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A NONSTANDARD TREATMENT WITH QUANTITIES
Karel CUDA

Abstract: The following assertion is consistent: If we com-
pute By two different manners(using considerations of "integral
calculus" with the infinitely small gquantities) two values X1 Xg

of a quantity and we use only internal means and the predicate
"to be infinitely small" then XI/XZ %z 1. An example is given pro-

ving that the assertion does not hold if we use the predicate
"to be a standard real number".

Key words: Standard, nonstandard, infinitely small, monad
indiscernibility equivaler’u:e. ’ ' S

Classification: Primary 03E70
Secondary 03HO5

Introduction. Let us formulate the assertion from the abst-
ract exactly. Let x # y denote ( ¥n standard natural number)
((x/y)-1l=<1/n).

Assertion X : If F is a mapping having the following properties:

1) F is defined by a normal formula (only the quantifica-
tion of internal sets is allowed) using the predicate “"to be a
standard natural number" and F is a part of a *finitq set.

(3

2) F is one-one.

3) dom(F)c {la,b);la,b)c [0,x,)} 8 rng(F) cilc,d);[c,d)g

e 10,x,)3 & YI,I,edom(F))(I;nIy= 0)&( vI;,I,e rng(F))
(11012 = 0).

4) (¥tel0, x{))(3!a,b) e dom(F))(te la,b))&( Yuel0,x,))
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(3'lc,d)erng(F))(uefc,d)).

5) (Va,b,c,d)({c,d) = F(la,b)) =» d-c % b-a).
Then x, E x, holds.

Remark: We express the assertion x in other words. Let us
have two partitions (they need not be internal sets) and a corres-
pondence between these two partitions. The partitions and the cor-
respondence are constructed using only internal means and the no-
tion "to be an infinitely large natural number ". Moreover, we
need the corresponding elements to be near (in its length). Then
the basic intervals are also near (in the same sense).

Thus if we have two procedures how to compute a quantity as
a sum of infinitely small parts and we are able to describe a one-
to-one correspondence between terms of these two sums such that
the corresponding parts are near (a different neglection), then
we obtain the same (in standard part) result.

It is proved that if every projective part of real numbers
is Lebesguely measurable, then the assertion x is valid in enlar-
gement. Especially we have the consistency of x by Solovay's re-
sult. We have also the consistency of x with AST (alternative
set theory). The assertion may be also interesting from, the
point of view of nonstandard models of arithmetic.

Technical means: We shall use the set theoretical apparatus.
But comparéd with the classical set theory we add a new class
FN =4n; n is a standard natural number} and all the classes de-
finable from FN by normal formulas (the Godelian closure of FN).
Thus we shall work in a special version of the theory of semisets
(see (VH) and cf. also INi,i(),.BB)). The main difference in
comparisoh with the classical set theory lies in the possibility
of the existence of a subclass of a set not being a set (a proper

semiset). The powerset is then the system of all the parts being
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sets and not the system of all the possible parts. We use notions
and points of view from nonstandard analysis and alternative set
theory. The proof of the consistency of >x will be done in two
steps. We prove k using some axioms in the first section; in the
second one we discuss the consistency of the given axioms. To the
end of the first section we construct (for any infinitely large
o~ ) a one-one mapping of o« onto 2« using the predicate to be
a standard real number (cf. also [£V1]). _

Let us stress the fact that the results of [{5] are substan-
tially used in the proof of the consistency of x .

§ 1. The proof of x from some special axioms. We use three

sorts of variables: x,y,... for sets,-X,Y,... for designated
classes and classes. Every set is a designated class and every de-
signated class is a class. The fact that a class is a designated
class is expressed by Dsg(X). If we restrict ourselves on sets and
designated classes, then our axioms are all the axioms of a speci-
al case of G.B. set theory. The axioms of infinity, regularity
and choice are irrelevant for our considerations. Let us note that
for every d.esignated class X we have (Vx)(3y)(Xnx = y).

For classes we use the following axioms

1) (3V)(XeY)=» (3x)(X = x) (Sets)

2) (Vx)(xeX=xecY) =>X =Y (Extensionality)

3y If ?(x,xlz...,xn) is a formula in which only set varia-
bles are quantified (i.e. a normal formula), then
CYXp, o XAV xe Y=g (x,Xy,...,X))

(Schema of existence).

Theories of the given type have been introduced and investi-

gated in [BBJ.AA special case of such a theory is AST (the system

of axioms from [511), where the role of designated classes play
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Sd,, classes or Sdﬁ classes.

Notation: We use the common notation. Moreover, we use o ,
p, %,... for infinitely large natural numbers (introduced below)
and 6, ©,§,8,.~. for semisets (subclasses of sets). By Card(x)
or |x| we denote.the cardinality of x (from the point of view of
G.B. set theory). We also use |x| for the absolute value in the
context of the real number system. We use furthe. N for the set
or designated class of natural numbers, i.e. ordinal numbers less

than the first limit ordinal in the view-point of G.B. set theory.

Axiom FN: (AXENI(VneX)(neX&(¥Y)(Ay)(Ynn = y)).

It appears that there is only one proper class X with the
property describeéd in this axiom and we denote this class by FN.
The first part of the conjunction describes the cumpleteness of
FN and the second one may be understood as the standardness of

elements of FN.
Definition 1.1: IL(e)=oc e N-FN (o is infinitely large).
Definition 1.2: Fin(X)=(VYcX)(Ye V).
Here we are not consistent with the Tarski’s definition.

Definition 1.3: Count(X)=(3AF)(F:X <«>FN) (X is countable).
Here we are also inconsistent with the commonly used defi-
nition. Our definitions of Fin(X) and Count(X) are consistent

with the external meaning of these notions.

Axiom of prolongation: Every countable function is a part

of a set function.

Axiom of weak choice: ( VR,dom(R)=FN)(2F, dom(F)=FN)
(FERXF is a function).

Let us note that this axiom is not a consequence of the axi-

om of choice for designated classes, as the well ordering of V
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given by this axiom is the well ordering only with respect to de-

signated classes. ,

Axiom mgf: (Ya)(Vp € a)(VneFN)(3c,dsa)(c spsdsa &
&ld-c|/lal< 1/n). .

The property described in this axiom is connected with the
nonstandard treatment of measure due to Loeb and Anderson.

To describe another property (namely the reality) of classes

we shall need some nonstandard topological notions (cf. LV]).

Definition 1.4: Let R be reflexive and symmetric. R is said
to be compact iff (Vx&dom(R))(AFin(x) => (3y, zex)(y+z & .
&<y,zYeR)).

Definition 1.5: A) Let G be a designated system of equiva-
lences (i.e. Dsg(G)& dom(G) e N %( Vex & dom(G))(G6"{ox} is an equi-
valence). G is said to be a generating system of a totally discon-
nected indiscernibility equivalence iff

1) dom(G)e N-FN

2) (VYneFN)(G"4 nt is compact)

3) (Y edom(G))(cc*0 =6"{x} £ 6" {00 - 13).

B) If G is a generating system of a totally disconnected in-
discernibility equivalence, then N{G"{n};neFN3% is said to be
a totally disconnected indiscernibility equivalence.

In the paper we shall omit the words totally disconnected in
the notion indiscernibility equivalence as we shall use (except
of £ used for other\purpose) only totally disconnected indiscer-

nibility equivalences.

Definition 1.6: Let ¥ be an indiscernibility equivalence.
1) Fig, (X)
2) Big . (X)

(5)"X. (The figure of X)

]

X = Figg (X). (X is a figure)

Axiom of realness: (V¥ X)(3 = )(Z is an indiscernibility
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equivalence % Zigx (x)). (cf. LEV1l.)
Let us now prove a theorem of a set theoretical form playing

8 fundamental role in the proof of the main result.

Theorem 1.7 (on approximation): If o e N and X has the fol-

lowing property (Vx&X)(|x| &), then (VYneFN)(3b)(XShb &
&|bj< (1 + 1/n)).
. To prove the theorem we use the axioms of prolongation, of
weak choice, mé&f and of realness. The theorem can be easily
strengthened to the following less readablg version:

(Vx e€X)(VneFN)(|x]| £0¢(1+1/n)) => (¥neFN)(Ab)(Xsb&|b| =
% o (1+1/n)).

At first let us prove two lemmas. For the proofs let us fix

o« for a natural number such that (Vx&X)(|x| £c) and let G
denote the generating system for an indiscernibility equivalence

in which X is a figure.

L

Lemma 1.8: (VteX)(3nefN) |[(G"{In})"{t} | = x).
Proof: As %Fig(X) we have (Yo e dom(G)-FN)(VteX)
((6"{a°3 )" 1t¥c X) and hence |[(G"{o0"% )" 4t} |2, now it suffi-

ces to use overspill for finishing the proof.

Lemma 1.9: A set sequence {yi} of disjoint sets such that
y; ere equivalence classes of equivalences from G and |yi| P
and X & U{yi; ie FN} can be defined.
. Proof: We choose successively y; as the equivalence classes
of equivalences from G (we start from the largest - the coarsest)
which have the property Iyil < o and which are disjoint with the
formerly chosehA From the compactness we have that for any ne FN
there is only a finite number of equivalence classes of G" in?.
Using L. 1.8 we know that for every ts X there is yé such that

tcyg and Yg =(6"tn})"1t} for a certain n. From these facts we
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have X = U’Lyi;ieFN .

Remark: The lemma has a small incorrectness as it is possib-
le that the sequence {yi} is finite. But the explicit expression
of this possibility would make the assertion less readable.-

Let us now prove the theorem on approximation. Let {yii deno-
te the sequence from L. 1.9. Let us fix ne FN. We know (axiom m&fr)
that for every i€ N there are big cié Yy such that bls Y0 Xe ci._c_
sy;&log-bgl/ec< 1/(2n.2Y). Using weak choice and prolongation
we obtain set sequences {bg; fe ﬁ},{cf; § e Bt having the pro-
perties b;Sc, & yi&|ci-bi]/w <1/(2n021) also for infinite i.
(Thus e.g. elements of the sequence {bi} are disjoint.) Let us put
d = Utbj;j &«il. For every i € FN we have d;< X and hence |dil-‘°(.
Let us put e; = U4 cys j£i%. For every ie FN we have Ieil <
< ldil(1+(1/2n)»(é§4/2'3))acc(l+1/n). To finish the proof it suf-
fices now to use overspill and put b = ey for a suitable d”e N-FN.

The following example proves that the estimate of the cardi-
nality of the approximating set b cannot be iwmproved.

Example: Let d e N-FN. Let us put e« = 2°ﬂ. We define
Fioxt «> $7;(VneFN)(y <« (1+41/n))3. Let F be such that the
righthand side halfmonads of the numbers 1/21 for ie FN &i<0
translate in the righthand side direction. Formally: If
(3iefN,i%0)( B> (ec/2) & (VneFN)(B < (/2Y)-(141/n))), then
F(B) =I3+(°°/21)-F([5) =f3 in other cases. Now, every set part
of F has cardinality less than o (as dom(F) =cc). If xoF then
(V¥ € N-FN)(|x| > e (1+1/2)) as to properties of rng(F).

Now we prove the main result.

Theorem 1.10: Let F be a one-one mapping having the follow-
ing properties:
1) dom(F) is a partition of the interval [O,xl)
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rng(F) is a partition of the interval LO,xZ)
(the partitions need not be sets)
2) 1f lc,d) = F([a,b)) then (b-a) 2 (d-c)
3) (3v)(Fc vkcard( v)eN)
Then x, : Xq.

Proof: Due to the symmetry it suffices to prove only
- (Vn-FN)(x2< x,(1+1/n)). We suppose (without loss of generality)
(d-c)/(b-a) <(1+1/4n) for every tuple of intervals ([c,d),[a,b))> eV
Choose 79 infinitely large in such a manner that for every inter-
val [;,b) from dom(v), 7 .(b-a) is infinitely large. Let &, b be
numbers of the form §/y such that ¥ is the least z a, and b is
the largest « b (where [a,b) are intervals from dom(v)). Let [T,d)
denote an interval such that 1&,d) 20c,d) and d-¢ = (B-3)(1+(1/2n))
for every {lc,d),la,b)>ev. Let us divide intervals [a,b) and [E,d)
on (b-8). 7 subintervals of the same length. From F, a one-one
correspondence F cen now be easily described such that the inter-
vals from dom(F) have the same length 1/4 , are disjoint and in-
cluded in tu,xl); the intervals from rng(F) have the same length
(1/9)+(1+(1/2n)) and cover [0,x,). The estimate x,< x;-(1+(1/n))
we now obtain easily from the theorem on approximation (Th.1.7).

To the end of the section let us give an example proving that
by using a predicate cﬁoosing from every monad of the interval
{0,1) one element, we can define, by a normal formula, for every
infinitely large &« a one-one mapping F: o > 2o (cf. LV 1)).
From F we can easily define a8 one-one corresponderice between the
partitions of [0,x) and of [0,2x). (But the idea of the construc-
tion leads in ‘the opposite direction.) Remember that a monad is
the class of elements being infinitely close one to the other and
that we can obtain the choosing predicate from the predicate

“to be a standard resl nu-bgs". Ve défine F as follows:
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For 0< x<1 where x is the chosen element of s monad, let X be the
least 3 <o such that B/« 2 x.

For f suchithat B/« = x&0<x<1 put F(B) =% +f,

for f3 such that @/« 2 0 put F(B) = B and

for 3 such that p/or.\é 1put F(B) =ex+f3 .

Note that FN used for the definition o! 2 gan be obtained by
a normal formula from the chocsing predicate V(x) e.g. by

NEFN = A€ N&(3x;,x ) (VX )& V(xy) Bxyh xp & |x1-x2|< 1/n).

§ 2. The consistency of axioms. In this section we discuss

the consistency of the axioms used in the first section.

The axiom FN: FN can be interpreted as the external set of
standard natural numbers (e.g. constants for .natural numbers in
the ultrapower). -

The axiom of prolongation: This axiom can be obtained from
some forms of saturatedness of the model (see [PS]), or from the
axiom of realness and the weak form of prolongation (see [ 31).
The weak form of prolongation needs' the existence of the prolon-
ging function only for functions from FN to FN and thus it is
fulfilled e.g. in enlargements (the enlargement of the function
restricted on an infinitely large natural number). For nonstandard
models of arithmetic (interpreting FN as <« ) we obtain the weak
form of prolongation e.g. when ®(w) is the standard system of
the model. In the ultrapower we obtain the prolongation e.g. by
the following consideraiions;: For the ultrespower with o as the
index set let us note at first that F (the function to be prolone
‘ged) can be understood as a mapping from co to @y (where V deno-
tes the universe of the basic model). Let us put f(n) =
= 4<(F(1))(n),1>,4(F(2))(n),2>,...,L(F(n))(n),n>} to obtain the

prolonging function. For the ultrapower with 1P}1n(A)"‘ an in-

dex set (the ultrapower constructing the enlargement) we proceed
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analogously. We only use the cardinality of the corresponding set
of the index set for the number of elements of the n -tuple (i.e.
for a e ?rin(A) we put f(a) = {<(F(1))(a),1>,K(F(2))(a),2),...,
{(F(n))(a),n>} , where |a] = n).

The weak axiom of choice: In the ultrapower we use an analo-
gous consideration as for the prolongation axiom using a suitable
form of the axiom of choice in the basic model. In the framework
of nonstandard models of arithmetic we can obtain the weak axiom
of choice from the "second order scheme of choice". In AST we ob-

tain the weak choice from the axiom of choice.

The axioms of realness and m&f: In I 5] it is proved that for
the classes defined by normal formulas from FN the axiom of real-
ness holds and also the consistency of the axiom méf for these
classes is proved there.
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