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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,1 (1987) * 

A CONTRIBUTION TO TOPOLOGY IN AST: COMPACTNESS 
K. CUDA 

Abstract: Compact of -relations Sc are introduced. A distin

guished role of the relations S and *&-> is presented . Properties 
of compact relations being real classes are investigated. Obtain
ed results are applied also to model theory and graph theo ry . 

Key words: Nonstandard, compact, indiscernibility relation, 
trf-class, real class, indiscernibles, independence of a graph. 

Classification: 03E70, 54305 

Introduction: The compactness of 3T-equivalences is expres

sed by the demand that in any infinite set there are two equiva

lent elements. (Remember that in AST every set is finite accord

ing to the Tarski#s definition. The finiteness is defined by a 

nonstandard manner.) Such a compactness, which is investigated 

in the paper, is remarkable not only for ^-equivalences. Three 

theorems designated by the, name A. Vencovska* have the principal 

position in the paper. The first one (Th. 1.23) has been formula

ted by the author after a detailed analysis of the proof of the 

third one (Th. 1.26) given by A. Vencovska* in the seminar on AST. 

These theorems point out an outstanding position of the rela

tions S (introduced by A. Vencovska" to prove the third theorem) 

and -̂»i . These relations are the finest (the least) ones of . 

all the relations described below. The theorems are substantially 

applicable for the orientation in compact relations as further 

theorems in the paper demonstrate. An interesting consequence for 

the model theory is that if two elements x,, x« of a saturated 

nonstandard model of Peano's arithmetic have the same type*then 

there are two infinite (*finite) sets of indiscernibles m,, BU 

such that x,€ nuk x«* m«& m,A nu-fcO. On the other hand, it is 
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proved that there are x,, x« of the same type which cannot be 

simultaneously elements of an infinite set of ind i scern ib les . 

Some applications to graph theory, presented here, may be also 

found quite remarkable. 

In the paper there are used ideas and assertions from the 

works quoted at the end of the paper. Therefore some of such as

sertions have only short proofs or hints with the quotations of 

works where more detailed proofs are described. In this sense the 

paper is readable (except some remarks concerning the generali

zation of the results) without the given quotation, too. 

V 

§ 1. Basic theorems. Remember some notions from [V3 which 

we shall use in the paper. 

Definition 1.1: 1) A class X is said to be set-theoreti

cally definable (Sd(X)) iff there is a set formula 9>(x) (the ap

pearance of set parameters is also allowed) such that x-eX»y(x) 

holds. 

2) If we admit the appearance offset parameters only from 

the class Y, we denote this Sdy(X). 

3) A class X is said to be a sr -class iff it is an intersec

tion of a countable amount of Sd classes. 

Definition 1.2: 1) A class X is said to be revealed iff 

for every countable class Y we have Y£ X aa-i> (3y£X)(Y£y). 

2) A class X is said to be fully revealed iff there is no 

normal formula <p (only the quantification of set variables is 
allowed) such that FN= * x; 9? (x,X)} . 

The axiom of prolongation asserts that for every countable 

class X there is a set function f such that X=f"FN. 

* Using this axiom and overspilling the following assertions 

may be easily proved (see tv] and tSVl). 

Theorem 1.3: 1) Every fully revealed class is revealed. 

2) Every class definable by a normal formula from a fully 

revealed class is a fully revealed class. 

3) Every Sd class is fully revealed. 

4) The intersection of a countable amount of revealed 

classes is a revealed class. 

.5) Especially, every st -class is a revealed class. 
Remember that a linear ordering of V can be defined by a set 
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formula (without parameters).This ordering is "well with respect 
to the Sd classes" and can be defined using the natural ordering 

of N and the Sd function F:N «->V defined recursively using the 

property F(x)= -CF(t); the t-th element of the dyadic expansion 

of x is ll. (For more details see Cv3 .) 

The theorems we shall give in the paper have a structural 

character and it would be possible to generalize them without 

changing ideas of their proofs . We mean that such general formu

lations would only darken the content of ideas here (we hope also 

that for some less advanced readers this way will be more conve

n i e n t ) . We use therefore the less complicated version - namely 

Sd classes, rt -classes and real classes (the definition of real 
classes is reminded below). A nice usage of the alternative to

pological point of view on more general systems of classes may 

be found in LVe3 or tCVj23. 

Definition 1.4: A reflexive and symmetric relation R is 

said to be compact iff it has the following property: (Vx£dom(R)) 

(n Fin(x) ==> ( J t , u e x K t * u &<t,u>ert)). 

Definition 1.5: A class X is said to be R-net for a refle

xive and symmetric relation R iff the following holds: 

(Vx,yeX)(x=*-y => ~7<x,y>e R). 

Theorem 1.6: A reflexive and symmetric relation R is com

pact iff ( \/x c dom(R))(x is an R-net ===> Fin(x)). 

Proof: Obvious, 

Theorem 1.7: If R is a reflexive and symmetric 'Sd relation 

then R is compact iff ( V x £ dom(R))( ~i Fin(x) s=^ ( 3 y £ x ) 

(T Fin(y)fc(Vt, u e y ) « t , u > e R ) ) ) . 

Let us prove at first two a s s e r t i o n s . 

Lemma 1 .8: If R is a reflexive, symmetric and compact Sd 

relation then we have: 1) (3 k c FN)( V z)(z is an R-net ===> 
•=̂  card(z) -= k) , 

2) ( Vx£dom(R))(-i Fin(x)-=-=> ( 3 t e x) -i Fin(R"-it} o x)) . 

Proof: 1) Let us put k=max({card(z); z is an R-net}). 

(This is possible as Sd(R) and R is compact). We have keFN, 
2 

2) The compactness of R implies the compactness of RnX 
for every.X. Hence we prove the assertion only for the set re-

2 
l a t i o n r=RAx and x=dom(r) . Let z be a maximal ( i n £ ) r - n e t . 
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Such a net exists and must be finite (due to 1)). We have x=r"z 

(as I is maximal) and the infiniteness of x implies the existen

ce of t € Z such that rr,-Ct̂  is infinite. 

Now we can easily prove Theorem 1.7. 

Proof: Let t̂  be such that card(R"«it1} n x) is the largest 

one (thus infinite). Put X2=RH*tt|>- i t-} and choose t« analogous
ly as t* but for x«. Proceed further by recurs ion . It follows 

(by 2) of the previous lemma) that the recursion cannot stop af

ter a finite number of steps. Hence we have ( V i , j)«t, ,t .> € R). 

Remark: The reader may notice that we have not needed the 

prolongation axiom neither for Th. 1.7 nor for Lemma 1.8. 

Theorem 1.9: The assertion from Th. 1.7 holds for any at-
class R, too. 

Proof: Let R= fHR.;i€ FNj and let R. be reflexive and sym

metric Sd relations. Let us put x = x1 and let ><i + i-£
xi be a set 

of the maximal cardinality such that ( Vt ,u « x, , )«t ,u> e R.). 
-, x •** •*• * 

As to the compactness of R*n x, and due to the theorem 1.7 we 

obtain that x^ + , is infinite. Let us prolong the sequence x̂^ 

and use overspill. We obtain then an infinite set x^ such that 

( Vi € FN)(xe(iS»xi) and hence ( Vu,v e x^)«u,v>« R). 

Remark: The reader may notice that if the sequence R. is 

coded by an Sd class (R^X'^i^), then the prolongation axiom is 

not necessary. 

A further generalization of Th. 1.9 for real classes will be 

given later. 

Corollary 1.10: The intersection of a countable amount of 

compact #-relations its a compact #-relation. 

Proof: Proceed analogously to the proof of Th. 1.9. 

Corollary 1.11 (P. Vopenka): Let R be a reflexive and sym

metric # -relation. If x$dom(R) is infinite then either there 

is ySx such that y is infinite and ( V t ,u 6 y)(<t,u> € R) or the

re is ySx such that y is infinite and (Vt, u e y)«t ,u># R). 
2 Proof: Either Rnx* is compact, then the first possibility 

2 
holds by Th . 1.9, or Rnx* is not compact and the second possi
bility holds (there is an infinite (Rnx2)-net). 

The following corollary is quite Ramsey-like. 
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Corollary 1.12: If X is a sr*-class having only unordered 

pairs as its elements, then for every infinite subset x fiUX 

there is either an infinite subset y & x such that (Vt,uey) 

(-ft,u}$X) or an infinite subset yS x such that (Vt,uey) 

(U,ul€X). 

Proof: Put R = Kt,u>; -Ct,u!cx}uId/UX and use Cor. 1.11. 

Definition 1 .13: Let 9>(x,y) be a set formula (also a set 

parameter c is a l lowed ) . A set m is said to be homogeneous for 9? 

iff either (Vt,u€m)(t<u=»9>(t,u)) or (Vt,uem)(t<u -• 

=-£ 1 <f (t,u)) holds. 
(Where < denotes the canonical ordering of V mentioned above.) 

Theorem 1.14: For every set formula y(t,u) (also with pa

rameters) the following holds. For every infinite set x there is 

an infinite subset y homogeneous for $p . 

Proof: Put X={{t,u};t'<u ^ c f (t,u)i^and use Cor. 1.12. 

Let us now enumerate all the set formulas of two variables 

(with parameter c) by 9. (t,u);ie FN. 

Definition 1.15 (A. Vencovska): 1) <t,u>€S" 3 (-3 m) 

(card(m)2T n& m is homogeneous for every cp. such that i< n) v 

vt-u. 

2) Sc= fHS c;ne FN}. 

Theorem 1.16: For every c, Sc are reflexive, symmetric and 

compact Sd relations and hence S is a reflexive, symmetric and 

compact of-relation. 

Proof: It suffices to prove the compactness of S c . If x is 

infinite then there is an infinite subset ysx homogeneous for 

every f. such that i<n (Th . 1 .14 ) . Any two elements of y are 

then in s" . 

The relation S is a very remarkable example of a reflexive, 

symmetric and compact relation definable with the help of the 

parameter c . Later we prove that this relation is the finest one 

among all these relations. Let us now give other examples of re

flexive, symmetric and compact <tf -relations. 

Enumerate all set formulas of one free variable (with para

meter c) by 9P|(x); ieFN. 

Definition 1.17: 1) # x,y>cR • ( ̂ ( x ) » ^ ( y ) ) . 
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2) K$^ n-lR ;ifeFNf. (See also m , tCKll , CV1J.) 

Theorem 1.18: #.!» is a reflexive, symmetric, transitive and 

compact 3f -relation. 

Proof: Every R^ is an equivalence with two classes of de

composition and thus compact. 

.£• is a compact equivalence definable only with the help of 

the parameter c . Later we prove that ,«, is the finest of such 

equ ivalences . 

The following description of sS may be for somebody more 

acceptable: x « y iff x, y have the same type. 

To the end let us describe an example which is closest to 

classical topology. Let oc be an infinitely large natural number. 

Let us put < Y i < ^ > € Rn-ff n-lT*^ I - «
 f o r T » cf < oC . Rn are 

reflexive, symmetric and compact set relations. Hence also 

st -. f K R ;ncFN} is a reflexive, symmetric and compact sr-rela

tion being moreover an equivalence. This equivalence describes 

the same topological phenomenon* on the bounded interval 1.0,111 

of real numbers as the common topology. Further details can be 

found in tCll. 

Let us now. treat the relations r%i- (More details can be 

found in dCKll, CCK23 and also in [VI}. 

Definition 1.19: 1) (u(x) = (i|-.)
n 4 x}. The equivalence clas-

f .&. are called monads. *c* 
2) OZfyWrn X=(r|H )HX. Such classes are said to be figures. 

Theorem 1.20: 1) Classes definable by set formulas with 

parameter c are* figures. 

2) The union and the intersection of any system of figures 

is a figure. 

3) The difference of two figures* is a figure. 

4) dom((U«x,y»)* <u(y), rng( ,<i«x,y>))= <u(x) . 

5) The domain and the range of a figure is a figure. 

6) The cartesian product of two figures is a figure. 

7) If X, Y are figures, then X"Y is a figure. 

Proof: 1),2),3) are obvious. 4) If X is Sd^and <x,y>eX, 

then dom(X) is also Sd^j and ycdom(X). Hence dom( <u,(<x,y») 2 

2 ^ ( y ) . On the other hand: Jf X is $t*lc} *-nd X2<u(y), then Vx X 
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is Sd, . and <x,y>eVxX. 5) This is a consequence of 4). 6) Let 

us prove at first that both Vx (<-t(x) and (O-(x)xV are figures. 

If <t,u>e%V x ^(x) and ^ t ^ u ^ e <-4«t,u>), then u^s /u(x) (use 

4)) and hence <t,, u,>€Vx^u(x). The proof of the second asser

tion is analogous. If X is a figure, then both VxX and XxV are 

figures and 6) is a consequence of the equality XxY=(XxV) r. 

n ( V x Y ) . 7) X"Y=rng(Xn(Vx Y)). 

Jheorem 1.21: If (j>(x, ,... ,x ,Z,,. .. ,Z. ) is a normal formu

la with parameter c and X1,...lXk are figures, then X=-f<x,,... 

...,xn>; 9(xx,.. . ,xn,X1,.. . ,Xk)i is a figure*. 

Proof: For the reader who is acquainted with the correspon

ding Gbdel's theorem, it suffices to remind that Cnv2(X) and 

Cnv,(X) may be obtained from X as the images by means of suitable 

Sd functions. We recall that J<x,y>;x € yl is Sd and X/* Y=Xn (V>c Y). 

Let the other readers follow the given instructions. Replace all 

the subformulas of the form X.=X. (z=X. resp.) by these equiva

lents: ( Vt)(te XjL-s t 6 X.) (( V t K t c Xi-w t e z) resp.). Consider 

the prenex form of the formula. At first we prove the theorem for 

open formulas (i.e. formulas without quantifiers) in which the 

above described two types of atomic formulas do not occur. We 

shall substitute the formula by an equivalent containing only 

n , & . Now we proceed by the induction based on the complexity 

of the formula. For the atomic formula x.eX. let us envelop the 

class X. by cartesian products with V in such a way that X. will 

be on the i-th coordinate. For x.ex. we have that Y=-F<x,,... 

. . . , x n > ; x . 6 x . l is an Sd class and hence a figure. Similarly we 

proceed in the case x.=x.. For fc. we use the operation Y,nY 2 

and for negation the operation Vn-Y. To finish the proof it suf

fices to examine the induction step for quantifiers. For (3x.) 

we use the operation dom.(Y) and for (Vx.) the operation 

Vn-domi(V
n+1-Y).. 

The following theorem is an easy consequence of Th. 1.20. 

Theorem 1.22: If a m -class is an intersection of a count

able system of Sd- classes then X is a figure in ^«|. Especially 

|̂i and Sc are figures in .|j . 

Theorem 1.23 (A. Vencovska): If a reflexive, symmetric and 

compact relation R is a figure in ^ then Sc^(dom(R)) SR, 

Proof: We prove at first that <t,u>6Sca-> * .£ §> u* L e t 
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e.g. t < u and t,uix where x is an infinite set homogeneous for 

all set formulas with the parameter c (with two free variables). 

If we put y* *£< v,w>; v< w & v,w e xf then y€<u(<t,u>) holds and 

hence x*dom(y) £ <w,(u). Now we proVe the assertion of the theorem. 

Let <t,u>€S^n (dom(R))2, let e.g. t<u and let x be an infinite 

set such that t,u«x and x is homogeneous. As x c ̂ ( u ) and dom(R) 

is a figure in «~, (see Th. 1.20), we have x£dom(R). Thus, the

re are v,we x such that v4*w&<v,w>€R (compactness of R). Let 

e.g. v< w. We have <t,u>#-|, <v,w> (homogeneity of x) and hence 

<t,u>6 R (R is a figure). 

Now we want to prove the equality S * 5 = <**-, • The follow

ing theorem helps us to prove it. 

Theorem 1.24v: If R is a reflexive, symmetric and compact 

ScL| relation then there is a maximal R-net y having only elements 

definable by set formula's with parameter c. 

Proof: Let us put Y=-{x; x is a maximal R-netl. Y is defin

able by a normal formula with parameter R and hence Y is Set.. 

Let x be the smallest (in < ) element of Y. x is definable by a 

set formula with the parameter c and as x is finite we have that 

every element of x is definable by a set formula with the para

meter c, too. 

Theorem 1 4 5 (A. Vencovska*): S o S = .£ , . 
Proof: Let *,g*y. For every Sc there is a maximal S^net 

consisting of definable elements. Let zn be the smallest element 

of this net such that <x,zn>6 S". Due to the definability of zn 

and the validity of x|.y we obtain <x,z > I, < y,zn> and hence 

<y>z n>€S c (Sc is a figure). Using the axiom of prolongation and 

overspill we obtain z^ such that K.xtz yeS and <y,zoC>> e S . 

Theorem 1.26 (A. Vencovska); If R is a compact equivalence 

relation being a figure in f, then «|i^ (dom(R)) £ R. 

Proof: By Th. 1.23 we have Sc n (dom(R))
2£ R hence* 

(Scn (dom(R))2)» (Sc n(<jom(R))
2)=- ^}n (dom(R))2£ Ro R=R. 

§ 2. Examples of applications of theorems and some other 

examples 

Let us now give some interesting consequences of the previ

ous theorems. 
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Qefinition 2.1: Let 9>(x,,...,x ) be a set formula. A class 

X is said to be homogeneous for g> iff for every n-tuples 
<t̂ . ,. . . ,t >, < u, , . . . ,u > of elements of X we have t,< t«< ... 

• • * < t n S t U l < u 2 < * * •^u
n-^<3?(

ti»- • • i*^m 9<ui »• - • > % ) • 

The reader who is acquainted with Ramsey theorem proves ea

sily that in every infinite set there is an infinite subset homo

geneous for y . Some hints for proving Ramsey theorem (and espe

cially the given assertion) - as a byproduct of our considerati

ons - may be found in Section 3. 

Qefinition 2 . 2 : A class X is said to be the class of indis-

cernibles iff X is homogeneous for every set f o r m u l a . 
The classes of indiscernibles are often used in model theory. 

With respect to this fact the following consequences of above ! 

theorems are of some i n t e r e s t . The first of them was noticed by 

3 . Mlcek. 

Theorem 2.3: <x,y>€S iff x=y or there is an infinite set 

of indiscernibles i such that x,yei, (S without subscript deno

tes that no parameter is used.) 

Proof: Let us put < x,y >€ "S~ x=y v there is an infinite set 

of indiscernibles i such that x,yei. S is a reflexive and symme

tric relation being a sr-class. The fact UsSrS is an immediate con

sequence of definitions. For the proof of SfeS it suffices to 

justify the compactness of S. To prove this fact it is sufficient 

to realize that in every infinite set there is an infinite set 

of indiscernibles (a set homogeneous for all set formulas of an 

arbitrary number of free variables). Now we use the above menti

oned fact that for any set formula and any infinite set there is 

an infinite subset homogeneous for this formula, the axiom of 

prolongation and overspill. 

Remark: If we consider all set formulas of the language 

FL« r in the definition of indiscernibles then we obtain the ana

logue of the theorem for the relation S, ,• 

Theorem 2.4; If x«y and x + y then there are two infinite 

sets of indiscernibles ix, i such that x ei x& y e i & i x n U O . 

Proof: Use the fact S * S * & (Th. 1.25). 

The last theorem acquires a model theoretical form if we 
change "x & y" by "x, y have the same type". It is obvious that 
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J:he last theorem can be reformulated into a version with para

meters. 

Now a question arises if the sets ix, i must be different, 

i.e. if the equality S = « holds. In the paper LSVe) the existen

ce of a proper class of indiscernibles is proved. Moreover, this 

class is a sr-class (without parameters) and hence a figure in » 

and thus a monad in & (indiscernibles). If we denote by In one 

of such classes then we have obviously that for any x,yeln we 

can find an infinite set of indiscernibles i such that both x 

and y are elements of i. On the other hand the following example 

proves that for every .&, there are x, y such that x.|,y and 

that it is not possible to find such z that the setx-lx,y,z} is 

homogeneous for any set formula of the language Ft. , with two 

variables. 

Example 2.5: Let t ^ u & t + u. As rng( (U«t ,u>))= <*(t) (Th. 

1.20) there is a v such that v.8. u and <t,u> .|, <u,v>. We prove 

<<t,u>,<u,v» ̂  S . The assumption that there are w, z^such that 

$<t,u>,<u,v>,<w,z>l is homogeneous implies namely a contradiction 

with t+u. If we suppose e.g. <t ,u>< <u,v><<w,z> then the first 

pair (of these ordered pairs) has the property: "the second com

ponent of the less element is equal to the first component of 

the larger one", hence (due to homogeneity) all pairs have this 

property and thus we obtain w=u, w=v. Similarly we proceed fur

ther and prove t=u=v=w in contradiction to t-4-u. In a different 

ordering of pairs we proceed analogously. 

Now we give some consequences of our theorems to topology 

in AST. 

Theorem 2.6: Let R, T be two reflexive, symmetric and com

pact <if-relations. If X=dom(R)A dom(T) then there is a c such « 

that lcs<^X
2c RoT. 

Proof: Let -lci;i6FN} be the sequence of all the parame

ters occurring in set formulas defining Sd relations such that R, 

T are intersections. Let us prolong this sequence to c (thus 

c(i)=ci). We have S C A X
2 £ Rg tS coX

2£ T (Th. 1.23). Now it suffi

ces to use ( S C A X
2 ) O ( S C A X

2 ) = j ^ n x 2 . 

Especially, if we put R=S= M , where it is an indiscernibi-

lity equivalence (a compact oir -equivalence defined on V) we ob-
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tain the following theorem proved also in [ V l 3 . 

Theorem 2.7 (P . Vopfenka): For every indiscernibility equi

valence # there is c such that ,~,£ = • . 

Definition 2.8: A class X is called real iff there is c 

such that X is a figure in *s (see also [CvJ). 

Note that if X,,...,X are real classes then there is c such 

that they are figures in ,.!., . If, namely, X. is a figure in ,|? 

it is also a figure in f>, =• „ \- ' a Kc1/...,cn>f 

From the theorem 1.21 we know that real classes are closed 

on the definitions*by normal formulas. In the paper [Cv3 it is 

proved that real classes are closed also on definition by non-

normal formulas. We shall not need this fact in this paper . 

Theorem 2 .9: The following properties are equivalent: 

1) X is a real c lass . 

2) X is a figure in an indiscernibility equivalence. 

Proof: A consequence of Th. 2.7. 

Now we prove that in some theorems of § 1 it is possible 

to replace the assumption X is a .Tf -class by X is a real class. 

Theorem 2.10: If R is a real, reflexive and symmetric re

lation then the following properties are equivalent: 

1) R is compact (i.e. in every infinite set xsdom(R) the

re are t,uex such that t 4-u &<t ,u> e R). 

2) Every R-net is f i n i t e . 

3) In every infinite set x£dom(R) there is an infinite 

subset y £ x such that ( Vt ,u e y)(<t ,u> e R ) . 

Proof: 3)^-»l) obvious, i2) a n 1) obvious, l)t=>3)* If R 

is a figure in .», then S n(dom(R)) £ R and there is y£ x such 

that y is infinite and ( Vt,u ey)(<t,u>e S c ) ( T h . 1 .7) and hence 

also ( Vt,uey)«t,u>eR). 

Theorem 2.11: If R is a real equivalence then the following 

properties are equivalent: 1) R is compact. 

2) ( V r e N-FN)(3 x)(card(x)^j &. R"x=dom(R)). 

Proof: We prove at first that .|L has the property 2). If 

x is a set containing all the elements definable with the para

meter c then V=(JtS,)"x. To prove the given property it suffices 

to show that the intersection of x and every monad in JJJU is non

empty. For this it suffices to prove that the intersection of x 
- 53 -



and any class X definable by a set formula with the parameter c 

is nonempty and use the prolongation and overspill. If X is an 

Sdf_,-class then e.g. the least element of X is definable by a 

set formula with the parameter c and hence it is an element of x. 

We have proved V=(j»|)"x. As there are only countably many ele

ments definable with the parameter c, they may be included (using 

the prolongation) into a set with an arbitrary (small) infinite 

cardinality. We have proved that ^|j has the property 2). Now we 

prove 1)=** 2). Let R be a figure in ^| . Hence |, n (dom(R))2£ 

£ R and if x is such that v=(|§i)"x then the intersection of eve

ry monad and x is nonempty. As dom(R) is a figure, the intersec

tion of x and every monad of this figure is nonempty, too. Thus 

we have even dom(R) = (^ (dom(R) )"x. Now we prove 2)*s->l). Let 

ycdom(R) be infinite. From the assumption ( Vt,u 6 y)«t,u>^ R) 

we shall deduce a contradiction. Let x be a set havin9 the pro-

perty (card(x)) .6 card(y) &. dom(R)=R"x. Let us put F-Rn(yxx). 

From our assumption and from the transitivity we obtain that F 

is a function. We also have rng(F)=y as R"x2y. F is also a real 

class and this fact - as will be proved - leads to the contradic

tion (cf. also CCv.1). If we put d=<c,x,y>we obtain that R,y,x 

are figures in ,|» and hence F is a figure in <|L , too (Th. 

1.20). Every monad p> s F must be also a function. Using the 
prolongation and overspill we obtain that (uu is a subclass of 
a set function definable with the parameter d having its domain 

included in x. Let - l f . ; i s F N } denote an enumeration of these 

functions. We have Fs U-C f. ;i € FN}. Let us prolong this sequence. 

If oc e N-FN is such that (V/3<oc)(f/| is a function ̂ dom(f^)c 

£ x ) &<*<card(x) then y £ rng( Ui f^; /3<oo}). But we have card(y)< 
<card( U-tf*; /3< ec} )^oc* card(x) - a contradiction. 

Definition 2.12: Let R be a reflexive and symmetric relati

on. We.denote by R^ the power relation to R and define as fol

lows: <x,y>€ R ^ s x fiR"'y &y £R"x. 

The proofs of the following easy assertions are left to the 

reader. 

Theorem 2.13: 1) R̂ * is reflexive snd symmetric. 

2) dom(R*)= rJKdom(R)). 

3) R,c R2 «§> R^c R* 

4) R is a JT-class «£• R3* is. a ^r-class. 
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5) R is transitive *-*> R^ is transitive and <x,y>€R^fRMx* 

=R"y. 

Using the property 2) from Th. 2.11, the following theorem 

may be proved (see also LMl). 

Theorem*2 .14: If R is a real compact equivalence then R^ is 

also a real compact e q u i v a l e n c e . 

Proof: Essential is only the proof of the compactness and 

hence it is sufficient to prove the theorem only for ,£•» Here we 

use the fact that V - K ^ V x ** ® (V)=(4§^)" <P(x) and Th. 2.11?. 

The essentiality of the requirement of the transitivity of 

R points out the following theorem. 

Theorem 2.151 For any c the relation Si is not compact. 

Proof: The compactness of S_* implies S c £ $ £ as Sc is 

definable by a normal formula from S and hence it is a figure 

in ,|, . From this inclusion we deduce a contradiction. Let 

oceN-FN. Let us put x* i ft * i ft} ; # €«*,?. x is infinite and due 

to the compactness of S there must be ft, Y € c C such that ft 4*-1f& 

&<pxipl , Tx-( T}>€ S C S S ^ . Let e.g. ft € *$ . As ^ x < ^ l ® 

SSc"(/3x-Cf3| ) there is d*€ ft such that <<cf, /3>,</3,r» € Sc 

which contradicts the example 2.5. • 

Let us now prove some consequences of our results to the 

graph theory. Let us limit ourselves only on finite graphs. Re

member that an undirected graph is a set with a symmetric rela

tion R such that dom(R)sx. Elements of x are called vertices, 

pairs 4t,ul such that <t,u>cR are called edges and if <t,t>eR , 

it is said that the graph has a loop in t. The largest number k 

such that there are k vertices such that no pair of them forms 

an edge, is called the independence of the graph (cf. with the 

definition of an R-net). To simplify our consideration! and to 

be consistent with our previous investigations let us add to all 

the graphs, we shall work with, all their loops. (The reflexi-

vity of the corresponding relation.) Remember that a graph is 

called complete iff every tuple of vertices forms art edge and 

connected it any two vertices may be connected by a path* Maxi

mal connected parts of graphs are called components. If the cor

responding relation is transitive then the graph consists of 

components (classes of thes equivalence) which are complete 

graphs. 

- 55 -



Theorem 2.16: For every k there is m such that if R-,, R« 

are undirected graphs with the same vertices having the indepen

dence less or equal to k, then the composition of these graphs 

(this graph may be mixed) has a subgraph with the same vertices 

(only some arrows and edges can be cancelled) consisting of ma

ximally m components which are complete graphs. 

Proof: (By contradiction.) Let for a fixed k we have that 

for every n there are reflexive, symmetric relations R?, R2 

such th,at dom(R^)=dom(R2) and that there is no equivalence on 

dom(R?) which is a subclass of R?© R« and having maximally n 

equivalence classes. Let us form two sequences -fR?;nccjl and 

-lR2*,n€.col such that'the n-th elements have the mentioned proper

ty (we restrict ourselvejs on finite graphs). Let us prolong the

se sequences in such a way that the mentioned set properties hold 

also for infinite superscripts. Let R, and R2 denote the prolon

ged sequences. If we put c=<R,,R2,oc> for an infinite co then 

R?, R? are Sd -classes and they are compact (the corresponding 

graphs have the independence at most k). If we put d=dom(Ry)= 

=dom(R^) we obtain S n d S Rf* and S n d 2 £ R ? and hence 
yd C 1 C Z 

e*i r. d S R S R ? . AS ,£, nd is a compact equivalence being an 

intersection of a countable decreasing (in c) sequence of Sd 

equivalences on d (let us denote this sequence by -fe ;neo>}), 

there is n 6 o> such that e SR?oR^. But e has only a finite 

number of equivalence classes and thus the corresponding graph 

consists of a finite number of complete subgraphs - a contra

diction. 

From the example 2.^we can obtain the following assertion. 

Theorem'2.17: For every n there is an undirected graph 

with the independence maximally 6 such that there is no sub

graph (with the same vertices) consisting of at most n comple

te components. 

Proof: Note that 6=R(2,3,2), hence for any partition of 

pairs of a set x, such that card(x)s:6, on two subsets there is 

a homogeneous set ly such that card(y)=3. Let r. be a reflexive 

and symmetric relation defined on unordered pairs of natural 

numbers less than k as follows: For a an unordered pair of na

tural numbers a,, a2 denotes the smaller, larger element of a, 

respectively. Now we put <a,b> c r. s a=b v (j3 u)(card(u) £ 3 &a, 

b€ u&u is homogeneous for the formula y(x,y)s x9 = y,). We de-
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t 
duce a contradiction from the assumption that there is m such 

that (Vk)Oe. £ rk^ek *s an e°. uivalence having m equivalence 

classes &dom(e. )=dom(r. )). Let us prolong the sequence *£e ;n eo>I 
and denote it e. Foroce N-FN we put c=<e,oc> . Now e ^ is a 

compact Sd equivalence being a figure in Jfr . Hence ,£, o 
n (dom(e )) S e^ . Now we can find numbers ft , y , cf such that 
/3«-<2T< cf< cc & /3 J I T J J } ^ */3,y ̂ fi^T.cTj and deduce a 
contradiction similarly as in the example 2.5. 

By a quite analogous manner we obtain from Th. 2.13 and Th. 

2.14 the assertion of the following theorem 2.19. Let us give a 

definition before. 

Definition 2.18: For an undirected graph G (with all loops) 

we define on the powerset of the set of vertices the graph G*̂  by 

the following way: sets u, v are connected by an edge iff the 

neighbourhood of the first one covers the second one and vice 

versa. (If r is the corresponding relation to G then r-* is the 

corresponding one to G .) We define analogously the graph G« 

using the two-steps neighbourhood. (If r is the corresponding 

relation to G then (ror) is the corresponding one to G« .) 

Theorem 2.19: 1) For every k there is m such that if the 

independence of G is less than or equal to k then the indepen-

dence of £« is less than or equal to m. 

2) For every n there is a graph with the independence *c 6 
such that the independence of G is larger than n. 

§ 3. The possibilities of the generalization of 1tfie ideas . 

in the paper 

The author suggests five directions for a generalization of 

the ideas contained here. 

1) The investigation in higher dimensions - i.e. ternary 

and morejary r e l a t i o n s . 
2) The investigation for other basic systems of classes 

(different from the system of Sd c l a s s e s ) . 
3) The usage in poorer models than these of AST. 
4) The usage of other forms of "finiteness". % 

5) Using "compactness" (e.g. the compactness theorem from 

mathematical logic) to extend our results for infinite relations 

in the classical set theory. 

* 57 -



As the author does not want to burden the shelves of lib

raries with another unread ^tonography, as he is not able to esti

mate the importance of these generalizations and as he moreover 

means that for an open-minded man (or woman) a hint at an idea' 

is much better than hiding of ideas in formal details and slso 

due to the author's "spring fever", the following text is much 

more shortened than the previous one. 

1) For higher dimensions the investigation is much more 

"Ramsey like". The assumption of the symmetry of a relation may 

be exchanged by the investigation of unordered pairs.The assump

tion of the reflexivity of relations may be exchanged by speci

fying their supports (dom(R) in the initial point of view). If 

we denote by 3*k(C) the class of subsets of C having cardinality 

k ( £Pk(C)« •Cx;xSC8tcard(x)=k) then for R £ &k (C) we call the 

class X to be an R-net iff ( Vt 6 tf»k(X))(t * R ) . R £ <Pk(V) is cal

led compact on C iff every subset x&C being an R-net is finite. 

The compactness is a hereditary property in the following sense*. 

If R is compact on C and DcC then R is compact on D. The tech

nical lemma 1.8.2) obtains the following form : Let R StP^+1(V) 

be set-theoretically definable. If x is an infinite set such 

that R is compact on x then there is t € x and an infinite subset 

y £x such that if we put R = { u 6 &k(V) ;uu -ft} € R{ then 1" is com

pact (in the dimension k) on y. Theorem 1.7 obtains the form: 

let R £ 3\(V) be Sd. If x is infinite and R is compact on x 

then there is an infinite set y£x such that (Vue(P k(y)) 

(ucR)*. The proof may be done by an iteration analogous to that 

one in Theorem 1.7 for the case k=2 when using the induction 

hypothesis and the given adaption of L. 1.8.2). The given pro

cedure may be also compared with the proof of Ramsey theorem 

given in CGI. Now the reader is able to prove the assertion 

from the previous text and namely that for every infinite set 

x and every set formula gp (also with more than two variables) 

there is an infinite subset yfix homogeneous for g> . Tne defi

nition 1.15 may be adapted to the form: a) uc s"su €.3*k(V)& 

& ( 3 v)(card(v)2 n &v is homogeneous for all y., i ^ n ) . 

b) kSc*f.i
kSc;n6FN}. Theorem 1.23 obtains the following 

form: let R, Y be figures in JL. If R £ 3*k(V) is compact on Y 

then ( ^ ( Y ) A kS c)£ R. Theorem 1.25 obtains the form: 

( V k ? 0 ) ( x * y * x I y s ( J u 6 *k(V))(u u ^ x U ^ S ^ u u 4yj € k*X$c)). 
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Theorem 2.3 may be adapted to: uc S = there is an infinite set 

of indiscernibles i such that u£i. Theorem 2.4 may be strengthe-' 

ned to: x » y & x 4 * y s there is an infinite set of indiscernibles 

i such that both iu-Cxl and iu4yl are sets of indiscernibles. 

If we suppose moreover that x (and hence also y) is larger than 

all definable elements then we may ask that all the elements of 

i are less than x and y. Concerning the relation of S„ and S^ 
k 

for different k, m, we have that if k<m then u e S m 

as- ( J v ju)(v 6 sJU). The proof is an eaiy ' consequence of the 
m 

characterization of 5 by infinite sets of ind i scern ib les . 

2) The fact that we start in our considerations from Sd 

classes is not substan t i a l . We may start from a system of clas
ses having "similar p roper t ies" . Substantial properties seemed 

to be that the system is closed on definitions by normal formu

las and that classes have set intersections with sets (hence 

classes are fully revealed) . . As an example we remember the system 

Sd* (see LSV3) and papers LCVj3 and [Vel. 

3) The paper is written in the framework of AST and techni

cal means of this theory are used. But the author has intentional

ly used as few specific axioms of AST as possible (actually only 

the axiom of p ro longat ion) . Moreover, we have tried to specify 

countable semisets as much • as possible so that we could argue 

also by another way for the existence of their prolongation. 

If e.g. a countable semiset is in the standard system of a model 

of PA (Peano's arithmetic) then the prolongation may be proved 

only using the o v e r s p i l l . It is possible to use also the property 

that the model is recursively saturated or the existence of the 

universal relation for relations of a given type from arithme

tical hierarchy (see Th . Cleene § 7.5 £Sh3). More information 

about the connection of models of AST and PA can be found in CPSJ. 

4) The finiteness can be understood more generally, too. 

The usage of SDy classes and card(x)eFN* (instead of the finite

ness) is almost evident. It is possible to use also another ty

pe of cuts than FN. The usage of such a type of "finiteness" 

for a construction of an alternative of real numbers can be 

found in LCl3. Also in the paper IPS] some models of AST in 

which the interpretation of FN must differ from co , are point

ed out. 

5) To this point let us give an illustrating example. From 

Th. 2.15 the following assertion may be obtained: For every k 
- 59 -



there is m with the following property: If R is a reflexive sym

metric relation such that dom(R) is infinite and in every k-ele-

ment subset of dom(R) there are x, y such that x4=y and <x,y>€R 

then dom(R) can be divided on m disjoint parts such that if x, y 

are in a part then <x,y>€R© R. We prove this using nonstandard 

analysis: Let d c*( (Pf in(dom(R))) be such that dom(R)cd (i.e. 

every standard element of dom(R) is an element of d). Let us put 
* 2 * 

r = * R n d . We have RSr and r is finite. Hence we may apply 

Th. 2.15 on r and we obtain a partition of d on maximally m parts. 

This partition generates a partition of dom(R) on maximally m 

parts. The proof of the existence of a reflexive symmetric rela

tion such that in every unordered 6-tuple of its domain there 

are two elements being in this relation and there is no finite 

partitipn of the domain finer than the relation is left to the 

reader. 

The sources of ideas in this paper: As the main source have 

served the considerations of A. Vencovska* obtained in theorems 

1.23, 1.25, 1.26. These considerations have been partially moti

vated by the attempt of the author to generalize the alternative 

view on topology (see £u2J). The theorems being consequences of 

the mentioned theorems and examples are due to the author. 

They have arisen when working with one of the author's student 

(L. Paroha) on the first Attempt of the comprehensive elaborati

on of the matter. The arrangement of theorems up to Corollary 

1.11 is taken from the new P. Vopgnka's book; it allows to avoid 

the quotation on Ramsey theorem (this one appears to be a bypro

duct). These theorems (except Corollary 1.11) are obvious conse-

quences of Theorem 1.23 proved before. 

When discussing the matter with 3. Ml£ek he noticed that 

the generalization to higher dimensions is quite interesting. 

The special way of this generalization described here should be 

compared with the proof of Ramsey theorem given in IGl 
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