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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

PARITY OF ORTHOGONAL PERMUTATIONS 
AleS QRAPAL, Toads KEPKA 

Abstract: The parity of orthogonal permutations of some finite abelian 
groups is investigated. 

Key words: Parity, orthogonal, permutation. 

Classification: 20B25 

This paper is a continuation of 12]. Here, we are investigating the pari

ty of some orthogonal permutations which are not automorphisms. Again, the 

results yield constructions of idempotent quasigroups with prescribed order 

and parity of translations. 

7 . The case n=15. Let G=Z,c(+). Consider the following two 14-cycles f 

and g*. 

f=(l 13 3 11 5 9 7 8 10 6 12 4 14 2), 

g=(l 3 7 2 5 11 10 4 9 6 13 14 12 8). 

It is easy to check that (f,g) is a pair of orthogonal permutations of C 

and that sgn(g)= -l=sgn(f). 

7-l- Proposition. (̂ (G,f) is an orthostrophic idempotent quasigroup of 

type (4) and order 15. 

Proof. See [2, Lemma 3.6(iv)3. 

8. The case n--.5. 

8*1* Proposition, (i) Every idempotent quasigroup of order 1 is of ty

pe (1). 

(ii) There is no idempotent quasigroup of order 2. 

(iii) Every idempotent quasigroup of order 3 is of type (4). 

(iv) Every idempotent quasigroup of order 4 is of type (1). 

Proof, (i) and (ii). Obvious. 

(iii) Every translation is a 2-cycle. 
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(iv) Every translation is a 3-cycle. 

8-2- Proposition. There is no idempotent quasigroup of order 5 and type 

(1). 

Proof. Let, on the contrary, Q(*) be such a quasigroup. Then its every 

(left or right) translation f is composed from two 2-cycles, and hence f =1. 

Therefore a*b=c implies c*b=a and c* a=b for any a,b,ceQ. Without loss of 

generality, we can assume Q=-( 1,2,3,4,5} and ^(1,Q(* ))=(2 3)(4 5). Then 

2*3=1, and hence 2*1=3. This implies £(2,Q(* ))=(1 3)(4 5), a contradic

tion. 

9. The case n=6 

*•*• Proposition. There is no idempotent quasigroup of order 6 such that 

each right translation is an odd permutation. 

Proof. Suppose that Q is such a quasigroup. Let R=-(3t(a,Q);a€ Q}. For 

any ft R, f=(a b)(c d e), we denote the setta,b} by D(f) and the set{c,d,e? 

by T(f). For a,b€Q, let fa D denote the (unique) permutation f c R with f(a)= 

=b. Obviously, la,b}S T(f a D) implies fa,b]£T(f b a). 

(a) Suppose there are f,g*R, f*g, such that T(f)=T(g)=T. Put D=(D(f)u 

uO(g))-(D(f)nD(g)). As D(f)4*D(g), we have Q=TuD(f)uD(g), and hence 

card(D)=2. If heR, f*h*g, then max(card(T(h)nD(f)), card(T(h)nD(g)), 

card(T(h)nT))£l, and therefore DST(h). This allows for only two distinct 

translations h, a contradiction. 

(b) The sets D(f), f€ R induce a graph on Q. Let G denote the graph com

plementary to such a graph. Then G has 9 edges and degG(x)4
s-l for any xeQ. 

Moreover, by (a) degg(x)4 2 for any xeQ. Suppose that there exists aeQ with 

degg(a)=0. The complete graph on five points has 10 edges, and therefore the

re is exactly one translation f eR such that a40(f). For any g€R, f*fg, we 

have a + T(g), T(f)4T(g) and card(D(f)nT(g))41. Hence card(T(g)nT(f))=2. 

However, this allows for at most three different translations g, a contradic

tion. 

(c) By (a) and (b) we have degG(x)>3 for any xeG. By counting the ed

ges we find out that the equality has to take place. Choose any a£Q and let 

b,c,d be its adjacent points. Then either fD a=fa d or fp a«fa . Assume the 

latter one. Then fbfa«ftfC-fCfb, fdta
=fa,b*fb,d> *c,a«*atd*d,c

 and fd,b= 
=fD c=fc d. Therefore G has a complete subgraph on four points. However, such 
a graph cannot be extended to a 3-regular graph on six points. 

9,2# Corollary. There is no idempotent quasigroup of order 6 and type 
(2) or (3) or (4). 
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9*5- Example• Consider the following quasigroup Q: 

Q 1 2 3 4 5 6 

1 13 4 5 6 2 

2 3 2 6 14 5 

3 6 5 3 2 14 

4 5 6 2 4 3 1 

5 2 4 16 5 3 

6 4 15 3 2 6 

Then Q is an idempotent quasigroup of order 6 and type (1). (If P is a prolon

gation of Q, then ^(p)-. W^p).- m(P)=if(P)). 

*•*• Example• Consider the following quasigroup Q: 

Q 1 2 3 4 5 6 

1 13 4 5 6 2 

2 4 2 16 3 5 

3 5 6 3 1 2 4 

4 6 5 2 4 13 

5 2 4 6 3 5 1 

6 3 15 2 4 6 

The left translations of ft are even permutations as well as the right trans

lation by 1. On the other hand, the remaining five right translations are 

odd permutations. 

10. Numbers divisible by 8 

10.1. Let n=> 2 and let mZl be odd. Let s=2nm, t=2n"1m and G=G(+)= 

=Z2(+)xZa(+). Put A=C(0 , i ) ;0 . s i< tJ , B={(0,i);t£i<s{, C= i(l9i);0^ i< t-l|, 

D= -Kl,i);t-l£i<s-l? and E=-f(l,s-l)f. Hence card(A)=card(B)=card(D)=t, 

card(C)=t-l, card(E)=l and G is the disjoint union of these sets, G=AuBuC u 

u DuE. Now, we shall define a transformation q of G as follows: 

(i) q((0,i))=(0,i) for every (0,i)cA; hence q|A=lA and q(A)=A. 

(ii) q((0,i))=(l,i) for every (0,i)cB; hence q|B= #((1,0),Q)|B and 

q(B)=(DuE)--C(l,t-l)}. 

(iii) q((l,i))=(l,i+l) for every (l,i)eC; hence q|C= #((0,1),G)|C 

and q(C)=(Cui(l,t-l)})-4(l,0)|. 

(iv) q((l,i))=(0,i+l) for every (l,i)eD; hence q|D= #((1,1),G)|D 

and q(D)=B. 

(v) q((l,s-l))=(l,0); hence q|E= *,((0,1),G)|E and q(E)= *(1,0)}. 
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10.1.1. Lemma, q is a permutation of G and sgn(q)= -1. 

Proof. Clearly, q(G)=G and q is a permutation. On the other hand, it is 

easy to check that q is a cycle of length 3t, so that q is odd. 

Now, put f(x)=q(-x) and g(x)=q(x)+x for every xeG. 

10.1.2. Lemma. Both f and g are permutations of G, (f,g) is a pair of 

orthogonal permutations and sgn(f)= -1. 

Proof. First, f is a composition of q and the even permutation x—> -x. 

Consequently, f is a permutation and sgn(f)= -l. Now, define four transforma

tions of G by hx(x)=2x, h2(x)=2x+(l,0), h3(x)=2x+(0,l) and h4(x)=2x+(l,l). 

Then glAsh-jA, g|B=h2|B, g|C=h3|C, g|D=h4|D and g|E=h3|E. Further, h-^a) 4-

#h x(b), if a,be A (resp. B, CuE, D) and a*b, and (1,0),(0,1),(1,1), 

(0,s-D,(l,s-l)$.h-(G). Using this, it is easy to see that g is injective, 

and therefore g is a permutation. 

l°-l-~- Lemma. sgn(g)= - 1 . 
Proof. Let < denote the sharp lexicographical ordering on G ((i,j) < 

<(k,l) iff either i< k or i=k and j<l). Put M= 4(x,y); x,ycG, x<y, g(x)> 

>g(y)J and d=card(M). Then sgn(g)=(-l)d and d=5Id(U,V), U,Ve{A,B,C,D,E}, 

d(U,V)=card((UxV)nM). Clearly, d(A,A)=d(A,B)=d(A,D)=d(A,E)=d(B,A)=d(B,B)= 

=d(C,A)=d(C,B)=d(C,C)=d(C,D)=d(C,E)=d(D,A)=d(D,B)=d(D,C)=d(E,A)=d(E,B)= 

=d(E,C)=d(E,D)=d(E,E)=0. Further, d(A,C)=^E0 i=t(t-D/2=2
n"2m(2n"Vl), 

d(B,C)=card(BxC)=t(t-l)=2n*"1m(2n""Vl), d(B,D)= !-f0 i=t(t-l)/2=2
n~2m(2n~Vl), 

d(B,E)=card(B)=t=2n"1m, d(D,D)=t-l=2n"Vl, d(D,E)=card(D)=t=2n"1m. From this, 
d=(s+l)t-l=(2Vl)2n~Vl is odd. 

4 
1°*1*4* LetTina- * is a 5-cycle. 
Proof, f is composed from t-2 4-cycles of the form 

((0,i) (l,s-i) (1,1-t-l) (0,s-D), l£U£t-2, from the 5-cycle 

((0,t-l) (l,t+l) (0,t) (l,t) (0,t+D) and from the 2-cycle 

((1,0) (1,1). 

1°*2* Proposition. Let k £ 3 and let mi* 1 be odd. Then there exists an 

orthostrophic io^mpotent quasigroup Q of order zSi and type (4). Moreover, 

3t(a,Q) is a 5-cycle for any a€Q. 

10.3. Let m=l, s=2n, Uln~l
t n ^ 2 . 

10-3.1. Lemma- 9 contains the following n+2-cycle: 

((0,s-l).. .(l,s-2l-l).. .(1,8-1)), 04. U n - 1 . 

Proof. g((l,s-l))=(l,s-2>l) for any 2£j£t+l and g((0,s-l))=(l,s-2), 
g((l,s-l))=(0,s-l). 

Now, put H=G--C(l,s-1)} and define a permutation h of H by h(x)=g(x) for 
- 430 -



every xeH, x*(l,t-l) and h((l,t-l))=(0,s-l). 

10.3 .2. Lemma. Let a,ax,... ,ane*0,li, i=a12n~1«-a22n~2+ . . .+an ̂ 2+a , 

0 £ i < s . Then h((a,i))=(a1,2i+a) (2i+a computed in Z ), 

Proof. Easy. 

10-5-3- Lemma- Let a0i
aii---ta

n
6^°'1^» i = ai 2 n 1 + - " + a

n . i
2 + a

n -
 For 0 ~ J -

4= n, put x.=(a,,2^i+2^"1a0+2'1"2a1+...+2a. 2+a. x ) . Then xQ=(a0,i) and h(xk)= 

=xk+l (or any O^k^"" 1* h (x n )=x 0 . 
Proof. Use 10.3,2. 

10.3.4. Lemma. h n + 1 = l H . 

Proof . This is clear from 1 0 . 3 . 3 . 

10*-5-5- Lemma- 9 is an n+2-cycle. 
Proof . The result is an easy consequence of the preceding observati-* 

ons. 

11 . Numbers divisible by 4 

1 1 . 1 . Let H=H(+)=Z«(+)*Z2(+) and let Q be a finite idempotent quasi-

group of order m£3. Put G = H ( + ) A Q and consider the following four 2-cycles 

from ^(H): f=((0,0) (0,1)), g=((0,l) (1,1)), h=((l,0) (1,1)), k=((0,l)(l,0)). 

Define an operation ° on H by ao b=k(g(a)+h(b». 

11.1.1. Lemma. H(o ) is an idempotent quasigroup and every of its trans

lations is an even permutation. 

Proof. Easy. 

Put G( o )=H( o )xQ and let t e tf(Q) be a regular permutation (i.e. t fi
xes no element). Now, we shall define an operation .* on G as follows: 

(i) (a,x)*(b,y)=(a+b,xy) for all a,beH, x,yeQ, x*y-t-t(x). 

(ii) (a,x)*(b,x) =(a-b,x) for all a,beH and xeQ. 

(iii) (a,x)*(b,t(x))=(f(a+b),xt(x)) for all a,beH, xcQ. 

11.1.2. Lemma. G(* ) is an idempotent quasigroup and every of its trans

lations is an odd permutation. 

Proof. From 6.1.1 and from the fact that H together with the operation 

(a,b)—* f(a+b) is a quasigroup, it is easy to see that G(*c) is an idempo

tent quasigroup. Now, let asH and xeQ. Put q=#((a,x),G(* )) and p=rf((a,x), 

G(o )). Then p, p~ are even permutations and sgn(qp" )=sgn(q). But 

qp (...,y)*(...,y) for each y eQ, and hence there are permutations w of the 
set H such that qp"1(b,y)=(w (b),y). Obviously, sgn(qp""1)= TFsgn(w ). However, 

for y*x,xt(x), wy= #(a,H(+))^(a,H( o ) )
_ 1 and sgn(wy)=l. For y=x, wy=lH 
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»nd again sgn(w )=1. Finally, for y=xt(x), w =f^(a,H(+))^(a,H( o ))"1 and 

sgn(w )=sgn(f)= -1. We have proved that the left translations of G(*0 are 

odd. In the right hand case, we can proceed similarly. 

11.1.3. Lemma. Let m be odd, Q=Z m(&), xAy=2x-y. Then #((0,x),G(*))
4 

is a 3-cycle for every xfcQ. 

Proof. Clearly, &((0,x),G(*)) is composed from the following cycles: 

((a,y) (a,2x-y)), a&H, yc Q--( x,t(x),2x-t(x)J; 

((0,x)); ((b,x) (kh(b),x) ((kh)2(b),x)), b=(0,l); 

((c,t(x)) (c,2x-t(x))), c=(l,0),(l,l); 

«0,t(x)) (b,2x-t(x)) (b,t(x)) (0,2x-t(x))). 

1L2. Corollary. Let m^T3 be odd. Then there exists an idempotent qua-

sigroup of order 4m and type (4) such that #(a,Q) is a 3-cycle for some 

asQ. 
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