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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

EXISTENCE OF SOLUTIONS OF THE DARBOUX PROBLEM 
FOR PARTIAL DIFFERENTIAL EQUATIONS IN BANACH SPACES 

Bogdan RZEPECKI 

Abstract: We consider the existence of solutions of the classical Dar-
boux problem for the partial differential equation u*' = 

=f(x1,x2,X3^4,ux ,ux ,ux ,ux ,ux ,ujj x ) via a fixed point theorem of Sa-

dovskii. Here f is a continuous function with values in a Banach space satis­
fying some regularity condition expressed in terms of the measure of noncom-
pactness oC. 

Key words: Hyperbolic partial differential equations, Darboux conditi­
ons, existence solutions in a Banach space, measure of noncompactness. 

Classification; 35A05, 35L15, 34620. 

** Introduction. In the present note we consider the following hyperbo­

lic partial differential equation: 

(+) ux x x =f(x1,x2,x3,u,u' ,u' ,u' ,u" ,u" ,u" ) 
A-ArtA-jr A *» •* A-t A«> A-» A . A n A-i A-» ArtA-» 

with suitable initial boundary conditions of the Darboux type. 

Equations of the type (+) (in Euclidean spaces) are considered in papers 

by Kwapisz, Palczewski and Pawelski [9J, Conlan [5], Castellano [31, Palczew-

ski Llll, Frasca [83, Chu and Diaz [4J, and others. Below, we prove the exis­

tence theorem for the case where f is a continuous function with values in a 

Banach space satisfying some regularity condition expressed in terms of the 

measure of noncompactness oC . The proof is based on the fixed point theorem 

of Sadovskii (1121, Theorem 3.4.4). 

2. Notations and preliminaries. Let a. (i=l,2,3) be positive real num­

bers. We put 1̂.= [O.ap and V-^x l ^ l y Throughout this paper E is a Banach 

space with norm It * 8 , and f is an E-valued continuous function defined on 

the product Xl=V*E*E x E . By C(V,E) we represent the standard Banach spa­

ce of all E-valued continuous functions on V. Moreover, let C*(V,E) denote 

the class of E-valued functions (x,,x2,x3)i----i»-u(x1,x2,x5) continuous on V to-
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gether with their partial derivatives uv ,uv .u ,u" „ ,u" w ,u" v and 
in xl x2 x3 xlx2 xlx3 X2X3 
X.i XnX-i 

The measure of noncompactness co(A) of a nonempty bounded subset A of E 

is defined as the infimum of all e, > 0 such that there exists a finite cove­

ring of A by sets of diameter .*=• e . For the properties of oc the reader is 

referred to C2 ] , [63 ,£7J , [123 . 

We shall use in the sequel the following immediate adaptation of Lemma 

2 .2 of £13 (cf. 1103): If P is a compact subset of V, then c*(uiW(§): £e Pl)= 
=sup {oo(W(p): f e P j for a bounded equicontinuous subset W of C(V,E) (here 

W(|) stands for the set of all w(£) with weW) . 
We state the Sadovskii fixed point theorem as follows. 

Let £ be a closed convex subset of C(V,E). Let $> be a function which 

maps each nonempty subset W of 3D to a real nonnegative $(W) with 

(1) $awluW)= <$(W) for w e£ , (2) $(Cc?w W)= $(W) (conv W is the closed 

convex hull of W), and (3) if §(W)=0 then W (the closure of W) is compact 

in C(V,E). Assume that F is a continuous mapping of % into itself such that 

§(F[W])<<|(W) whenever $(W)>0. Then F has a fixed point in # . 

3. Formulation of the problem and result. We write 3.k=I.,xIk **or j>k= 

=1,2,3 with j<rk. Let us determine E-valued functions 6^, ef« and 6-, conti­
nuous respectively on J«,, *--•-* anc- J17. including the second mixed deriva­

tives, and fulfilling the conditions 

6^(0,x3)= *2(0,x3), €r1(x2,0)=<3T3(0,x2), 6 ^ , 0 ) = ^ ( x ^ O ) 

for x i c l i (i=l,2,3). 

By (PD) we shall denote the problem of finding a function ueC*(V,E) 

satisfying (+) and the initial conditions 

u(0,x2,x3)= 6'1(x2,x3), u(x1,0,x3)=
 er

2(
xx,x3^* u(xpX2,0)= ©^(x-^Xg) 

for alKxj, x^in J ^ k . 
We shall write the right side of (+) shortly as f(f ,u,R,Q), where £= 

=(x1,x2,x3) and R=(r1,r2,r3), Q=(q12»q13tq23) with r^f)-^ (f), q^k(£)= 

=uv v (£)• Moreover, let ©'=(0-0,0) (here 0 is the zero of E). xj k * 
Our result reads as follows. 

Theorem. Let f be uniformly continuous on bounded subsets of £l . Assu­
me that the following conditions hold: 

1° l ) f ( ^ , u , 9 , a ) U C l + c 2 H u . . for { c V a n d u e E . 
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2° »f(J ,u,R,Q)-f(£,u,R,H)IUco(? lri-
fill+-Sl

llc'jkJ5jkl) 

for (£ ,u,R,Q) eil and ( f ,u,R,Q) c -Q- , where t i-~>cj(t) is a nonnegative 

continuous nondecreasing and subadditive function with co(0)=0 only fort=0 

and 
n dt _,_ ̂  
J0 Tm" + °° 

for Yl > 0. 

3° oc(f[f ,A])^L-max - ^ ( A ^ - A ^ i ^ i for £& V and any set A which is 

the product of nonempty bounded subsets A. of E. 

Under these assumptions, the problem (PD) admits at least one solution 

on V. 

Proof. Put u"1 =s. For the convenience we assume that 6. a- 0 for 
-»"-——----—— X-.XrtX-f X 

i=l,2,3. Then, (PD) is equivalent to solving the functional-integral equation 

(*) s(x,y,z)=f(x,y,z, J* J*J* s(t1,t2,t3)dt1dt2dt3, 

Jo^Jo^'W^h* K ^ 9(t1,y,t3)dt1dt3, 

•C/o*s(VVz)dtidt2' 

//s(x,y,t3)dt3, /^s(x,t2,z)dt 2, // s(t1,y,z)dt1) 

in C(V.E). 

Let -A =l+c1+c2+7 o ) ( l ) . Let V be the set of a l l ( f ,u,R,Q) e i l such 

that Hu iU^ " 2 exp (3^ ) , H r. ( U ^ e x p O P O and Hq.k l l *exp(3A) for i , j , k= 

=1,2,3 with j < k . We set: 

&( U )=sup41 i f (£ ,u ,R,Q)- f ( | " ,u,R,Q)H : (£ ,u,R,Q), ( f , u , R , Q ) € r with 

l lu -u lU £ tx.-)Tj-= n\l 
-V X X 

and 

f(n)=2>((l+exp(3A))r))+o((2+^)exp(3^)?j) 
for *> > 0. 

According to the lemma of t i l l the equation 

h ( x , y ; n ) = ? ( U ) + w ( / / / ^ h ( t 1 , t 2 ; i I ) d t 1 d t 2 + 

+ / /h(t l j y ;^)dt1+ j /h(x,t2;^)dt2) 

has a continuous solution h such that h(x,y,0) s 0. Denote by X the set of 

all w€C(V,E) with 

it w(£ ) I U * -exp(A ? x.) 
s ^ X 

and 
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liw(| )-w(|*),|£h(x1,x2;|x3-x3|)+h^ 

for | =(x1,x2,x3)e V and £ =(x"pX2,x3)e V. 

Let F be determined by the right side of ( # ) . It is easy to verify that 

X is a closed con vex equicontinuous and bounded subset of C(V,E), and F is 

a continuous mapping of £ into i t s e l f . 

Let r > m a x ( l , L ) . Define 

$(W)=sup4exp(-r£)oc(W(£)): f c V l 

for a nonempty subset W of % . By properties of oo and Ascoli theorem, our 

function $ satisfies the conditions (1) - (3) listed in Section 2 . 

Let W be a subset of 3b with $ ( W ) > 0 . To prove the theorem it remains 

to be shown that <$>(FCW]) < § (W) . 

Fix (x,y,z) in V. Consider the continuous function y ( f )=oc(W(£ ) ) . Let 

& > 0 be arbitiary and </= cf(&) a positive number such that f1 =(tpt«,t3)6 

eVand f=(t^,t^,tpe V with |t^tj|<d" (i=l,2,3) implies | y ( f ) - y($*)\< 
< e . We divide the intervals lO,x], C0,y] and [0,z] into m parts 

x=0< x,< .. .< x =x, y =0<y,< .. .< y =y, z =0<z,< ... < z =z o 1 m ' 7o '1 J m J , o 1 m 

in such a way that 

max4|xi-xi_1|, lyi-y^Tl, |zi-zi_1|:i=l,2,...,m J< cf. 

Define 
pijk'

[h-vh^lyi-v^^lzk-v\]' wijk= ^ w ( p . f « p l j k f 

for i,j,k=l,2,...,m. Moreover, let £ 0 be a point in P ^ such that y( f Q)= 

= s u P M p : ^ P . j k i . 

Denote by AQ= f*f*f* W(t1,t2,t-5)dt1dt2dt3 the set of all 

f*f*j? w(t,,t2,t3)dt,dt2dt3 with weW. Applying the integral mean value 

theorem we obtain 

ocЛ 

fff\i 

(
V * ^ i ^ - . i ««s(P

ijk
)conv(W

ijk
))= 

"•if,}* 

^ f ( t p t 2 , t 3 ) ) d t 1 d t 2 d t 3 < &xyz+ f*f?f* Y(t 1 ,t 2 ,t 3 )dt 1 dt 2 dt 3 6 

£exyz+$(W) fx f% f% exp(r(t1+t2+t3))dt1dt2dt3. 

therefore 
oc(AQ)< r"3 exp(r(x+y+z)). $(W). 

Further, by A. (i=l,2,3) and A ^ (j,k=l,2,3) with -j<k) we represent 
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and 

the sets 

Ctf " ' - ' W W /37o*V.(t1,y,t3)dt1dt3l f9'J?*tvt2,z)<ttl«t2 
and 

/0
X,W(x,y,t3)dt3, jJyW(x,t2,z)dt2, j^xW(t1,y,z)dt1, 

respectively. Arguments analogous to the above imply that 

oc(At)< r~
2.exp(r(x+y+z)). $(W) 

c c W ^ K r " 1 exp(r(x+y+z))«4>(W). 

Consequently, 

oo(F[WKx,y,z))i-

.£L.maX'{oc(A0),oC(Ai), oc(A.k):i,j,k=l,2,3 with j - ck i < 

<r"1L«exp(r(x-i-y+z)) »$(W) 

for all (x,y,z)*V. This shows that ^ ( F C W D ^ r " ^ • $(W). Now, applying Sa-

dovskii's theorem, we infer that F has a fixed point in £ and the proof is 

complete. 
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