdash b) \& \neg(b \curvearrowright a)$.

Theorem 1.2. An indifference relation is an equivalence.
Proof. Reflexivity from (Pl), symmetry from the Definition, transitivity from (P3).

Theorem 1.3. Let us define a relation $\dot{\mathcal{F}}$ on S[1]/~ as follows: $[a] \Varangle[b]$ iff $a \succ b . \dot{\succ}$ is a preference relation on S / \sim and it is a strict linear ordering of S / \sim •

Proof. The definition of $\underset{\succ}{\boldsymbol{\gamma}}$ is correct. This follows from (P2) and (P3). The assertion $\Sigma \alpha_{i}\left[u_{i}\right]=\left[\Sigma \alpha_{i} u_{i}\right]$ follows from 1.1. Hence $(S / \sim)[1]=S[1] / \sim \subseteq S_{F R N} / \sim$. All axioms (P1) - (P4) hold. When u, v are elements of S such that $[u] \neq[v]$ then either $[u] y[v]$ or $[v]>[u]$.

By 1.3, from now on, we shall w.l.o.g. consider any preference relation to be also a strict linear ordering of S.
§ 2. The Definition and the Existence of a Valuation. One of our main goals is to find a valuation of S, i.e. an embedding of S into $R N$, which preserves a preference relation. In this way we find prices of objects of S.

The following definition proves to be useful.
Definition. $S[0]=\left\{\Sigma \alpha_{i} u_{i} ;(\forall i)\left(u_{i} \in S \& \alpha_{i} \in F R N\right)\right.$ \& $\left.\& \sum \alpha_{i}=0 \& \Sigma\left|\alpha_{i}\right|>0\right\}$.

Each element of $\mathrm{S}[0]$ can be evidently written in this form: $\Sigma \alpha_{i} u_{i}+\Sigma-\beta_{i} v_{i}$, where the relations $\Sigma \alpha_{i}=\Sigma \beta_{i}=$ $=\gamma>0$ and $\Sigma \frac{\alpha_{i}}{\gamma} u_{i} \in S[1]$ and $\Sigma \frac{\beta_{i}}{\gamma} v_{i} \in S[1]$ hold.

Definition. Let $\Sigma \alpha_{i} u_{i}+\Sigma-\beta_{i} v_{i}$ be an element of $\mathrm{S}[0]$, $\Sigma \alpha_{i}=\Sigma \beta_{i}=\gamma>0$. We define
$\Sigma \alpha_{i} u_{i}+\Sigma-\beta_{i} v_{i}>0$ if $\Sigma \frac{\alpha_{i}}{\gamma} u_{i} \succ \Sigma \frac{\beta_{i}}{\gamma} v_{i}$ and
$\Sigma \alpha_{i} u_{i}+\Sigma-\beta_{i} v_{i}<0$ if $\Sigma \frac{\alpha_{i}}{\gamma} u_{i} \prec \Sigma \frac{\beta_{i}}{\gamma} v_{i}$.
According to this definition we divided the class $\mathrm{S}[0]$ into two parts. In the first part, there are elements greater than or equal to zero, and in the second one, there are elements less than or equal to zero.

Theorem 2.1. Let a, b be elements of $S[01, ~ \vartheta$ being an element of FRN. Then
(1) $(a>0 \& b>0) \Rightarrow(a+b>0)$,
$(a<0 \& b<0) \Rightarrow(a+b<0)$.

$$
\begin{aligned}
& \vartheta>0 \Rightarrow(a>0 \equiv \vartheta \cdot a>0) \\
& \vartheta<0 \Rightarrow(a>0 \equiv \vartheta \cdot a<0) .
\end{aligned}
$$

Definition. Function F is a valuation of S if $\operatorname{dom}(F) \subseteq S$, $\operatorname{rng}(F) \subseteq R N$ and if $\Sigma \propto_{i} u_{i}$ is an element of $S[O]$ then

$$
\sum \alpha_{i} u_{i}>0 \equiv \sum \alpha_{i} F\left(u_{i}\right)>0 \text { and }
$$

$\Sigma \alpha_{i} u_{i}<0 \equiv \Sigma \alpha_{i} F\left(u_{i}\right)<0$.
A valuation F of S is a total valuation if $\operatorname{dom}(F)=S$.
Theorem 2.2. Let $\left\{F_{n}, n \in F N\right\}$ be a sequence of valuations, of S such that $F_{n} \subseteq F_{n+1}$ for all n. Then $F=U\left\{F_{n}, n \in F N\right\}$ is a function and it is a valuation.

Theorem 2.3. Let F be a valuation of S and let F be at most countable. Let w be an element of S which is not an element of $\operatorname{dom}(F)$. Then there is a $z \in R N$ such that $F \cup\{\langle w, z\rangle\}$ is a valuation.

Proof. Put $Y=\left\{\Sigma \alpha_{i} u_{i} ;(\forall i)\left(u_{i} \in \operatorname{dom}(F) \& \alpha_{i} \in R N\right) \&\right.$ $\left.\& \Sigma \propto_{i}=-1\right\}$. If $\Sigma \alpha_{i} u_{i}$ is an element of Y then $w+\Sigma \propto_{i} u_{i}$ is an element of $S[0]$. Put
$x_{\Sigma \alpha_{i} u_{i}}=\left\{x \in R N ; x \leqslant \Sigma-\alpha_{i} F\left(u_{i}\right)\right\}$, for $w+\Sigma \alpha_{i} u_{i} \leqslant 0$,
$X_{\Sigma \alpha_{i} u_{i}}=\left\{x \in R N ; x \geq \Sigma-\alpha_{i} F\left(u_{i}\right)\right\}$, for $w+\Sigma \propto_{i} u_{i} \geq 0$.
Evidently $X_{\Sigma \alpha_{i}} u_{i}$ are intervals on one side unbounded. There are at most countably many of them.

We claim that $Z=\cap\left\{X_{\Sigma \alpha_{i} u_{i}}, \quad \Sigma \alpha_{i} u_{i} \in Y\right\}$ is not empty.
Classes $X_{\Sigma \alpha_{i}} u_{i}$ are set-theoretically definable. Thus if Z is empty, the intersection of finitely many of these intervals is
empty. And by the definition of $X_{\Sigma \alpha_{i}} u_{i}$ we see that already the intersection of two of these intervals is empty. Say $\{x ; x \leqslant \Sigma$ -$\left.-\alpha_{i} F\left(u_{i}\right)\right\} \cap\left\{x ; x z \Sigma-\beta_{i} F\left(v_{i}\right)\right\}=\emptyset$. Hence $w+\Sigma \propto_{i} u_{i} \leqslant 0$ and $w+\Sigma \beta_{i} v_{i} \geq 0$. By the theorem 2.1, $-w-\Sigma \beta_{i} v_{i} \leqslant 0$ and $\Sigma \alpha_{i} u_{i}-\Sigma \beta_{i} v_{i} \leqslant 0$. Consequently
$\Sigma \alpha_{i} F\left(u_{i}\right)-\Sigma \beta_{i} F\left(v_{i}\right) \leqslant 0, \quad \Sigma-\beta_{i} F\left(v_{i}\right) \leqslant \Sigma-\alpha_{i} F\left(u_{i}\right)$ and it is a contradiction.

Now, we take $z \in Z$. The function $F \cup\{\langle w, z\rangle\}$ is the desired function.

Theorem 2.4. For any S, there is a total valuation of S.
Proof. If S is finite, we use several times the last theorem. Otherwise either $\left\{u_{n}, n \in F N\right\}$ or $\left\{u_{\infty}, \propto \in \Omega\right\}$ is an enumeration of S depending on S being countable or uncountable.

We choose $F\left(u_{1}\right) \in R N$ arbitrarily. By the induction, we prolongate the function by 2.2 and 2.3 ,

Theorem 2.5. Let k, q be elements of $R N$, k be a positive number, F is a valuation of S iff $k \cdot F+q$ is a valuation of S.

Theorem 2.6. For any class S there is a valuation G such that (1) rng(G) $\leq N$, (2) for $\sum \propto_{i} u_{i} \in S[1]$ holds $\sum \alpha_{i} G\left(u_{i}\right) \in N$.

Remark. The theorem has the following economic interpretation. For any class S there exists a monetary unit so small that both values of elements of S and all values of their combinations can be expressed in this unit.

Proof. Let F be any valuation of S. By [V], it holds: there is a Y and a set d such that. F " S is similar to Y and $Y £ d$. As $x £ R N$ is the set-formula and as $(\forall x)(x \& F " S \& F i n(x) \rightarrow x \& R N)$
we see that $d \in R N$. As F " S is similar to Y, there is an endomorphism H such that $H^{\prime \prime}\left(F^{\prime \prime} S\right)=Y$.

Each element of d can be written as $\frac{x}{y}$ where x and y are elements of N which are prime to each other. The set $\left\{y ;(\exists z \in d)\left(z=\frac{x}{y}\right)\right\}$ is linearly ordered by $<$. Thus it has the greatest element m. If $m \in N \backslash F N$, put $k=m!$, if $m \in F N$, put $k=n$!, where n is any element of $N \backslash F N$.

Each element $H \circ F(u)$ of d can now be written as $\frac{d_{u}}{k}$, where $d_{u} \in Z N$. If d contains also negative numbers, put $q=-\min \left\{d_{u}, \frac{d_{u}}{k} \in d\right\}$, otherwise put $q=0$.

We define the function G as follows. Let $u \in S$. Supposing $H \circ F(u)=\frac{d_{u}}{k}$ put $G(u)=d_{u}+q$.
$H \circ F$ is a valuation, as H is an endomorphism and as the property "to be a valuation" is set-theoretically definable with parameter $S . G$ is also a valuation, as $G=k \cdot(H \circ F)+q$.

It is easy to prove that $\Sigma \propto_{i} G\left(u_{i}\right) \in N$ for $\Sigma \alpha_{i} u_{i} \in S[1]$.
§ 3. Partial Preference Relation
Definition. Let γ be a preference relation on S. Let $F \subseteq \gamma$. Then F is called a partial preference relation on S.

Let $n \in F N$. A partial preference relation of degree n is defined by $\succ_{n}=\succ r\left\{<\sum_{i=1}^{h_{i}} \alpha_{i} u_{i} ; \sum_{i=1}^{m} \beta_{i} v_{i}\right\rangle \in S[1] \times S[1] ; 1 \leqslant m$, $1 \leqslant k, m+k \leqslant n\}$.

The structure of S with a preference relation can be rather rich and complicated. A question offers: does not a partial preference relation, say of a certain degree π, suffice for finding a total valuation? And if not, what is determined by a given partial preference.relation?

Definition. $\quad \Sigma(S)=\{\searrow, \succ$ is a preference relation on $S\}$.

Definition. Let \bar{F} be a partial preference relation on S.
(1) Let a, b be elements of S[11 A relation of a, b is determined by \bar{F} if $(\forall \succ \in \Sigma(S)(\forall \Varangle \in \Sigma(S))$

(2) Let $a=\Sigma \alpha_{i} u_{i}+\Sigma-\beta_{i} v_{i} \in 5[0], \Sigma \alpha_{i}=\Sigma \beta_{i}=$ $=\gamma>0$. The a is determined by $\overline{\mathcal{F}}$ if the relation of $\Sigma \frac{\alpha_{i}}{\gamma} u_{i}, \sum \frac{\beta_{i}}{\gamma} v_{i}$ is determined by \mp.
(3) \bar{x} determines a preference relation if every $a \in S[0]$ is determined by \mp.

Example 1. Let \propto be a probability coefficient. Let $S=$ $=\{u, w, v\}$. Define \succ_{2} by: $u \succ_{2} w \succ_{2} v$. Obviously \succ_{2} does not determine a relation of w and $\propto u+(1-\infty) v$.

Example 2. Let \propto be a probability coefficient. Let $S=\{u, v, w, z\}$. Define \succ_{3} by $u \succ_{3} v \succ_{3} w \succ_{3} z$; $v \succ_{3}\left(1-\frac{1}{n}\right) u+\frac{1}{n} w$ and $v \succ_{3}\left(1-\frac{1}{n}\right) u+\frac{1}{n} z$ and $\frac{1}{n} \dot{u}+\left(1-\frac{1}{n}\right) z \succ_{3} w$ and $\frac{1}{n} v+\left(1-\frac{1}{n}\right) z \succ_{3} w$ for every $n \in F N$.
\succ_{3} does not determine the relation of $\propto u+(1-\propto) z$, $\propto v+(1-\propto) w$, elements of S[1], i.e. γ_{3} does not determine $\propto u+(1-\propto) z-\propto v-(1-\alpha) w \in S[0]$.

We have proved that for each S with a preference relation \succ there is its valuation, i.e. its embedding F into $R N$, such that $\langle S[1]\rangle$,$\rangle is isomorphic to \langle(F " S)[1]\rangle$,$\rangle .$

Thus w.l.o.g. we consider S to be a subclass of RN.

Definition. Let x, y be elements of RN.
$x \stackrel{\mathscr{K}}{\mathcal{K}}(x$ is less in order than y) if
(1) $0 \leqslant x<y \& \frac{x}{y} \doteq 0$, or
(2) $x<y \leqslant 0 \& \frac{y}{x} \doteq 0$, or
(3) $x<0<y$.

Example 3. In the example 2, there is:

(2) $\propto u+(1-\infty) z=\propto v+(1-\infty) w$ iff $u-v=\frac{1-\alpha}{\alpha}(w-z)$,
$\alpha u+(1-\alpha) z>\alpha v+(1-\alpha) w$ iff $u-v>\frac{1-\alpha}{\alpha}(w-z)$.
Lemma 3.1. Let x, y be elemen ts of RN.
(1) $x \mathcal{R}^{\boldsymbol{\varepsilon}} \mathrm{y}$ implies $x<y$.
(2) $x \underline{\underline{Q}}_{1}$ iff $x \in \operatorname{BRN} \backslash \operatorname{Mon}(0)$.
(3) If $x \stackrel{\otimes}{=} 1$ then $x \cdot y \stackrel{\otimes}{=} y$.
(4) If the both x and y are positive then $x+y \xlongequal{\underline{\vartheta}} \max \{x, y\}$.
系 $_{\max }\left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\}$ for all $\Sigma \propto_{i} u_{i} \in S[0]$.

Proof. By 3.1, $\left|\Sigma \propto_{i} u_{i}\right| \leq \Sigma\left|\propto_{i} u_{i}\right| \leq \max \left\{\left|\propto_{1} u_{1}\right|, \ldots\right.$
$\left.\ldots,\left|\alpha_{n} u_{n}\right|\right\} \cong \max \left\{\left|u_{1}\right|, \ldots,\left|u_{n}\right|\right\}$.
Lemma 3.3. Let X be a countable subclass of positive rational numbers. Then there is a positive rational number d such that $(\forall x \in X)(d \leq x)$.

Proof. If X has a minimal element m, put $d=m$. Otherwise, put $H=\left\{\propto \in N ;(\exists x \in X) \frac{1}{\alpha+1} \leqslant x<\frac{1}{\alpha}\right\}$. Evidently H is countable. Thus there is a $\beta \in N$ such that $(\forall \propto \in H)(\alpha<\beta)$. Put $d=\frac{1}{\beta}$.

Theorem 3.4. Let u_{1}, \ldots, u_{n} be elements of s. Then there is
a $d \in R N$ such that, for all $\Sigma \alpha_{i} u_{i} \in S[0]$, if $\Sigma \alpha_{i} u_{i} \neq 0$ then $\left|\Sigma \alpha_{i} u_{i}\right| \geq d$.

Proof. Put $x=\left\{\left|\sum \alpha_{i} u_{i}\right| ; \alpha_{1}, \ldots, \alpha_{n} \in \operatorname{FRN}, \quad \sum \alpha_{i}=0\right\}$ and use 3.3.

Definition. We denote the d from 3.4 by $d\left(u_{1}, \ldots, u_{n}\right)$.
Theorem 3.5. Let $u_{1}, \ldots u_{n}, v_{1}, \ldots, v_{n}$ be elements of S such that $(\forall i)(1 \leq i \leq n)\left|u_{i}-v_{i}\right| \propto d\left(u_{1}, \ldots, u_{n}\right)$. Let $\Sigma \alpha_{i} u_{i}$ be an element of $\mathrm{S}[\mathrm{OJ}$. Then

$$
\begin{aligned}
& \Sigma \alpha_{i} u_{i}>0 \Rightarrow \Sigma \alpha_{i} v_{i}>0 \text { and } \\
& \Sigma \alpha_{i} u_{i}<0 \Rightarrow \Sigma \alpha_{i} v_{i}<0
\end{aligned}
$$

Proof. $\Sigma \alpha_{i} v_{i}=\Sigma \propto_{i} u_{i}+\Sigma \propto_{i}\left(v_{i}-u_{i}\right)$ and
$\left|\Sigma \propto_{i}\left(v_{i}-u_{i}\right)\right| \sum d\left(u_{1}, \ldots, u_{n}\right) \leqslant\left|\sum \propto_{i} u_{i}\right|$. By 3.1 we have the desired properties.

Theorem 3.6. Let \succ_{n} be a partial preference relation on S. Let $m_{i=1}^{\sum_{i}^{1}} \alpha_{i} u_{i}$ be an element of $S[0]$ which is not determined by $>_{n}$. Then no element of $S[0]$ which is a combination of n elements of $\left\{u_{1}, \ldots, u_{n+1}\right\}$ equals zero.

Proof. Let $\{1, \ldots, n+1\}=\left\{a_{1}, \ldots, a_{n}\right\} \cup\{b\}$ and suppose $0=\sum_{j=1}^{N} \beta_{j} u_{a_{j}}$ is an element of $s[0]$. Hence $u_{a_{1}}=-\frac{1}{\beta_{1}} \sum_{j=2}^{m} \beta_{j} u_{a_{j}}$ Since $\sum_{i=1}^{m+1} \alpha_{i} u_{i}=\alpha_{a_{1}} u_{a_{1}}+\sum_{j=2}^{m} \alpha_{a_{j}} u_{a_{j}}+\alpha_{b} u_{b}=\sum_{j} \sum_{2}^{m}\left(\alpha_{a_{j}}-\right.$ $-\alpha_{a_{1}} \cdot \frac{\beta_{j}}{\beta_{1}} u_{a_{j}}+\alpha_{b} u_{b}$, we have $\sum_{i=1}^{n+1} \alpha_{i} u_{i}$ can be expressed as a combination of n elements. Thus it is determined by $>_{n}$, a contradiction.

Theorem 3:7. For each n there is an $S=\left\{u_{1}, \ldots, u_{n+1}\right\}$, a partial preference relation of a degree $n \succ_{n}$ on S and an element $\sum_{i}^{m+1} \propto_{i} u_{i}$ of $S[0]$ which. is not determined by \succ_{n}.

Proof. By induction we construct $\left\{u_{1}, \ldots, u_{n+1}\right\}=S$ and $\alpha_{1}, \ldots, \alpha_{n+1}$ elements of FRN, $\sum_{i=1}^{m+1} \propto_{i}=0$, such that $\sum_{i=1}^{m+1} \alpha_{i} u_{i}=$ is not determined by \succ_{n} and in addition $\sum_{i=1}^{m} \sum_{i}^{1} \alpha_{i} u_{i}=0$.

For $n=3$ see the example 2.
Suppose the assertion holds for $n-1$, we prove for n. Let v, w

We prove that $\succ_{n} \upharpoonright\left\langle v, w, u_{2}, \ldots, u_{n}\right\rangle=\succ_{A} \upharpoonright\left\langle u_{1}, u_{1}, u_{2}, \ldots, u_{n}\right\rangle$ for all such v, w. Let $a=\beta_{1} v+\beta_{2} w+\ldots+\beta_{n} u_{n}$ be an element of $\left\{v, w, u_{2}, \ldots, u_{n}\right\}\{0]$ which is a combination of n elements. Denote $b=\left(\beta_{1}+\beta_{2}\right) u_{1}+\ldots+\beta_{n} u_{n}, c=\beta_{1}\left(v-u_{1}\right)+\beta_{2}\left(w-u_{1}\right)$. Thus $a=b+$ $+c$. We have $|c|=\left|\beta_{1}\left(v-u_{1}\right)+\beta_{2}\left(w-u_{1}\right)\right| \stackrel{q}{\mathcal{L}}\left(u_{1}, \ldots, u_{n}\right) \xlongequal{q}$ $d\left(u_{1}, u_{1}, \ldots, u_{n}\right) \leq|b|$. By 3.5 , we have $a>0 \Rightarrow b>0, a<0 \Rightarrow b<0$.
Never $a=0$. Indeed if $a=0$ then either $0 \neq b=-c$, a contradiction with $|c| \stackrel{\sigma}{<}|b|$ or $0=b=c$, a contradiction with the induction premise, by 3.6.

Let γ be a probability coefficient. Put $d=\alpha_{1}(\gamma \vee+$ $+(1-\gamma) w)+\sum_{i=2}^{m} \alpha_{i} u_{i}$. For example, let $\alpha_{1}>0$. Since $\sum_{i=1}^{n} \alpha_{i} u_{i}=-\alpha_{1} u_{1}$, we have $d>0$ iff $\gamma v+(1-\gamma) w>u_{1}$ and $d<0$ iff $\gamma v+(1-\gamma) w<u_{1}$. Thus d is not determined by γ_{n}.

We take v, w such that $d=0$. Then $S=\left\{v, w, u_{2}, \ldots, u_{n}\right\}, d \in S[0]$ have all desired properties.

Corollary 3.8. There is no n such that every partial preference relation of a degree n determines a preference relation.

§ 4. A comparison of the Theory of Utility in the Cantor
 Set Theory and in the Alternative Set Theory

The classical theory of utility differs from ours in the following three points. See [f].
(1) A preference relation is not given on the whole $\mathrm{S}[1]$ but
only on its subclass on Su\{〈w, $\propto u+(1-\propto) v\rangle ; u, w, v \in S$, $u \succ w \succ$ $\left.\succ v, \alpha \in E_{1}, 0 \leq \propto \leq 1\right\}$. I.e. only γ_{3} is given.
(2) So called Archimedean axiom is assumed:
$(\forall u, w, v \in S)(u \succ w \succ v)\left(\exists \propto \in E_{1}\right)(w=\propto u+(1-\propto) v)$.
(3) A total valuation exists iff S contains a countable dense.

Commentary.

ad (1). Assuming (2), \succ_{3} determines a preference relation. Indeed, if $\Sigma \alpha_{i} u_{i} \in S[0], u_{1} \succ \ldots \gamma u_{n}$, then $(\forall i)\left(\exists \beta_{i} \in E_{1}\right)$ $\left(u_{i}=\beta_{i} u_{1}+\left(1-\beta_{i}\right) u_{n}\right)$ Thus $\Sigma \alpha_{i} u_{i}=\Sigma \alpha_{i} \beta_{i}\left(u_{1}-u_{n}\right)>0$ iff $\sum \propto_{i} \beta_{i}>0$. Hence (1) is sufficient.
ad (2). Von Neumann and Morgenstern wrote about the Archimedean axiom: It is probably desirable to require it, since its abandonment would be tantamount to introducing infinity utility differences [NM]. Infinity differences are one of the basic notion s in the alternative set theory.

In some situation the Archimedean axiom seems to be restrictive. Let us return to the Introduction to the man who chooses between elements of S[11. Let S contain a TV(t), a similar TV with a small hash (h), a pencil (p). Let us imagine the man prefers t to h and h to p. We can also imagine he prefers h to a game in which he gains either t or p, though the probability of gaining only p would be the smallest possible. I.e. if \propto is a probability coefficient ($\alpha \neq 0,1$) then
$t \ngtr h \succ \alpha t+(1-\infty) p \nmid p$.
By this way we can describe incomparability of some values.
Here $t-h \stackrel{\sigma}{<} t-p$.
ad (3). In the alternative set theory there is a total valuation for any S.

There is another point very important for our conception. Probabi-
lities which appear in our games are finite rational numbers. This means that "the smallest possible" stands for very small but perceptible, before the horizon of our discernibility. Also elements of $S[1]$ represent games for n elements of S, where n is a finite natural number, i.e.easy to survey, before the horizon. References
[F] P.C. FISHBURN: Utility Theory for Decision Making, John Wiley, 1971.
[NM] J.VON NEUMANN AND O. MORGENSTERN: Theory of Games and Economic Behavior, Princeton University Press, 1947.
[V] P. VOPĔNKA: Mathematics in the Alternative Set Theory, Teubner Texte, Leipzig 1979.

Matematický ústav, Universita Karlova, Sokolovská 83, 18600 Praha B, Czechoslovakia

