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Abstract: A generalization of the Browder support result in-
volving locally compact exceptional sets is given. As application, 
an inward surjectivity theorem is formulated. 
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Let Y be a Banach space. For each subset Z of Y, let int(Z), 

cl(Z), bd(Z) denote the interior, closure and boundary of Z res

pectively; also, for each ye Y, put ]y,ZL = <{ y + A (--y); 0 < A <r 1, 

ze,Z}. The other notational conventions being standard, let the 

(closed) part B of Y with nonempty boundary be given. We shall say 

that the point y in bd(B) is a support point of B provided ly,Slo 

iB = 0 for some open sphere S c Y \ B , the subset of all such 

points being denoted spt(B). An important problem pertaining to 

the geometry of Banach spaces is that of determinina the "size" 

of spt(B) in bd(B). For example, An the convex case (when support 

point means hyperplane support point in the sense of Bishop and 

Phelps [2]) spt(B) equals bd(B) provided int(B)i-0, the general 

situation being spt(B) is dense in bd(B) (see the above reference); 

a nonconvex version of this assertion was established by Browder 

13]. Since a structural extension of these results cannot be 
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reached as the counterexample in Phelps Liol shows, the only 

consistent way of generalizing them is that an exceptional set 

be admitted in the formulation of the problem; that is, M being a 

(c losed ) subset of B, under what conditions it is true that 

s p t ( B ) \ M is (nonempty and, eventua l ly ) dense in a subset of bd(B) 

not too "bad" in comparison with bd(B) itself? As far as we know, 

the only answer to this question has been indicated by Browder 

[4, Section ll in case of Y being infinite dimensional and M lo

cally relatively compact; it is our aim to complete his result 

both methodologically (the dimension of the space having no effect 

for the argument) and technically (the class of exceptional sets 

we shall use being strictly larger than the above one ) . As applica

tion, a reformulation in these terms of the surjectivity Gautier-

Isac-Penot statements L6l will be given . 

Let in the following B denote a proper closed part of Y (hen

ce bd(B)4=-0). The closed subset M of B will be said to be boundary 

proper when bd(B ) \ M is nonempty. It clearly follows by the above 

remarks that, in such a case 

( 1 ) c l ( s p t ( B ) \ M ) = c l ( b d ( B ) \ M ) . 

The main point is now to indicate sufficient conditions under which 

the second member of ( 1 ) be nonempty. To this end, we shall admit 

in the sequel int(B)-4-0 for, otherwise (when B = bd(B)) each pro

per closed subset of B is automatically boundary proper. Letting 

ebd(B) (the essential boundary of B) stand for the intersection 

c l ( i n t ( B ) ) n bd(B) (note that in the case we dealt with, ebd(B) is 

nonempty since i n t ( B ) cannot be closed in Y) we shall say the 

subset M of B is boundary locally flat when each z€ Mnebd(B) 

has a convex neighborhood U = U with the property 3x,Mn bd(B)o UC 

has no interior points for all x c i n t ( U n B ) . Under these conventi-
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ons, an appropriate answer to the above posed question is contain

ed in the following 

Lemma. Suppose M is closed and boundary locally flat. Then 

M is boundary proper and 

(2) cl(bd(B)\M)3ebd(B). 

Proof. Let ze ebd(B) be given. If z £M, the proof is finish

ed so we may suppose z&M. By the locally flatness assumption, the

re exists a convex neighborhood U of z such that 3x,Mn bd(B)n U C 

has no interior points for all xeint(UoB). Suppose yeint(U\B) 

(not empty, by the definition of bd(B) has been fixed. As (^\,w)l— 

(1 - A ) x +Aw (for the arbitrarily chosen x 6. int(Ur> B)) is conti

nuous in (0,y), an e > 0 and an open sphere W cint(U \ B) around 

y may be found such that W^ = (1 - A ) x +AW enters in int(Un B) 

for each Ji in (0,e>). On the other hand, each segment joining x 

with the points of W must intersect bd(B). This gives W*clx,bd(B)o 

A U [ , which in turn implies W~c 3x ,Mr.bd(B)n U [ in case bd(B)\ M 

is disjoint from U. This fact being impossible, (bd(B)\M)nU is 

not empty and the proof is finished. q.e.d. 

Now, by simply adding to this lemma the considerations in

volved in (1), we get our iirst main result. 

Theorem 1. Letting the proper closed part B of Y with int(B) 

-4- 0, assume Mc B is both closed and boundary locally flat. Then, 

the subset of all support points of B not.belonging to M is 

dense in the essential boundary of B. 

Let us call the subset M of B boundary locally compact when 

Mnbd(B) is locally compact in the usual sense. It is an easy con

sequence of the Ma/ur's result [5, ch.V, sect. 2] that each boun-
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dary locally compact subset is boundary locally flat provided Y 

is infinite dimensional.so, Browder's theorem we already quoted is 

a particular case of the above statement; moreover, observing that 

the union of a boundary locally flat subset of B and a closed (hen

ce proper) subset of int(B) is again boundary locally flat, the 

inclusion between these results is strictly one. Finally, by the 

fact that, in the convex case, closure equals closure of the inte

rior (supposed to be not empty) it follows from Theorem 1 that for 

each proper closed convex part B of Y with nonempty interior and 

each closed boundary locally flat subset M of B, the (hyperplane) 

support points of B not belonging to M form a dense part of bd(B); 

in the absence of this assumption, ebd(B) cannot be replaced by 

bd(B) in our statement as the choice B = SUM where S is a closed 

sphere and M a disjoint from S closed locally compact subset of Y 

(supposed to be infinite dimensional) shows. 

Let in the following the (proper or not) closed part B of Y 

be given. We shall say the subset M of B is strongly locally flat 

(respectively, locally flat when in addition int(B)4=0) provided 

for each zeM (respectively, for each z e M rs cl(int(B))) there ex

ists a convex neighborhood U = U of z with the property 3x,Mr.UL 

has no interior points for all xeint(U)r,B (respectively, for all 

x eint(UoB)). In the same context we let H(B)(y) indicate (for 

each ye B) the translate inward set of y with respect to B as in

troduced in Halpern and Bergman C71 that is, the subset of all 

combinations X" (z-y) with 0 < & & 1 and zeB. Now, as a comple

tion of Theorem 1, our second main result is 

Theorem 2. Suppose there exists a proper strongly locally 

flat (respectively, a locally flat (hence proper) when int(B)4=0) 

closed subset M of B with the property 
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(3) H(B)(y) is dense in Y for each yeB\M. 

Then B = Y. 

Proof. Suppose by contradiction B is a proper (closed) part 

of Y. It immediately follows by the above lemma plus the remarks 

concerning (1) that in either case (modulo int(B)) spt(B)\M is 

not empty. Let y be any point of this subset; there exists by de

finition an open sphere S of YxB such that ly,S[nB = 0. This 

shows y+H(B)(y) is disjoint from S and (3) will be violated. This 

ends the argument. q.e.d. 

An interesting situation treatable by this procedure is to be 

described as follows. Let us define after Penct L9] the Bouligand 

tangent cone of y with respect to B as the (closed) subset K(B)(y) 

of all weY appearing as limits of the sequences ( A" (z ~y)) 

with (A ) in (0,11 converging to zero and (z ) in B converging 

to y or, equivalently, the subset of all weY for which 

lim inf A" 1 dist(y+Aw,B) = 0 as A --> 0+. In these terms, a suf

ficient condition for (3) to be valid being 

(4) K(B)(y) = Y for each yeB^M 

one may conclude Theorem 2 is an exceptional set extension of the 

main result of Gautier Isac and Penot C6). As a variant of this 

construction we let J(B,e)(y) indicate, for each e > 0, the sub

set (in YQ = Y\{0}) of all elements A_1(z-y) with A > 0, z £ B, 

0 < l! z-y II < e , and 3(B)(y) (the asymptotic direction set of y with 

respect to B under Browder's terminology L4, Introduction!) the 

intersection over ?/> 0 of cl°(3(B, & )(y)) where cl° means the 

closure modulo Y-. ; in other words, we3(B)(y) provided it is a 

limit of the sequence (A" (z-y)) with (z ) in B tending to y and -i n n J n 

(A ) a sequence in (0,cO) which, from this fact must converge 
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to zero (eventually on a subsequence) and this shows w e K ( B ) ( y ) . 

It immediately follows by a standard connectedness argument that 

(4) will be surely fulfilled when 

(4)' 3(B)(y) = YQ for each y c B N M 

is to be accepted, and this tells us Theorem 4' of Browder (see 

the first section of the above reference) basic to the considera

tions he developed in that context, may be also deemed as a parti

cular case of Theorem 2 (the intervention of a connected open set 

of Y in place of Y itself having no effect for the substance of 

the argument); we have to remark at this moment that, in addition 

to being reductible to (4), condition (4)' requires the (superflu

ous modulo (4)) assumption each y e B \ M be an accumulation point 

of B, which makes Browder's construction of J(B)(y) (with the use 

of "cl0" in the detriment of "cl") to have neither a theoretical 

nor a practical j u s t i f i c a t i o n . In particular, taking B = T(X) whe

re T is a multifunction from the Banach space X into Y and intro

ducing the upper Dini derivative at the point (x,y) e P(T) (the 

graph of T) in the direction a € X as the subset DT(x,y)(a) of all 

beY appearing as limits of the sequences (a .~ (z -y)) with (A ) 

in (0,1J converging to zero and (z ) in Y with z € T(x+ A a ), 

ncN (for some sequence (a ) (with a —•> a) in X) converging to 

y, condition (4) follows at once from 

(5) DT(x,y)(X) * Y for each yeT(X)xM and some xcT"*1y 

if we take Proposition 1 of Gautier Isac and Penot (see the above 

reference) into account; as a consequence, the corresponding ver

sion of Theorem 2 extends the normal solvability of Browder s 

results (exposed <in the introductory part of the above quoted pa

per) based on Giteaux derivatives and comprising those of Pokho-

zhayev till, as well as the Isac surjectivity results [8] based 

29S 



on DeBlasi derivatives. For a number of related viewpoints concer

ning this problem we refer to Altman til. 
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