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COMMENTATIONES MATHEMATICAE UN1VERSITATIS CAROilNAE 
27,3 (1986) 

A NONSTANDARD TREATMENT WITH QUANTITIES 
Kurel CUDA 

Abstract: The following assertion is consistent: If we com­
pute by two different manners(using considerations of "integral 
calculus" with the infinitely small quantities) two values x,, x 2 

of a quantity and we use only internal means and the predicate 
"to be infinitely small" then x,/x2 = 1. An example is given pro­
ving that the assertion does not hold if we use the predicate 
"to be a standard real number" . 

Key words: Standard, nonstandard, infinitely small, monad, 
indiscernibility equivalence. 

Classification: Primary 03E7Q 

Secondary 03H05 

Introduction. Let us formulate the assertion from the abst­

ract exactly. Let x = y denote ( yn standard natural number) 

(|(x/y)-l|<l/n). 

Assertion >K : If F is a mapping having the following properties: 

1) F is defined by a normal formula (only the quantifica­

tion of internal sets is allowed) using the predicate "to be a 

standard natural number" and F is a part of a ^finite set. 

2) F is one-one. 

3) dom(F)c -Ua,b); La,b) £ LO.Xj)} fcrng(F) c 4 fc.d) ; [c,d)c 

fi C0,x2)i8c( yi 1,I 2edom(F))(I 1nI 2= o)*.( V I l f I 2 * rng(F)) 

(I 1
r>I 2

 = °>-

4) ( V t e C O , x1))(3 !ta,b)sdom(F))(t€ ta,b))&.(yue[0,x2)) 
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( 3 Kc,d)€ rng(F))(u € [c,d)). 

5) ( Va,b,c,d)(lc,d) = F( Ca,b)) -* d-c = b-a) . 

Then x, = x2 holds. 

Remark: We express the assertion * in other words. Let us 

have two partitions (they need not be internal sets) and a corres­

pondence between these two par t i t ions . The partitions and the cor­

respondence are constructed using only internal means and the no­

tion "to be an infinitely large natural number " . Moreover, we 

need the corresponding elements to be near (in its length) . Then 

the basic intervals are also near (in the same sense). 

Thus if we have two procedures how to compute a quantity as 

a sum of infinitely small parts and we are able to describe a one-

to-one correspondence between terms of these two sums such that 

the corresponding parts are near (a different neglection), then 

we obtain the same (in standard part) resu l t . 

It is proved that if every projective part of real numbers 

is Lebesguely measurable, then the assertion :* is valid in enlar­

gement. Especially we have the consistency of *• by Solovay s re­

su l t . We have also the consistency of *. with AST (alternative 

set theo ry ) . The assertion may be also interesting from, the 

point of view of nonstandard models of arithmetic . 

Technical means: We shall use the set theoretical apparatus. 

But compared with the classical set theory we add a new class 

FN =An; n is a standard natural number 1 and all the classes de­

finable from FN by normal formulas (the Gbdelian closure of FN). 

Thus we shall work in a special version of the theory of semisets 

(see tVHl and cf. also LNj,\£),IBB)). The main difference in 

comparison with the classical set theory lies in the possibility 

of the existence of a subclass of a set not being a set (a proper 

semiset). The powerset is then the system, of all the parts being 
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sets and not the system of all the possible parts . We use notions 

and points of view from nonstandard analysis and alternative set 

theory. The proof o! the consistency of * will be done in two 

steps. We prove .*. using some axioms in the first section; in the 

second one we discuss the consistency of the given axioms. To the 

end of the first section we construct (for any infinitely large 

oo ) a one-one mapping of oc onto 2oc using the predicate to be 

a standard real number (cf. also tCvi}). 

Let us stress the fact that the results of [C5J are substan­

tially used in the proof of the consistency of .* -

§ 1. The proof of x from some special axioms. We use three 

sorts of variables: x,y,... for sets, X,Y,... for designated 

classes and classes. Every set is a designated class and every de­

signated class is a class. The fact that a class is a designated 

class is expressed by Dpg(X). If we restrict ourselves on sets and 

designated classes, then our axioms are all the axioms of a speci­

al case of G.B. set theory. The axioms of infinity, regularity 

and choice are irrelevant for our considerations. Let us note that 

for every designated class X we have (Vx)(3y)(Xnx = y). 

For classes we use the following axioms 

1) (3Y)(XeY)=-» (3x)(X = x) (Sets) 

2) ( V x K x %X m x eY) —^ x = Y (Ex tens iona l i t y ) 

"*.) If <f (x ,X1,,. . . ,X ) is a formula in which only set varia­

bles are quantified (i.e. a normal formula), then 

( VX1,...,Xn)(3Y)( Vx)(x6.Y»^(x,X1,. . .,Xn)) 

(Schema of existence). 

Theories of the given type have been introduced and investi­

gated in [BBJ. A special case of such a theory is AST (the system 

of axioms from 1511'), where the role of designated classes play 
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Sdy classes or Sd£ classes. 

Notation: We use the common notation. Moreover, we use oG , 

/3,3T,... for infinitely large natural numbers (introduced below) 

and 6, f , | ,J ,.>. for semisets (subclasses of sets). By Card(x) 

or |x| we denote the cardinality of x (from the point of view of 

G.B. set theory). We also use |x| for the absolute value in the 

context of the real number system. We use furthet N for the set 

or designated class of natural numbers, i.e. ordinal numbers less 

than the first limit ordinal in the view-point of G.B. set theory. 

Axiom FN: ( 3 X% N)( V n € X)(n c X fc( V Y)( 3 y j (Yn n = y)). 

It appears that there is only one proper class X with the 

property described in this axiom and we denote this class by FN. 

The first part of the conjunction describes the completeness of 

FN and the second one may be understood as the standardness of 

elements of FN. 

Definition 1.1: IL(o6)s oc c N-FN ( oc is infinitely large). 

Definition 1.2: Fin(X)s( VY cX)(Yc V). 

Here we are not consistent with the Tarski'^ definition. 

Definition 1.3: Count(X)s(3F)(F:X -«-> FN) (X is countable). 

Here we are also inconsistent with the commonly used defi­

nition. Our definitions of Fin(X) and Count(X) are consistent 

with the external meaning of these notions. 

Axiom of prolongation: Every countable function is a part 

of a set function. 

Axiom of weak choice: ( VR,dom(R)=FN)(.3 F ,dom(F)=FN) 

(FCLR&F is a function). 

Let us note that this axiom is not a consequence of the axi­

om of choice for designated classes, as the well ordering of V 
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given by this axiom is the well ordering only with respect to de­

signated classes. 

Axiom m6f: ( V a ) ( V f £ a)( VneFN)(ac,d5a)(c £JD S d S a &. 

fc|d-c|/|a|< 1/n). 

The property described in this axiom is connected with the 

nonstandard treatment of measure due to Loeb and Anderson. 

To describe another property (namely the r e a l i t y ) of classes 

we shall need some nonstandard topological notions (cf. tV . } ) . 

Definition 1.4: Let R be reflexive and symmetric. R is said 

to be- compact iff ( V x S dom(R))( n F i n ( x ) ===$> (Jy, Z € x ) ( y 4 ~ z & 

S < < y , z > e R ) ) . 

Definition 1.5: A) Let G be a designated system of equiva­

lences (i.e. Dsg(G)&dom(G) e N 8c( Voc 4 dom(G))(G"-£oc} is an equi­

va lence ) . G is said to be a generating system of a totally discon­

nected indiscernibility equivalence iff 

1 ) dom(G )e N-FN 

2 ) ( V n e F N ) ( G " - i n l i s compact ) 

3 ) ( Voc e d o m ( G ) ) ( o c 4 0 = * G M o c l & G" i o& - 1 } ) . 

B) If G is a generating system of a totally disconnected in­

discernibility equivalence, then 0 i G" i n $;n eFN$ is said to-be 

a totally disconnected indiscernibility equivalence. 

In the paper we shall omit the words totally disconnected in 

the notion indiscernibility equivalence as we shall use (except 

of = used for other purpose) only totally disconnected indiscer- * 

nihility equivalences-

Definition 1.6: Let -? be an indiscernibility equivalence. 

1) Fig^ (X) = (-0"X. (The figure of X) 

2 ) $L$2 (X) s X = Figs (X) . (X is a f igure ) 

Axiom of realness: ( V X ) ( 3 ~ )(= is an indiscernibility 
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equivalence ^ #t# s (X)). (Cf. ICV13.) 

Let us now prove a theorem of a set theoretical form playing 

a fundamental role in the proof of the main result. 

Theorem 1.7 (on approximation): If cc e N and X has the fol­

lowing property ( V x-*X)( |x| * oc) , then ( Vn &FN)( 3 b)(X Sb &. 

8c|b|«-oo(i + 1/n)). 

To prove the theorem we use the axioms of prolongation, of 

weak choice, m6f and of realness. The theorem can be easily 

strengthened to the following less readable, version: 

( Vx SX)( Vn *FN)(|x| -* «T (1+l/n)) «--}> ( V n e FN)( 3 b)(X S b & |b| * 

*cc(l+l/n)). 

At first let us prove two lemmas. For the proofs let us fix 

dC for a naUiral number such that (Vx£X)(|x| *koc) and let G 

denote the generating system for an indiscernibility equivalence 

in which X is a f i g u r e . 

Lemma 1 .8: ( V t *X)( 3 n * FN) |(G"*nf)"4tl | *- oc) . 

Proof: As 35£^(X) we have ( Vo e dom(G)~FN)( Vt € X) 

C(G" -t<rl )" -ttlE x) and hence |(G"4o I )" 4t} | ̂  oc , now it suffi­

ces to use overspill for finishing the proof. 

Lemma 1.9: A set sequence A.y^ of disjoint sets such that 

y, are equivalence classes of equivalences from G and |y.J ± re 

and X 6 Uiy.; icFNj can be d e f i n e d . 

Proof: We choose successively y. as the equivalence classes 

of equivalences from G (we start from the largest - the coarsest) 

which have the property Jy, | =.£ oc and which are disjoint with the 

formerly chosen . From the compactness we have that for any n €. FN 

there is only a finite number of equivalence classes of G" In}. 

Using L. 1.8 we know that for every t* X there is yr such that 

t«yc and y^ = (6'4nJ)"-lt* for a certaintn. From these facts we 
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have X = U t y ^ l c FN . 

Remark: The lemma has a small incorrectness as it is possib­

le that the sequence •Cy.} is finite. But the explicit expression 

of this possibility would make the assertion less readable.-

Let us now prove the theorem on approximation. Let iyA deno­

te the sequence from L. 1.9. Let us fix nfeFN. We know (axiom mSf) 

that for every icN there are b ^ c i . ; y i such that b^s y ^ X c c . c 

c y. & |c. -bj-l/oc < l/(2n*2 ). Using weak choice and prolongation 

we obtain set sequences 4b«; f m j3f >4c-; | € /$ } having the pro­

perties bi£ ci& yi 8c |ci-bi|/«/-<l/(2n«2 ) also for infinite i. 

(Thus e.g. elements of the sequence 4b^l are disjoint.) Let us put 

d, = Uib.;j»fcil. For every i c FN we have d. £ X and hence |d.|--f<-C. 

Let us put e. = U U . ; -j.£i$. For every icFN we have Je* | < 

< |d. |(l*(l/2n).(. SI. 2"^)).6oc(l+l/n). To finish the proof it suf-

fices now to use overspill and put b « e^ for a suitable cf'c N-FN. 

The following example proves that the estimate of the cardi­

nality of the approximating set b cannot be improved. 

Example: Let <f e N-FN. Let us put ec = 2°" . We define 

F:oc «—** ir ;(V n c F N ) ( r < « (l+l/n))l. Let F be such that the 

righthand side half monads of the numbers 1/2 for ic FN 8tA4-0 

translate in the righthand side direction. Formally: If 

(3i6FN,i*0)( |3>(ec/2i)gt(VncFN)(0< («* ̂ ^-(l+l/n))), then 

F(f3) = |3+(oc/2i)»F( ft ) = fi in other cases. Now, every set part 

of F has cardinality less than co (as dom(F) =oc). If xsF then 

( V r *• N-FN)(|x| ><* (1+1/r )) as to properties of rng(F). 

Now we prove the main result. 

Theorem 1.10: Let F be a one-one mapping having the follow­

ing properties: 

1) dom(F) is a partition of the interval t0,x,) 
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rng(F) is a partition of the interval C-0,x2) 

(the partitions need not be sets) 

2) If lc,d) » FUa,b)) then (b-a) = (d-c) 

3) (3 v)(Fc v&card( v)cN) 

Then x, * x2. 

Proof: Oue to the symmetry it suffices to prove only 

( Vn*FH)(x 2< x^d+l/n)). We suppose (without loss of generality) 

(d-c)/(b-a) <(l+l/4n) for every tuple of intervals < Cc,d), fa,b)>c v 

Choose f infinitely large in such a manner that for every inter­

val ta,b) from dom(v), 7*(b-a) is infinitely large. Let 1, b be 

numbers of the form |/^ such that ? is the least 2r a, and b is 

the largest* b (where ta,b) are intervals from dom(v)) . Let r^,rJ) 

denote an interval such thst tg,d) *?l.c,d) and d-c * (b"-f )(l+(l/2n)) 

for every <tc,d),ta,b)>cv. Let us divide intervals Ta.b) and Cc,d) 

on (!-!)•x subintervals of the same length. From F, a one-one 

correspondence F can now be easily described such that the inter­

vals from dom(F) have the same length 1 / T » are disjoint and in­

cluded in tO,x,); the intervals from rng(F) have the same length 

(1/gr)*(l*(l/2n)) and cover CQ,#2). The estimate x 2< x,»(l+(l/n)) 

we now obtain easily from the theorem on approximation (Th.1.7). 

To the end of the section let us give an example proving that 

by using a predicate choosing from every monad of the interval 

tO,l) one element, we can define, by a normal formula, for every 

infinitely large oc a one-one mapping F: cc <—> 2cc (cf. tCv ID). 

From F we can easily define a one-one correspondence between the 

partitions of -0,x) and of t0,2x). (But the idea of the construc­

tion leads in the opposite direction.) Remember that a monad is 

the class of elements being infinitely close one to the other and 

that we can obtain the choosing predicate from the predicate 
Mto be a standard real number". We define F as follows: 
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For 0 < x < l where x i s the chosen element of a monad, le t x be the 

least ft < oc such that fi/oc£x. 

For p> such i tha t |3/oc = x & G < x « r l put ? ( & ) • *Sc • ^ , 

fo r / i such tha t 0/oc « 0 out F (£ ) • /3 and 

fo r /3 such tha t fi/oc £ 1 put T(/5 ) F oc +/3 . 

Note tha t FN used fo r the d e f i n i t i o n of * qan be obtained by 

a normal formula from the choosing predicate V(x)v e .g . by 

n c FN v he N 8 e ( a x 1 , x 2 ) ( V ( x 1 ) 8 t V ( x 2 ) f e x 1 4 ' X 2 a | x 1 - x 2 | < l / n ) . 

§ 2. The consistency of axioms. In this section we discuss 

the consistency of the axioms used in the first section. 

The axiom FN: FN can be interpreted as the external set of 

standard natural numbers (e.g. constants for ..nstural numbers in 

the ultrapower). 

The axiom of prolongation: This axiom can be obtained from 

some forms of saturatedness of the model (see IPS.J), or from the 

axiom of realness and the weak form of prolongation (see £t 33). 

The weak form of prolongation needs* the existence of the prolon­

ging function only for functions from FN to FN and thus it is 

fulfilled e.g. in enlargements (the enlargement of the function 

restricted on an infinitely large natural number). For nonstandard 

models of arithmetic (interpreting FN as o ) Me obtain the weak 

form of prolongation e.g. when 4*(<**>) Is the standard system of 

the model. In the ultrapower we obtain the prolongation e.g. by 

the following considerations:: For the ultrapower with o> as the 

index set let us note at first that F (the function to be prolon* 

ged) can be understood as a mapping from *> to ̂ V (where V deno­

tes the universe of the basic model). Let us put f(n) * 

= U(F(l))(n),l>,<(F(2))(n),2>,...,<(F(n»(n),n>i to obtain the 

prolonging function. For the ultrapower with *^fin(A) as an in­

dex set (the ultrapower constructing the enlargement) we proceed 
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analogously. Me only use the cardinality of the corresponding set 

of the index set for the number of elements of the n -tuple (i.e. 

for a * #fin(A) we put f(a) * 4<(F(l))(a),l>,<(F(2))(a),2>,..., 

<(F(n))(a),n>} , where |a| = n). 

The weak axiom of choice: In the ultrapower we use an analo­

gous consideration as for the prolongation axiom using a suitable 

form of the axiom of choice in the basic model. In the framework 

of nonstandard models of arithmetic we can obtain the weak axiom 

of choice from the "second order scheme of choice". In AST we ob­

tain the weak choice from the axiom of choice. 

The axioms of realness and m&t: In tC 53 it is proved that for 

the classes defined by normal formulas from FN the axiom of real­

ness holds and also the consistency of the axiom mef for these 

classes is proved there. 
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