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A NOTE ON DENSE SUBSPACES OF DYADIC COMPACT SPACES
M. G. TKACENKO

Abstract: We answer Arhangel skii’s question by the follow-
ing theorem: Let S be a dense subspace of some dyadic compact spa-
ce X such that the tightness of S is countable and the lower )ﬁ -
closure of S coincides with X. Then X is separable. .

Some generalizations of this result are given.

Key words and phrases: Dyadic compact space, dense subspace,
the tightness, the lower ¥ closure, qf—approx1mat1ve space, &=
adic space.
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Recently A.V. Arhangel ‘skii put the following guestion: for

which cardinals @ there exists a subspace M of Tychonoff cube

IT such that M is of countable tightness and the lower ﬁo—closu-

~
re of M in I coincides exactly with IT ? Obviously, for each

»
cardinal ¥ £ 2 O we can choose a suitable M to be a countable

dense subspace of I . It is shown here that there is no any sub-

space M of IT with the above properties for @ > 2 o

An analogo-
us situation takes place for subspaces of dyadic compact spaces.
These results follow from Theorem 1 which is proved in § 1.

In the second section we strengthen our results to the case
of g-adic compact spaces (see Definition 3) and show that Theorem
1 holds for any compact space which is a continuous image of a

dense subspace of some product TV Xo With d(Xd) < T for each

P



o« € A. We put also some questions closely related with the theme

of the paper.

The following notations are used: exp(t) = 2%, expz('z.’) =

= exp(exp(x)) and so on. If S is a subset of X and ® is an infi-
nite cardinal, we put [SJ, = U{[TJX;TQS and |T1 £ ¥t and say
that [81, is a lower < -closure of § in X. An intersection of any
family o of open subsets of X with \'g'l < 1 is called a GJ,'»L"
subset of X. All spaces are assumed to be completely regular (if

not mentioned otherwise).

§ 1.The main result

Lemma 1. Let X be a regular space, SE€X and X = [S], . Then
nw(X)<1S1T and IXIl £ 13{"'. expz('L’ ).

Proof. The family B =4[AT:Ac S and IA) # % forms a network
for X (cf.[1, Th.21) and |Bl< 15|% . The inequality (XxI=[s[% .
-expz('r.’) follows from the fact that the power of the closure [A]

does not exceed expz('x:) for any subset ASS with A} £ T (see
2, Th. 2.41).

Let X be a space, M dense in X and @ an infinite cardinal.
Let us consider the following sentence:

@ (X, ,M) = if h is any continuous mapping of X onto a space
Y of the weight ¥ and N is any subset of h(M) with IN]l = T |
then MAh~Y(N) is not dense in M.

Lemma 2. Suppose we are given X, M and T as above. If, in
addition, £(X) £ T and @ (X, ,M) holds, then there exists a
continuous mapping f of X onto a space Y of weight £ exp(« ) such
that @ (Y,z ,M) holds for M = f(M).

Proof. If w(X)Zexp(w), there is nothing to prove. So sup-

pose w(X)>exp(« ). Fix an arbitrary continuous mapping £, of X



onto a space Y, of weight £ exp( ). Now let o« < ' and for e-
very (3< >4 a continuous mapping fﬁ of X onto the space Yﬁ of
weight £ exp(w ) be de“ined. If &¢ 1is a limit ordinal, we put £ =

= N4 fﬁ : {5 < o« } , the diagonal product of mappings fﬁ's. Then
fe 1is a continuous mapping of X onto the subspace Y, in the pro-
duct nﬂéwYﬂ , hence w(Yy )£ exp(¢).

Now consider the case o« = 3 + 1. Theorem 2.2 of [3] implies

that the power of the set C(Yﬂ ) of all continuous real-valued

2(Y,)
A However,

functions defined on Yg does not exceed w(Yp )
,Z(Yﬂ) £ L(X)<€ v~ and w(Y,s)é exp(1t ), hence IC(Yﬂ)]éexp('tr ). It
is easy to check that the family ’n,; of all continuous mappings *

<
of Yﬁ to I

has the power £ |C(Yﬂ)|T , SO l‘nﬂl £z exp(z ). In
particular, I'm,ﬂi < exp(w ), where M, is the family of those
h € 'n,, , for which w(h(Yﬂ)) =T

Let h € Mp . Then Ih(Yﬂ)lé exp w(h(Yg)) = exp(x), and

1,

IhEa(MI < exp(T). We put A =4NShig(M):INI 2 ©F. Obviously,
|’]\.hlé exp(«% ). Using the assertion @ (X, ,M), we can find, for

each N € M\, an open subset 0y , of X such that 0y ,n f,;lh‘l(N)n M=

= @f. For each N & ?"h we fix also a continuous function tN h

—> 0,1 which is equal to 1 at some point of the set ON h and va-
»

X >

nishing outside UN,h' Let 1:h be the diagonal product of the map-
pings tN,h with N e A . Then w(t, (X))£exp(®) for Iapnl =
Zexp(t ). Finally we put f, to be equal the diagonal product of
the mapping fg and the family of mappings {th:h 3 77Lﬁ§ . It is
clear that w(f (X))=exp(®) for l'mﬂl < exp(% ). This completes
our recursive construction.

Let us put Y = £(X) and M = f(M), where f - f't;+' We claim
that £, Y and M are so as required. Indeed, let p be any conti-
nuous mapping of Y onto a space Z of weight & and N2 p(M), [ NI=

< T . One can assume that Z is a subspace of 1% . For each




o« < 7' there exists (only one) continuous mapping hye Y= Y
such that fw = h o f. Obviously, hoc =2 h,3 whenever f3 < o« <,
idy = lim{h_ : cc< v'} and £(Y) £ v . Applying Theorem 2 of [ 4)

Y
we find an ordinal f3 < «* such that h(s-% p, i.e. there exists a
continuous mapping h:Y —> Z with p = he h/s . Consequently h €
e Mp and the definition of the set Oy,p implies that Oy \ N
Nt thtavnm = 9, or ON’hﬁf'lp'l(N)n M = @. By the choice of
the function ty | we have ti' ( DN 7 AONM = 8, where 7 -
= (0,1]1. Further, £ £, < tN,h' where'oc = 3 + 1, hence there e-
xists a continuous mapping s:Y — [ 0,1] such that tN,h =sof.
Thus f'ls_l( DN f-lp_l(N)ﬂM = @ which implies s’l(J)ﬂ p—l(N)ﬂ
NEM) = B. So ?(Y,T,ﬁ) holds because s~ (J) is a non-empty open
subset of Y.

The following notion is prompted by Arhangel ‘skil’s paper[5]1.

Definition 1. A space X will be called <t -approximative if
for any continuous image Y of X with w(Y)< exp(® ) the inequality

d(Y) £ ¥ holds.

It is interesting to recognize how wide the class of  -appro-

ximative spaces is.

Assertion 1. Any product X =1l _ , X, of spaces X, with

d(X,) £ T is A-approximative for each A = @

Proof. Let A =z o and f be any continuous mapping of X onto
a space Y of weight £ exp(A ). Then the Gleason's theorem implies
that there exist a subset B& A with |Bl« exp(A) and a continuous
mapping g:XB =ne(.eB Xe—> Y such that f =g oSYB; here .'II’B is

the natural projection. The density of the product XB = rToceB X

does not exceed A because d(X,) £ ¥ £ A for every « ¢ B and
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|BY< exp(A). Since g is continuous, d(Y) £ A .

Assertion 2. The property of being o’ -approximative space is
preserved by continuous rapping.

It is not difficult t> indicate an inner condition on a space
X which implies 74 -approximativeness of X. The idea of the follow-

ing definition is taken from [5].

Definition 2. Let ® be an infinite cardinal and S a subset
of X. We shall say that X weakly suppresses S if for any subset
T of S with ITl€exp(x) there exists a subset A of X such that

TE[A]X and 1Al = © .

Assertion 3. Suppose that X contains a dense subset S which

is weakly suppressed by X. Then X is = -approximative.

Lemma 3. Let f be a continuous mapping of X onto Y, S& X,
[S1y = X and T€£(S). If t(5) < v and St 1(T) is dense in S,

then [Ty = V.

The following theorem is the main result of the paper.

Theorem 1. Suppose we are given a dyadic compact space X and
a subspace Mc X such that [Mly = X and t(M) £ ¥ . Then d(X) & ¢.

Proof. We assume that d(X) > @ . Then the cardinal A = w (X)
satisfies the inequality A > expn('r:) for every ne N*. Indeed, ot-
herwise exp (v ) <A & expk+1(1’) for some k= 0. Assertion 1 imp-
lies immediately that kz 1 because d(X) > ¥ . Applying Assertion
1 once more we find a dense subspace S of X such that | S| £—expk ().
As S=[Ml. , so there exists a subset NE M such that S<IN] and
(Nléexpk('ﬂ). Clearly N is a dense subset of M and of X, too.The
condition t(M) £ © implies MQENJ,U . Using the condition X = [Mly

we conclude that [NJ, =[[N1] ], 2 [ Ml = X. Hence Lemma 1 implies
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nw(X) 2Nt € (expk(fv))"" = exp, (¥ ). It contradicts the fact that
A > expk('t). Thus A = exp,, (¢ ).

Now let us prove that gr(X,(u,,M) holds with = expz(’t’).
Assuming the contrary we fix some continuous mapping h of X onto
the compact space Z of weight s and a subset N&h(M) such that
INI = (4 and Mnh-l(N) is dense in M. Then Lemma 3 implies that
[Nl = Z. Applying Lemma 1 we get: (ziziNt®. expz('c‘) = expz('c') =
= (% . However Z is dyadic as a continuous image of the compact
dyadic space X, and w(Z) = &% , cf(m)> exp(v) > %,. Consequent-
ly there exists a continuous mapping of Z onto I (see [7]), so
{ZI z exp(). This contradiction proves our assertion about
@ (X, &% ,M).

Now with the use of Lemma 2 we fix a continuous mapping f of
X onto some compact space Y of weight = exp(pm) such that the as-
sertion ¢ (Y, ,M) holds with M = £(M). Then [M1. = Y because f
is continuous. Assertions 1 and 2 imply jointly that the compact
dyadic space Y is wt-approximative. Consequently there exists a
dense subspace S of Y with Isl 4 .4 . As S is contained in the lo-
wer ¥ -closure of the set M, there exists a subset TE&M such that
Sg(7] and 1T} £ 4 . Clearly T is a dense subset of M (and of Y).
There exists a continuous mapping h of Y onto a compact space Z of
weight M (see Lemma 4 of 18] or Th. 5 of [91). Thus we have
|h(T)l & m and Mn h'lh(T)l?T is dense in M. It contradicts

?(Y,\u,ﬁ).

Corollary 1. Let X be a compact dyadic space and S a subspa-

ce of X such that X = [SJY and t(S) $o- Then X is separable.
. ‘o



§ 2. Some generalizations and questions. An examination of

the proof of Theorem 1 shows that the dyadicity of a compact space

X was used only partially. In fact we used the following properties
of the space X:

(a) A -approximativeness of X for any A > 7’3
(b) any continuous image Y = £(X) of weight w-= exp,(z) has
a power > A .

Question 1. Does Theorem 1 remain valid if the property of

dyadicity of the (compact) space X is replaced by the property (a)
only?

Note that the class of q-adic compact spaces defined by L.
Shirokov in [10] satisfies conditions (a) and (b) with some stock.
This class contains all dyadic compact spaces and is closed under
the product operation (with any number of factors), taking a clos-
ed Gd-—subspace and invariant under continuous mappings. Moreover,

this class has the following remarkable properties:

1)

if a compact space X is a continuous image of a dense sub-
space of some g-adic compact space, then X is g-adic, too;

2) a compact space covered by a countable family of closed

q-adic subspaces is q-adic;

3) for any g-adic compact space X and xe X, EFX (x,X) =

= x (x,X) (3% denotes the hereditary yr-character);

4) if X is a compact g-adic space, A =w(X) and cf(ﬁ.)’-jﬁo,

then X can be continuously mapped onto In

The last property implies, in particular, that every g-adic

compact space satisfies condition (b). An analogous assertion a-

bout condition (a) follows from the definition of g-adic compact

space and Theorem 4 of [10].



Definition 3. A compact space X is called g-adic provided
that there are. a cardinal 7 = Hy, @ subspace Mg 2% and continu-
ous mappings f:M-Qﬂiﬂ*X, f:p?t——> X such that the restriction of
f to Jr"l(M) is equal to f oar restricted to o "L(M). Here p 2%
is the absolute of 2% y ar:pff—~> 2® is the natural mapping of
p2t onto 2% and 2 is the discrete two-point space.

Theorem 4 of [10)states that the cardinal = in the definiti-
on 3 can be replaced by w(X). Thus any g-adic compact space X of
weight ¥ < exp(A) is a continuous image of p2~ . However the map-
ping 51:p2c——> 2% is irreducible and d(2%) 2 A , hence d(p2%) =
£ A and d(X) £ A . This implies easily that any compact g-adic
space is A-approximative for every Nl > 45 (recall that a conti-
nuous image of a compact g-adic space is compact and g-adic, too).

Thus we have the following stronger version of Theorem 1.

Theorem 2. Let X be a compact g-adic space. If there exists

a subspace SE X such that t(S)£T and X = IS8l , then d(X) £ = -

Corollary 2. Let a compact space X be an image of a dense
subspace of any product with compact metrizable factors under a
continuous mapping. If there exists a subspace S€ X such that

t(S) =% _ and X = [Slyx , then X is separable.

0 o

Obviously Corollary 2 generalizes slightly Corollary 1. How-
ever it is possible to prove something stronger. To do this we need
the following assertion.

Assertion 4. Let K =T1‘e A K. be a product of spaces Kg
with d(ﬁ£) £ 1t , S a dense subspace of K and f maps continuously

S onto a compact space X. Then X is A -approximative for any

Az




Proof. Let us fix a cardinal A =z 4 and a continuous map-
ping @ of X onto a compact space Y with w(Y)£exp(A). Put g =
= @ o f. Then g is a continuous mapping of S onto a compact spa-
ce Y of weight £ exp(A) and nw(K )< exp(d(K‘))é exp(A ) for eve-
ry o € A. Theorem 1 of [11] implies that we can find a subset
Bc A with I1Bl< exp(A) and a continuous mapping ‘g’:pB(S)—> Y such
that g = ge pB‘S; here pg is the projection of K onto Ky =
=TT&€ gKyg - Clearly 5 = pB(S) is a dense subspace of Ky. Let s
and fK, be the Stone-Cech compactifications of spaces S and Kes
resp.

The natural embedding i:S €» KB is extended to a continuous

-— t _— —
S—D—n——g»KB, -where Kg =TT o 3K, . As i is a homeowor-

mapping o7 : 3
phism and i(5) is dense in Kg so or is irreducible. Further, IBls
< exp(A) and d(@K )= d(K,) < © £A for every o € B which im -
plies that d(-lzB) £ A Consequently d(@S) £ A . Finally, the
mapping §:§-——> Y is extendable tc a continuous mapping

G: (S§ 200, v that gives us the inequality d(Y)<£ A .

Assertion 5. Suppose we are given an infinite cardinal <4 ,
a product K = TT Ky » @ dense subspace S&K and a continuous
e A
mapping f of S onto a compact space X of weight A with cf(A) >
> ¥ . Then the following is valid:
(a) if W(Ko(.) =< v for every o € A then there exists a con-

tinuous mapping of X onto ™ , in particular, | X} = exp(A);

(b) if nw(K,) £ = for every o« € A then |X| > A .

It should be noted that Assertion 5(a) is a generalization
of the B.A. Efimov and J. Gerlitz s result concerning continuous
mappings of dyadic compact spaces onto Tychonoff cubes (see [7]
and (12}, resp.). The proof of Assertion 5(a) that I have in mind

is based on L. Shirokov's methods [101. In the next we will use
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the point (b) of Assertion 5 only, therefore the proof of the point
(a) is omitted.

Proof of (b). I. Let us assume first that A is a regular
cardirmal. It is 5uf_ficient to prove that there exists a closed
subset F of X such that ')[_(x,F) =A for every point xe F. Inde-
ed, the Lech-Pospf8il’s theorem [13) will imply then that IX| =
Z|FI2 exp(A).

To prove this fact we put M ={xeX: X (x,X) <= A} . Given
the subspace Ssnace AK& and the mapping f:S 9-9.152>X we apply the
main reasoning in [11] to the pair of sets MeX and N = f'l(M)s S.
Using the conditions of Assertion 5(b ) and the choice of sets M, N
one can show that there exist a subset B A with IBl <% and a
continuous mapping ?:pB(N)-wy M such that f), = To pB)N; pg stands
for the natural projection of K onto Kg. As I8} =« and nw(K ) <
£ v <A for every o« € B, so nw(pB(N)')c A . This fact and the
continuity of T imply that nw(M) < A

Let us put m = nw(M), a < A . The set XN\'M is not empty
because nw(X) = w(X) = A . Choose a point pe X\ M. The inequality
‘£(M)£ nw(M) = @ implies that there exists a Gd',u- -subset U of
X such that pe and U n M = @. The space X is regular, hence
there exists a closed subset F of X such that pe F < % and
K(F,X) £ @ . Then F has the required property. Indeed, if xe F
and 7 (x,Fd A , then x (x,X) = x (x,F)«g(F,X)<Jil-w =31 when-
t':e x&é MNnF. However F¢ W and UNn M = @, a contradiction.

II. Now we consider the case of singular cardinal > . One
can assume that exp(w) -~ A for any w < A . For if exp( *g) -
>~ A for some Yo < A, then (u'v; is a regular cardinal, (u.;<."\.
and exp(ﬂ,;) > A . Moreover, we‘can choose the cardinal (4, SO
that ©* =< f“o' Let us fix a continuous mapping ¢ of X onto a

+

compact space Y of weight Mo Then ¢ o f is a continuous mapping

- 10 -



of S onto a compact space Y of the regular weight ‘u.; > ¢ and
the first part of the proof (applied to Y instead of X) implies
that |YIZ exp((.a.;)> A . Conseguently [X] = IYl=> A .

Thus we can assume that exp(((b) « A for each @ < A . Then
the strict inequality exp( )< A holds for each <A . Inde-
ed, if exp( (u.o) =A for some “o < A, then exp(ee) = A for any
@ with u £ w — A . Consequently A s (BXD(M))M= exp(u )=
= A for any cardinal @ satisfying u, = a4 < A . This implies
readily that the cardinal A is regular; that is a contradiction.

For every m < A , we put Xa = {xeX: o (x,X) £ «?%. Theorem
1 of [11] implies that nw(X.) £ &+ v <A for each & <A . Con-
sequently the cardinality of the closure of X in X does not ex-
ceed exp,(nw(Xy,)) < A for any « < A, hence XNIXo 1= 0. Let
& = cf(A) and A = supdaL,: o0 ~< €} , where My <A for every
® < O . Let also f be a closed Gy -set of X such that Int f <=
*8 and Ff N [Xee T =8, o0~ & . It is important to note that
every regular cardinal & > T is a caliber of X. Indeed, let w
be a regular cardinal with &4 > ¥ . Then & is a precaliber of
each K, , X € A, because d(K )£ nw(K ) = ¢'. Consequently m is
a precaliber of the product space K =T!;{IC Ak, (see Th. 4.8 of 121
and of the dense subspace S of K. Further, precalibers are preser-
ved under continuous mappings onto, hence “ is a precaliber of
X. Finally, the notions of "caliber" and "precaliber" coincide in
the class of compact spaces. This implies, in particular, that
the cardinal & = c¢f(A ) is a caliber of X. Conlsequently there e-
xists a subfamily y = 4 F.:a <« 8% with the finite intersection
property such that 1y} =& . Put F = Ny . Clearly F is a
G p-set in X and Fn X, = @ for any a < A . The argument si-
milar to that of the first part of the proof shows that '{(x,F)=
= A for any point x€ F. Hence X! Z | FlZexp(A) = A .

- 11 -



Question 2. Can one improve Assertion 5(b) by showing that

17\ is a continuous image of X ?

Let X be a compact space satisfying the conditions of Asser-
tion 4. Then Assertions 4 and 5(b) imply jointly that a space X
satisfies the conditions (a) and (b) at the beginning of § 2.

Thus we have obtained the following result.

Theorem 3. Let a compact space X be a continuous image of a
dense subspace of some product with factors of density = v . If
there exists a subspace S& X such that t(S) =< = and [SJ,t, = X,

then d(X) £ © .

Corollary 3. Let a compact space X be a continuous image of
a dense subspace of some product of separable spaces. If there ex-
ists a subspace S of X such that t(S) .és:o and [5]?‘:0 = X, then

X is separable.

The other generalization of the dyadic compact spaces is the
class of 2 -adic compact spaces, i.e. the class consisting of all
continuous images of s -metrizable compact spaces. The classes of
% -metrizable and 2€-adic compact spaces had been introduced by
E.V. S&epin (see [14],[15)). Every 2¢-adic compact space X is ar -
characteristic in the sense of B.E. 3Sapirovskil, i.e., for any re-
gular uncountable cardinal ** , the closure in X of the set M, =
={xeX: ™y (x,X) < v} is of weight < v . Moreover, every ge -a-
dic compact space X satisfies the 3anin’s condition. It means that
any regular uncountable cardinal is a caliber of X. Consequently
one can apply Theorem 4 of [16] which implies that every 2 -adic
compact space of weight A with cf(A) > s, is continuously mapped
.

onto Thus any 2 -adic (and, of course, 2 -metrizable) compact

space satisfies the condition (b).

- 12 -



Question 3. a) Is it true that every o€-metrizable compact

space is 7T-approximative for each o = .KO ?

b) Does Theorem 1 4old for ¢ -metrizable compact space X ?

The affirmative answer to Question 3 a) would imply the sa-
me answer to Question 3 b). Note that the similar questions con-
cerning with 98 -adic compact spaces are equivalent to those ones

that have been formulated.

Question 4. Is it true that a product of two ~ -approximati-
ve spaces is « -approximative? And what @about it if the factors

are compact?

Let A be an infinite set, M a dense subspace of the Tychonoff
cube IA and * an infinite cardinal. By analogy with the sentence
@ (X,v ,M) we define the new sentence & (A, ¢ ,M) by putting
$(A,® M) == for any set BE A with {B] =7 and N & pB(M)
with INl £ © , the set Mr\pél(N) is not dense in M; here py is

the natural projection of IA onto IB.

Question 5. Do there exist A, @ and M with £ A} such
that $(A,r ,M) holds?

Finally, let us consider the following hypothesis.

(H) If X is a compact space, M< X, t(M) <« = and X = [MI,., then

t(X)< exp(z).

Obviously, the main results of the paper follow immediately

from (H).

Question 6. Does the hypothesis (H) hold?

The author is deeply grateful to Professor A.V. Arhangel “skii
for putting the question and valuable comments in discussion of the
results presented here.
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