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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27.1 (1986) 

fHE CONSISTENCY OF THE MEASURABIUTY 
OF PROJECTIVE SEMISETS 

K. CUDA 

Abstract: The notion of projective classes (roughly speaking 
classes defined from internal objects -and the predicate "to be an 
infinitely large number") is introduced. The consistency of the 
existence of a good approximation of projective semisets by sets 
is proved using Solovay's consistency of Lebesgue measurability of 
projective sets. 

Key words: Projective class, projective set, Lebesgue measu
re, alternative set theory, nonstandard analysis, figure, totally 
disconnected indiscernibility equivalence. 

Classification: Primary 03E70 

Secondary 03E35 

Introduction. In the nonstandard work we often treat the 

classes (relations) defined with the help of internal objects and 

the predicate "to be an infinitely large (or an infinitely small) 

number" As we prove in the paper, these classes are connected 

very closely with the classical projective sets and therefore we 

call them projective classes. Me investigate the possibility of 

the approximation of these classes being moreover parts of * fini

te sets (projective semisets) by ^finite sets. The approximation 

is closely related with the Lebesgue measurability as can be found 

also in the works of Loeb and Anderson. Using the Solovay's proof 

of the consistency of Lebesgue measurability of projective sets 

we obtain here the proof of the consistency of a good approxima

tion for every projective semiset. The given result is interesting 
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also from the point of view of nonstandard treatment with quanti

t i e s . 

This result has been proved in the author's CSc-thesis pub

lished in Czech language in 1976 . 

As a suitable technical framework for our investigations we 

take the theory of semisets with designated classes from Balcar's 

C S c - t h e s i s . AST (by this we mean the special system of axioms des

cribed in [S1J ) or some theories formalizing nonstandard analysis 

( e . g . this one of [ Nj or of [£]) may be understood as some special 

cases of the used theory similarly as e . g . ZFC is a special case 

of a first order theory. The used theory suits also very well for 

work with nonstandard models of arithmetic. By our meaning the gi

ven results may be of some interest in the mentioned three bran

ches of mathematics. From [ V j we use also some notions which clear 

up the original text and have been arisen later. 

§ 1. Preliminary considerations. We use three sorts of vari

ables: x,y,... for sets , X ,Y,... for designated classes and clas

ses. These three sorts of variables are subordinate in the given 

order: every set is a designated class and every designated class 

is a class. The fact that a class X is a designated class is exp

ressed by Dsg(X). 

If we restrict ourselves on sets and designated classes then 

our axioms are all the axioms of a special case of G.B. theory of 

sets. The axiom of infinity, regularity and choice are irrelevant 

for our considerations. Let us note that for every designated class 

X we have (Vx)(3 y)(Xn x=y). 

For classes we use the following axioms. 

1) (3Y)(X£Y)-^(3x)(X-x) (Sets) 

2) ( y x ) ( x € . X s X £ Y ) ~ * X = Y (Extensionality) 
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3) If a? (x,X, , . . . ,X ) is a formula in which only set variables are 

quantified (i.e. a normal formula), then 

( VX 1, . . . ,Xp)(3 Y)(x€ Y m 9>(x,Xx, . . . ,Xn)). (Scheme of existence) 

Let us note that, due to results of Gbdel, the last scheme 

can be exchanged by a finite number of special cases and that e.g. 

an ordered tuple < x,y> exists due to the first group of axioms 

(G.B. set theory). Theories of the given type have been introduced 

and investigated in [BB3. A special case of such a theory is AST, 

where the role of designated classes play e.g. Sdy classes (or Sdy 

classes). One can see that the theories of "the given type are sui

table for considerations about models, since sets and designated 

classes characterize internal objects and classes characterize ex

ternal objects (maybe only some suitably chosen ones). 

Notation: We use common notation. Moreover we use oc , /3 , f , 

... for infinitely large natural numbers (introduced below) and 

d , <D , C , £ ,... for semisets (subclasses of sets). By Card(x) 

or \ x\ we denote the cardinality of x (from the point of view of 

G.B. set theory); thus |x\ = H s (Jf)(f:x «-.> ae ). I x I we use 

also for the absolute value in the context of the real numbers sy

stem. We use further N for the set or the designated class of na

tural numbers ( i . e . ordinal numbers less than the first limit or

dinal in the view point of G.B. set theory). 

Axiom FN: (3 X § N)(VneX)(ncXJk(V7)(Jy)(Ynn-y)). 

It appears that there is only one class X with the property 

described in the axiom and we denote this class by FN. The first 

part of the conjunction describes the completeness of FN and the 

second one may be understood as the standardness of elements of FN. 

Definition 1.1: IL(oO) -r oc «. N-FN ( cc is infinitely large) 

Definition 1.2. Fin(X) s? (V Y^ X)(Y c V) 
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Here we are not consistent with the Tarski's definition. 

Definition 1.3 Count(X) » (3 F)(F:X«-> FN) 

Here we are also inconsistent with the commonly used defini

tion. Our definitions of Fin(X) and Count(X) are consistent with 

the external meaning of these notions. 

Axiom of prolongation: For every countable function F there 

is, a set function f such that Fc f. 

Axiom of weak choice: (VR,dom(R)=FN)(3 F,dom(F)=FN) 

(Fc RfcF is a function). 

Let us note that this axiom is not a consequence of the axi

om of choice for designated classes, as the well ordering of V gi

ven by this axiom is the well one only with respect to designated 

classes. 

Let us now remember some definitions and assertions from CCCJ. 

Definition 1.4: Dep(X,Y) m (3 R,Dsg(R))(X=R"Y) 

(X is dependent on Y) 

Depd(X,Y) m (3F,0sg(F)) (F is a function A X=(F"1)"Y) 

(X is disjointly dependent on Y). 

Both the notions are reflexive and transitive. Note that if 

X is a semiset then it is possible to assume the relations to be 

sets instead of designated classes. 

Lemma 1.4: 1) Depd(X,Y) *=-> Dep(X,Y) 

2) Z*0 *-> (VX,Dsg(X))Dep(X,Z) 

3) Oep(X, Z)&Dep(Y,Z) *=> Dep(XuY,Z) 

4) Oep(X,Z) «*> (VA,Dsg(A))Oep(X-A,Z) 

Depd(X,Z)** (VA,Osg(A))Depd(X-A,Z) 

5) Dep(X1,Z1)ft Dep(X2,Z2)-^>Dep(X2>cX1,Z1x Z2) & 
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fcOepCX-n Xj.Zj* Z2) 

6) Dep(dom(X),X)^Dep(VxX,X)«tDep(Cnv(X),X)^Dep(Cnv3(X),X) 

7) Dep(X,flO*a .=>tf -* Oepd(X, J»(a)-<P(a-€T)) 

Dep(Jp(a)-^(a-«),6r) 

0) Oepd(X,Y)&Xc AlYcBADsg(A)&Dsg(B)-=* Depd(A-X,B-Y) 

9) Dep(<P(X)x 3>(X),tf>(X))ScDep( PORCX ))t'(PXK» 

10) If ffc a&Dep(a-6\ tf ) then Deprf( C , <P(a- 6)) 

Proof: All the mentioned assertions are proved by construct

ions of suitable designated relations of dependence. For point 7) 

let us note that (P(a)- #(a-€) is the class of all subsets of a 

having a nonempty intersection with 6» To prove 10) let us note 

that Depd(a- t , 3Ha)-£P(a-e )) (see 7)) and remember 8). 

In this paper we shall use only 5),6) and namely for proving 

the following theorem. The other assertions are given here for 

their importance in other branches and to make the reader more fa

miliar with the important notion of dependence. 

If we use further the words "let if be a system of classes", 

we mean by this (from the formal point of view) that we introduce 

a new sort of variables subordinal to the sort of classes. Me use 

(not quite correctly) X * if to denote that the class X is of this 

sort. A special case (and from a point of view the only one used 

in the paper) is the description of the sort by a formula 

(X 6 ^v^P(X)). Codable classes are another more special case 

(see tVj). 

Theorem 1.5: If a nonempty system of classes if has the fol

lowing properties 

1) if is closed on the complement to the universal class V 

(X « tf =*> V-X6 if) 

2) y is closed on the cartesian product (X,Y € tf *a& X K X 6 if) 
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3) tf is closed on Dep(X e 9 & Dep(Y,X) -* Y & 3> ) 

then if is closed on definition by normal formulas. 

Proof: It is sufficient to prove that if is closed on Gbde-

lian operations. We prove at first that all the designated classes 

are in 5f .To prove this it suffices to prove that there is a non

empty class in tf . If 0 e tf then V-0-V6 Sf by 1). If R is the 

designated relation such that dom(R)= ft x,x>;x c V? and R"f<x,x>} = 

= i x} (R is e.g. the first projection restricted on identity) then 

XAY = R'tyxY). We have also X-Y = Xn(V-Y). X""1 and Cnv3(X) can 

be obtained as images of X using suitable definable (thus designa

ted) functions. Similarly dom(X) = Pr2"X where Pr2«y,x>) = x. E = 

-i<x,y);X€y! is designated and X A Y = Xn(VxY). 

Now we define the notion of compactness for symmetric and re

flexive relations. 

Definition 1.6: Let R be reflexive and symmetric. R is said 

to be compact iff ( V x £ dom(R))( -| Fin(x) =$> (Jy,zcx)(y^z & 

8c<y,z>€ R)). 

Remember that Fin(x) denote (\/X9 x)Set(X) and not e.g. the 

Tarski's definition. 

Now we adapt the notion of an indiscernibility equivalence 

from I Ml. Every indiscernibility equivalence from our paper satis

fies properties in £vJ but e.g. the relation == from CVldoes not 

satisfy .our properties if we interpret Dsg(X) as Sdv(X). If we in

terpret Dsg(X) as X eSdy (see tSV2j) then every indiscernibility 

equivalence from Cv] is an indiscernibility equivalence in our sen

se but there are i.e. in our sense (being not real classes) which 

are not i.e. in the sense of [Vl. 

Definition 1.7: A) Let G be a designated system of reflexi-
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ve and symmetric relations ( i . e . Dsg(G)&dom(G)e N &( VoC e 

e dom(G))(Gn-(oc} is a reflexive and symmetric relation)). 

G is said to be a generating system iff 

1) dom(G)c N-FNfc( Voc , ft € dom(G) )(dom(G"icC ? )=dom(GH^0? )) 

2) (Vne FN)(G"-(nl is compact) 

3) (Vo6 e dom(G) koC =#0)(GM iac\ o GVoCJ £ G"-{oC -1? 

B) If G is a generating system then f. -€G"-f n? ;ne FN} is said 

to be an indiscernibility equivalence. 

C) If for an indiscernibility equivalence there is a genera

ting system consisting of equivalences, then this equivalence is 

said to be totally disconnected. % 

It is easy to see (using 3)) that every indiscernibility equ

ivalence is really an equivalence. To get a better survey about 

indiscernibility equivalences and to get some coherence with the 

classical topology, we recommend the reader Chapter 3 of iMl. 

Theorem 1.8: Every indiscernibility equivalence is compact. 

Proof: Let a be an infinite set and a^dom(^). Let G be a 

generating system. We have (V n £ FN)(J3 x,y e a)(x * y&< x,y > e 

€. G"{n?). Using overspill we obtain the given property also for so

me G"{c&\ where a> e N-FN and so we obtain x,y such that x---y. 

Note that the axiom of prolongation is not used in the given 

proof. The proof from CV3 of the existence of an infinite set of 

near elements in any infinite set can be also adapted. 

If -sL is an indiscernibility equivalence then dom(~=0/2= 

forms a compact separable (thus metrizable) topological space. If 

£ is moreover totally disconnected then the given topological 

space is totally disconnected, too. 

We now describe three ways how to understand this assertion. 

For Xcdom(£) we define (cf. LVl) )U { x e dom(-& ); ( V y & 
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S dom(&))((Vtcx)(3ucy)(t&u) •* (J ue y)(x&u)) 

1) If we work in nonstandard analysis then the closure a~ for 

a£ dom(-ft )/-* we define as follows: Let A.»dom(.S->) be the prei-

mage of a (the class of all elements of equivalence classes of & 

being in a). Let now A be defined as above. We put then a = I/& • 

2) If we work in a nonstandard model of arithmetic, where FN 

is understood as &> (standard natural numbers), then we understand 

our assertion in the metatheory in which we work with the nonstan

dard model analogously as in 1). For the compactness (and nameTy 

the completeness) we need the validityof the axiom of prolongati

on in the model (e.g. the saturatedness of the model is sufficient). 

3) If we work in a fundamental mathematical theory based on 

nonstandardness (e.g. AST) then we understand dom(*&)/->•-- as the 

structure of parts of dom(&) saturated on A (x eX&x-S-y =-jr y e x) 

with the above defined operation of closure. 

We shall not prove here the above mentioned properties of the 

space dom(&)/& . To the reader interested in it we recommend Ch. 

3 from CVJK. In the paper only closed bounded intervals of real num

bers and compact, separable totally disconnected spaces are of our 

interest. When using in the following text the notions set, func

tion etc. for objects in the factor structure, we keep in mind no

tions from the classical point of view. Such objects need not be 

e.g. sets from the point of view of our theory. 

Let us give two examples for the illustration. Let oc be an 

infinitely large natural number. 

1) Put a*ift/& ; (B< oc} - a set of rational numbers. Put 

GMcf* » K/5-Vo-i, fi2/°c,>;\ Px- fi2\/<** 1/d"! . G is a generating 

system for the indiscernibility equivalence » such that x«y 

iff x and y are infinitely near. If we suppose that for every XfiFN 

(i.e. in the point of view of nonstandard models of arithmetic 
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X £ co is a set from the metatheory) there is x such that X = 

= FNnx (i.e. the standard system of the model is (TMa>)) then 

dom(s:)/« is the closed interval 10,1.3 with the common topology. 

2) Put a = ifi /206 ; /3 * 2*? . Put G"<di =i<x, y>;x,ye a & 

%c \_x»2Zi - Ly-2j? where L XJ denotes the greatest integer =s x. 

G is a generating system of a totally disconnected indiscernibili-

ty equivalence --£ such that a/-= is Cantor's discontinuum (if 

suitable properties hold). 

In the following text we use common notions introduced on the 

corresponding factorspaces dom( ==• )/=-=- and namely the notions of 

projective sets and the Lebesgue measure. We use these notions for 

introducing a remarkable system of projective classes and for an 

orientation in this system and also for considerations on "an ap

proximation" of semisets by sets and the connection of this appro

ximation with the Lebesgue measure. In our considerations we use 

nontrivial results concerning the mentioned classical structures. 

Let us now introduce notions and notations simplifying the 

duality - standard and nonstandard - of our language. 

Definition 1.9: Fig& (X) = (~)"X (the figure of X) 

3 ^ * (X) 35 X = Fig^ (X) (X is a figure). 

We shall omit the subscript «. if there is no danger of con

fusion. We shall use also the notation Fig(M) for the preimage of 

M in the factorization in spite of the fact that the factorizati

on need not be done by choosing representants for the equivalen

ce classes. 

1 2 Definition 1.10: Let -,-*= be inriscernibility equiva lences. 
1 1 We define on dom(-=* ) x dom(^ ) the indiscernibility equivalence 

% by the description <x,,x2> --- <y1,y2>== x1 =• y1&.x2^y^-
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We omit the easy proof of the correctness of the definition 

i.e. fiding out a suitable generating system. 

Theorem 1.11: If i,=r are totally disconnected then ~ is 

totally disconnected. 

The proof is obvious. 

Theorem 1.12: If Xc dom( = ) lDsg(X) then Fig(X) is c losed . 

Proof: Adapt the analogue in tVl. 

1 2 Definition 1.13: Let =-.= be indiscernibility equivalences. 

1 2 Let F be a designated (partial) function from dom(=) to dom(«). 

1 2 
F is said to be continuous iff x «- y ==->• F(x) -=- F(y). 

Theorem 1.14: If Dsg(F) and F is continuous then Fig2 ,(F)/ = 

is a continuous function w.r.t. the corresponding factor spaces. 

9 1 

Proof: The factor object Fig« ,(F)/ « is a function which 

is closed in the product space and the basic spaces are compact. 
1 2 1 2 

Theorem 1.15: If -»,-» are in.eq. then e n « is an in.eq. If 
1 2 1 2 

moreover *,« are totally disconnected then =rn-* is also totally 

disconnected . 

The proof is obvious. 

Theorem 1 .16: Let Dsg(F) and rnc/fF) c dom( £ ) . On the dom(F) 

let us define x »y s F(x) =F(y). £. is an indiscernibility equi

valence. In addition, if -» is totally disconnected then * is 

also totally disconnected. 

Proof: Using the generating system for &. and the dis

jointed relation F~ , construct the generating system for » . 

Theorem 1.17: If G is a generating system for a totally dis

connected indiscernibility equivalence 4 on x then there is a 
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function f :-*—>card(x) such that for every equivalence class b 

(b = (G"-C<n )" -ft * k te b), f"b is a connected ( w . r . t . the natural 

order ing of N) i n t e r v a l in ca rd (x ) . Formally: 

(V<Te dom(G))(V te x)( V * , l3 , y & ca rd(x)) ( (oc <- (3 < <$ & 

k<* a*- fn((Gn-tcr? r - m ) ) - * p e f"((G"-fcr? v - u * )) 

Proof: We construct f by the recursion based on the dom(G). 

Let I,,...,I. be the equivalence classes of G"-Clf and f.:I. <—*» 

<-+\l}\. For tell we put f2(t) = Z . |l*|+fj(t). Analogously we 
1 1 3, -£ ~V J 1 

proceed with the const ruct ion of the automorphisms in the frame

work of the i n t e r v a l s |l?|. 

Theorem 1.18: If G is a generating system of a totally dis

connected i n d i s c e r n i b i l i t y equivalence = on oc consisting of 

pa r t i t ions on in te rvals then there is a function f such that 

f. oc lzl+ i p /oc, ;0 * fl* 2<*\, f(x)« f(y) ==> x£y and F i g ( rng ( f ))/* 

is a closed set with the Lebesgue measure 1. 

For the construction of f we adapt the idea from the classic

al construction of Cantor 's discontinuum. Let us f i r s t l y define 

one technically useful notion. We put b = i /3 let ;0 & $ < 2 ocl . 

Definition 1.19: For u b we denote by st(x) the standard 

real number ^ ( x ) / ^ - . (where ,/u(x)=Fig(tx!) = « - - - '4xJ) . 

Now we prove Th. 1.18. 

Proof: Let 1^ denote the in te rvals of the p a r t i t i o n G"-£i} . 

We define ( fo r the const ruct ion of f) also the rational numbers 

e:,e! corresponding to the in te rvals 1^. We proceed by the recur

sion based on i. s ° = 1, e^= s */2-((k-=-2) + l), e j + 1 = e^/2k, 

where k denotes the number of the subintervals of 1^, --- denotes 

the natural subtraction (x—y = max(0,x-y)) and I* + is a subint-

erval of il. If we divide in te rvals every time on two parts then 
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e ̂  = 2"2i. Note that we have ^ e \=2~i. We define (by recursion) 
-• a- J _ 

intervals I^Sb corresponding to the intervals l\. We put T?=b. 

Put x =dom(G). Suppose also that G"-C0l = cC xcC . For i + K ^ - 1 we 

define I1.* by the following manner: If 1^ is the lower (in the 

ordering of oc ) subinterval of ij then let ii be the subinterval 
J 

of l} having tne following properties: min(l£)=min(I^+ ) and 

card(Ii:+ )=carr(I^ + ) + t-fc 1+ • cOj (note that jij denote the largest 

integer & x). If I^+ is the upper (in the ordering of cc ) subin

terval (and different from the lower one) we proceed analogously, 

but we need the equajlity max(lM=max(I^+ ) instead of the equality 

of min. In the other cases we need, except for the property 

card(Ii+ )=card(I^+ )+ i*^ • *£j > the property card(-fxeb; 

max(I^+ )< x <min(I^ + , )1) = ^e } * cCj . For i+l=y-l we proceed ana-
~"7T-1 

logously, we only adapt the property of cardinalities to card(H )= 
=card(lT~1). If for the given construction we have j4-k -=• I^n 1?; = 

J J K 

= 0 then we put b = V *- i?~ f and let f be the order preserving iso-
-t J 

morphism of c6 and b. If the just mentioned property does not hold 

then we designate by 'jr the smallest i for which the property does 

not hold and we construct b and f for G l'y . 

By the recursion based on FN it is possible now to prove the 

following p r o p e r t i e s . For i,jeFN we have st(max(I^))-st(min(I,))= 

= st(card(li)/©6)+ e* and for I?+1,lj+}clJ we have st(min(Ii + i ))-
J J J J+1 K j+l 

-st(max(I^+ )) = & * From these properties we obtain 

1) (Vi,jeFN)(I^nI i
 + 1 = 0 

2) (Vx,y e*,)(f(x)~f(y)«* ( V i , j s FN)(x e I* « y c I*)) 

3) Fig(rng(f ))/&. has the Lebesgue measure 1, as 2 . & i =1 
-t, .J, * eo J-

( IE is understpod in the standard sense as an infinite sum - we 

consider the factor s t r u c t u r e ) . The proof of the theorem 1.18 is 

now an immediate consequence of the assertions 1),2),3). 
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§ 2. Projective Classes and Measurability. In this section 

we introduce classes connected very closely with the classical pro

jective sets and that is why we call them projective classes. We 

prove that the system co. tains every designated class, the class 

FN and that it is closed u., the definition by normal formulas. Let 

us note that the system is codable (see [V] for the definition). 

Definition 2.1; 1) A figure Y in an indiscernibility equi

valence « is said to be projective iff Y/« is projective in 

the classical sense (see e.g. 1.K3). 

2) A class Y is said to be projective iff there is a totally 

disconnected indiscernibility equivalence *• such that Y is a pro

jective figure in £ . 

Remark: The requirement for the indiscernibility equivalen

ce -=• in 2) to be totally disconnected is superfluous as for eve

ry indiscernibility equivalence there is a finer totally disconnec

ted indiscernibility equivalence. But the proof of this, not quite 

easy, fact exceeds the framework of the paper and we do not need 

this fact here. 

Theorem 2.2: 1) Designated classes are p r o j e c t i v e . 

2) FN is a projective c l a s s . 

3) Projective classes are closed on the definitions by nor

mal formulas. 

Proof: 1) Let Dsg(X), put 5- = X*x. 

2) For oc e N-FN we define £ on oc by the following man

ner: £ = (Id/FN)u ((ex:-FN)K (oc-FN)). Where Id = -? < x ,x> ;x € Vf . 

^ is a totally disconnected indiscernibility equivalence and for 

[*€.<*, -FN we have <u.( /£ )= o$ -FN. (U,([S )/ £ is a singleton and 

thus closed; this implies that (v*(fi )/£ is projective and the-
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refore FN= o c - ( o C - F N ) is projective, too. 

3) This assertion can be proved using the following lemma 

and Theorem 1.5. 

1 2 Lemma 2.3: 1) Let ==- c — be indiscernibility equivalences 

1 2 2 
and let dom( — ) = dom( ==- ) . If X£dom( = ) is a projective figure 

2 1 

in -= then X is a projective figure in --- . 

2) If X is projective, then there is a totally disconnected 

indiscernibility equivalence -* on V such that X is a projective 

figure in ==• . 

3) If X,, X„ are projective, then there is a totally discon

nected indiscernibility equivalence » on V such that X,, X2 are 

projective figures in =• . 

4) If X, Y are projective then X A Y , X-Y are projective. 

5) If X is projective then Vx X and X< V are projective. 

6) If X, Y are projective then X ^ Y is projective. 

7) If X is projective then rng(X) is p r o j e c t i v e . 

8) If X is projective and Dep(Y,X) then Y is p r o j e c t i v e . 

Proof: 1) Id/dom(=r) is a continuous function (see Th . 1 . 1 4 ) 

and X=((Id)~ )"X. Hence (see I K3) X is projective also in i . 

2) Let = be a totally disconnected indiscernibility equi

valence such that X is a p r o j e c t i v e figure in * . Put * = --• u 

u(V-dom(^-0) . dom(==) is a designated class being a figure, hen

ce it is closed and thus X is projective figure also in ~ (see 

-K3). 
1 2 

3) Let -»,= be totally disconnected indiscernibility equiva-
1 2 lences on V such that X,, X2 are projective figures in ^,5= res-1 2 

pectively. Put ==• = =n-=-. Now use 1). 

4) Use 3) and tKi. 

5) Put Pr,(<x ,x2>)=x,, put == = V * V. Pr, is a designated 
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class, a function continuous w.r.t. + £ * and = . Now use the same 

theorem from CKl as in the proof of 1). The proof for X *- V is ana

logous . 

6) Use the equality X x. Y = X *. V A V x Y , 5),4),3). 

7) We firstly prove the following assertion. Let G, be a ge

nerating system for a totally disconnected indiscernibility equi

valence — on V*. V. We define by a normal formula generating systems 

? 3 G«> G-i for totally disconnected indiscernibility equivalences ~ — 

2 1 2 3 

such that =- is finer than =- and <x, ,y,> = ^ x ^ y ^ =-> x^x^ 

(thus Pr, is c o n t i n u o u s ) . Define now G,. If X.,...,X. is the par

tition corresponding to G!Mnl then let us put G",{nl to be the e-

quivalence corresponding to the partition consisting of the Boole

an combinations of PrVX. , . . . ,PrVX. . This partition has maximally 
k x 
2 elements and thus the compactness is preserved. Let =. denote 

3 2 
the product equivalence of v- and V ** V. Now it suffices to put ==. = 

1 X 

* =- n = .We have proved the assertion. To prove 7) use the given 

assertion,, 1) and the equality rng(Y)= PrV(Y). The fact that PrVY 

is a projective figure in =. now follows from CK]. 

8) Use the equality RnY = rng(Rn (Vx Y)) . 

Remark: As we use the classical definition for the predicate 

"to be projective" we do not define the projective codes. Note he

re that if we have a countable amount of projective classes having 

the projective codes bounded from above then their union is also 

projective. 

Definition 2.4: 1) Let =-= denote the indiscernibility equi

valence on rational numbers (also infinite) given by the formula 

x £ y s ( V n t F N ) ( x < - n t y < - n ) v ( V ' n e FN)( t x-y I < 1/n) v 

v ( V n e F N ) ( x > n 8 ( y > n ) . (The factor space RN/-?= is the common 

space of real numbers with + co and -co .) 
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2) For 06 c N-FN we put a~ = -f j3 /«, ; -k ̂  ft Ice < k J ( /3 de

notes here a variable for integers). We usually omit the super

script 06 keeping in mind a fixed infinitely large natural number 

for 06 . 

iff ( Vn€ FN)(3 b,c)(b£ p s c s a & (I c-bi / I a I < 1/n) . 

The reasonability of this definition is justified by the fol

lowing theorem. 

Theorem 2.6. If a £ a. is a figure in =-. then {Q is a. -me

asurable iff JD /== is Lebesgue measurable. Moreover m(p/^.) = 

= sup({st|b|/o<, ) | b c ( o l ) . 

Proof: It suffices to prove that the measure, nonstandardly 

described in the theorem, is 0"-additive, translation invariant 

and such that the measure of intervals is equal to their lengths. 

We omit here the easy proof of the assertion for intervals. The 

invariance on translations is proved by the following considerati

on. Let ft /oC be such that x= st(/3/oc). Let us put (0 = Iy + /3 fac ; 

y c f } .We have then that j?x/-= is obtained by a translation of 

<p /*-* and if b £ jp then bx & ^ x (where bx=4y+/3/°<; ;yeb}). 

6T-additivity we prove in the following theorem generally (not on

ly for f i g u r e s ) . 

Theorem 2 . 7 : If •({->. ;i a FN} is a sequence of disjoint a-me-

asurable semisets then £D = . W-^ t© j is an a-measurable semiset * 

Proof: Let us fix n. Let bi £ <p.c. c. be such that 

(*) |ci-bi|/|a|-<(l/n).2'
(i+2). 

As 0. are disjoint, b. are disjoint, too. Let us prolong the se

quences -C b. ;i€. FN}, *( & ; i e FN } in such a manner that the con

dition *. and the disjointness of b. hold. We prove now that the-
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re are j, f such that j> 2 and | U \ b^\^£ i .£ tf} |/|a|«* l/4n. 

Let us put xi = s t ( | U - l b . ; j & . i f | / | a | ) . Then fx^jic o } is an in

creasing sequence of real positive numbers d& 1. This sequence has 

a limit, We put y = lim x . Now it is easy to prove that there is 
«i-+co n 

an infinitely large # such that y=st( | U i b. ;i € y}/|a|). For 

every infinitely large of such that tf <: x we have 0 -« l^-Cb,; 

cTfi i ^ig\\ /|a| < l/4n and hence we have the inequality also for a 

suitable finite j > 2. If we now put b =U-Cb.;i<j$ and c =U-{ c. ; 

i < y\ then we obtain b £ < p c c S a k |c-b|/|a|-*- 1/n. 

The proof of the assertion that if -fro.jieFNf is a countab

le sequence of disjointed measurable figures being parts of some 

a. then m ( U { p. ;ic FN}/i) =2 .m (^ . / .ss- ) , can be obtained by an 

easy modification of the last theorem (Th. 2.7). 

For a-measurable semisets we now define a measure by the fol

lowing description. 

Definition 2 .8: If p is an a-measurable semiset then we put 

ma(p ) = sup(«fst|b|/|a|);b £ p ) . 

We shall not prove analogues of classical assertions concern

ing the measure. Also, the following easy assertion we give with-

hout any proo f . 

Theorem 2 .9: Let ac b&|a|/|b| 4= °- If p is b-measurable 

then (j> r. a is a-measurable and m (p r» a) = st( |b| /\&\ )-mb(© r> a) . 

Now we can solve our basic problem and namely to prove the 

consistency of the assertion that every projective semiset is a-

measurable for every a 3 q> . . 

Theorem 2.10: Suppose that all the projective subsets of real 

numbers are Lebesguely measurable. If rf> S a is a projective semi-
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set then p is a-measurable. 

Proof: Let £> be a projective figure in a totally disconnec

ted indiscernibility equivalence sL on a. Using the theorem 1.17 

we may suppose that a is a natural number and that the elements of 

the partitions corresponding to the elements of the generating sys

tem are intervals. Hence we shall use oc instead of a in the fol

lowing text. By Th. 1.18 there is a function f such that f:oc > 

-1--4-C/3 /<* ;0 -£/3=< 2oc? and f (x)=?= f (y) =* x £y and Fig(rng(f )/-*=» 

is a closed set with the Lebesgue measure 1. It suffices to justify 

the measurability of (f "~l)"<p w.r.t. (f""1)".*; as f is 1-1. Let 

us denote 0 = (f" 1)"^ , a" = (f~l)"oc and b = {ft /oc ;0 =< ft < 2<x} . 

Fig(f"1)/*^* is continuous (Th. 1.14). Hence Fig^ (#)/-£. is a 

projective subset of the interval ro,2] by tKJ and Lebesguely mea

surable by the assumption. Thus Fig^(ff) is a2-measurable by Th. 

2.6 and & = an Fig . (6*) is a-measurable by Th. 2.9. This comple

tes the proof. 

To prove the consistency of the measurability of projective 

semisets in AST it suffices to justify the validity of the continu

um hypothesis in the Solovay's model (see t3J Th. 43) for Lebesgue 

measurability of projective sets, since the model of AST we obtain 

by the ultrapower (with co as the index set). To obtain the con

sistency we proceed as follows: Let TPft be the initial model (and 

let us suppose W 1= V = L),. let «e be an inaccessible cardinal. 

Further let B be the ( *0,»e) Levy's algebra and G an W - gene

ric ultrafilter on B. The consistency is considered in the model 

W CG3. Remember that in this model ( tltl CG}) all the cardinals 

< tt are countable (in the sense of the model) and ?e = ( A O 

Remember also that (2 °) -*(|B| °). To prove (2 °=^ 1)
W L b Jit 

suffices now to justify the equality |B| = at . Since B has a dense 
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part of the cardinality ae (the set of cond i t ions ) and the s>e -

chain condition for B holds, we have (by Lemma 58 132) |B|£ ae = 

= 36 . 
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