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Abstract: Three classes of diameter edge-invariant graphs 
are presented. 
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1. Introduction. In this paper, a graph G=(V,E) is always 

undirected, without multiple edges and loops. A graph G=(V,E) is 

said to be connected, if for each u, v in G there exists a path 

connecting u and v. For a connected graph G, we can define a dis­

tance function d« on V(G) as follows: For each u and v in G, 

dr(u,v) is the length of the shortest path between u and v. The 

diameter D(G) of the graph G is defined as the max(dp(u,v): for 

all u,v eV(G)) [ 6 V 

A connected graph G is said to be diameter-edge-invariant 

(d.e.i), if D(G\e)=D(G) for all e e E ( G ) . 

In a communication network, the diameter of the network 

graph is a deciding factor in choosing the system topology which 

defines the interprocessor communication architecture. The aut­

hors of the survey articles [l] and [21 showed the importance of 

the diameter in a computer communication system. In fact, it is 

essential not to increase the maximum time delay of communicati­

on of messages when there is a failure in one of the communicati­

on links between any two nodes in the system. Thus, we need to 

consider the design of diameter-edge-invariant networks. 

In [5], several constructions of d.e.i. graphs are proposed 

by the first author. In this paper, we are interested in the de­

sign of three families of planar networks which are d.e.i. In 

the first section, we consider special types of 2-dimensional 
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polyominoes [3] which are called Young Tableau graphs. We will 

show that almost all Young Tableau graphs are d.e.i. 

2. Young Tableau Graphs which are diameter-edge-invariant 

In [31, the first author introduced the concept of a Young 

Tableau graph. Given fb =(n, ,n2,. . .n.) where k>l, and l ^ n , ^ n 2 ^ 

-£...-=nv, the Young Tableau graph Y(/3) is a graph of the form 

(Fig. 1): 

0—Q—0—Q 
k t h layer 

k - l t h layer 

Q Q Q Q 

t±b=гr~ n. ce l l s 

n, , c e l l s 

n d — Г t l î 
1 s t layer 

6—ò—o 

n^cells 

n,ce l ls 

Figure 1. Young Tableau Graph Y ( $ ) 

In [31, it is shown that Y( f3 ) is d-graceful. 

Theorem 2.1. For any p> =(n, ,n 2 ,. . . ,n. ) with the property 

k>l, and 1 £ n, ̂  n2 £ . . . <= n. , and not of the form (1,1,...,1) or. 

(n), a Young Tableau graph Y((B) is d.e.i. with the diameter equ­

al to " k
+k. 

Proof. If (3 is of the form (1,1,...,1) with k l's, then 

Y( fi> ) is isomorphic to the graph G = P2>< Pk+1 with the diameter k+1. 

(Figure 2) 

n cells 

ul , u2 u3 Jk + 1 

ò-ч>—ò—ò 
vl v2 v3 vk vk+l 

Figure 2. Young Tableau Graph Y(l,l,...,l) which is not d.e.i. 
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Since we observe D(G\(u,,u2)) is k+2, it is not d . e . i . 

Now suppose ft =(n, ,n2,...,n. ) and not of the form (l,l,...,l) 

or (n), it is clear that D(Y(ft ) ) = n. +k >4. For each e=(x,y) in 

E ( Y ( f . ) ) ) , we see that dy^ \^ (x, y ) = 3, and for each pair of nodes 

u and v in Y(p ), there are more than two paths from u to v. Thus 

we have D(Y((3 )\e)=D(Y(tA )). Q 

Example 1. For k = 2, and /3=(3,4), Y(/3) is d.e.i. with dia­

meter = 2+4=6. We observe that there are several paths of length 

6 connecting nodes 1&14. 

A cells 

3 cells 

Q—o—6 

O — Õ — õ — O 
î-° 

14 11 

Figure 3. Young Tableau Graph Y(3,4) which is d.e.i. of diameter 6. 

Corollary 2.2. For any n,m>2, the grid graph Pp^P is dia­

meter-edge-invariant. 

Proof. For PRx Pm=Y(m-l1m-l,...,m-l), D 

n-1 terms 

3. Young Tableau Graphs with Diagonal Crossing 

For any k is 1, and ft =(n, ,n2 ,n-., . . . ,n. ) with l ^ n , ^ n 2 ^ 

^ . . . ^ n . , a graph H(ft) is constructed from the Young Tableau 

Graph Y(fi) such that each cell has an additional diagonal from 

upper left corner to lower right corner. (See Fig. 3.) 

Theorem 3.3. For any k £ l , and ft =(n1 ,n2 ,n3 , . . . ,nk) with 
integers 1 £ n-^ n2 £ . . . ^ nk, the graph H(ft ) is d.e.i. with dia­
meter n, +k. 

k 

Example 2: If k = 3, and /3=(5,6,7), then H(ft ) has a diame­

ter of 12. 
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kth layer 

k-lth laye 

n. cells 
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2 n d layer 
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n~ cells 

n, cells 

Figure 3: Young Tableau Graph with Diagonal Crossing, 

N(nj,n2,...,nk). 

3rd layer 

2 n d layer 

1st layer 5 cells 

Figure 4: Young Tableau Graph with Diagonal Crossing, N(5,6,7) 

4. Reverse Young Tableau Graph with Diagonal Crossing 

For any k > l , and ft =(a, ,a2,a, ,. . . ,a. ) with l*=a,^a2 ... 

... £a. , a graph T(f^ ) is of the following form (see Fig. 5): 

Theorem 4.4. For any k2 1, and fi =(a, ,a»,a, , . . . ,a. ) with 

1 e a, •= a2 & . . . «£ a. , a planar network T ( p ) is d.e.i. 

Computing the diameter of T(/.>) is much more difficult than 

that of N(($ ) . However, we have found 

D(T((}))=max (the diameter of the maximal subrectangles of T((D). 

Example 3: For i = 6, the graph T(5,5,8,8,8,9) is d.e.i. and 

its diameter is equal to the diameter of the second subrectangle 

(see Fig. 6) 
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Figure 5: Reverse Young Tableau Graph with Diagonal Crossing 

D(T(ß) = max (6 + 5, 4 + 8, 1 + 9) = 12 . 

6th layer 

5 t h layer 

4 t h layer 

3 r d layer 

2 n d layer 

1 s t layer 9 cells 

Figure 6: Reverse Young Tableau Graph with Diagonal Crossing, 

T( (*). 

Note: Not all 2-dimensional polyominoes are d.e.i. For ex­

ample, in the following graph (see Figure 7a) the diameter is 4, 

and if one edge is removed (see Figure 7b), diameter becomes 5. 

We propose the following 

Problem: Characterize 2-dimensional polyominoes which are 

d.e.i. 
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diameter = 4 

Figure 7 a 

diameter = 5 

Figure 7 b 
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