Commentationes Mathematicae Universitatis Caroline

Zofia Majcher

Alternating cycles and realizations of a degree sequence

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 3, 467--480
Persistent URL: http://dml.cz/dmlcz/106561

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

28,3 (1987)

alternating cycles and realizations of a degree sequence

Z. MAJCHER

Abstract: We find an algorithm for constructing finite sequences of certain graphs (realizations of a degree sequence on a given set) with given initial and final graphs such that each subsequent graph is obtained from the preceding one by a switching.

Key words: Graph, realization of a degree sequence.
Classification: 05C99

0 . Introduction. In this paper, we deal with finite, undirected graphs admitting multiple edges and loops and we also consider some special types of graphs, e.g. graphs without loops, k-graphs, simple graphs.

We are interested in the class $\mathbb{R}_{V}(d)$ of all graphs being realizations of a degree sequence d on a given set V. The class $\mathbb{R}_{V}(d)$ is closed under switching operation (see [2]).

One of the most important properties of the class $\mathbb{R}_{V}(d)$ is contained in the following

Theorem. If $G, H \in \mathbb{R}_{V}(d)$, then there exists a sequence
(*) $G^{0}, G^{1}, \ldots, G^{m}$ such that $G^{0}=G, G^{m}=H$ and for every $s \in\{0,1, \ldots, m-1\}$ the graph G^{S+1} is obtained from G^{S} by a switching.

Several proofs of this theorem were presented in the literature. In those proofs different methods have been used for different types of graphs (see [1],[3],[4],[6]), Our aim is to find a method of the proof which is effective, uniform and optimal. In this paper an algorithm for constructing the sequence ($*$) is given. This algorithm can be applied to all types of graphs mentioned above. It can generate a shortest sequence ($*$), however, in general, solutions are not optimal.

Our method is partially based on ideas contained in [5]. Namely, we make use of the fact that the symmetrical difference $G-H$ of two graphs $G, H \in \mathbb{R}_{V}(d)$ can be decomposed into alternating cycles of some special forms. Therefore, we have to prove several properties of alternating cycles.

1. The set of realizations of a degree sequence and its subsets. Let V be a finite set. We denote by $\mathcal{V}^{(2)}$ the family of all non-empty subsets of V having at most two elements, and by Z^{+}- the set of all positive integers.

A graph is an ordered pair (V, E) satisfying the condition:

$$
\begin{equation*}
V \neq \emptyset \text { and } E \subseteq V^{(2)} \times Z^{+} \tag{1}
\end{equation*}
$$

If $e \in E$ and $e=(\{u, v\}, n)$ for some $u, v \in V$ and $n \in Z^{+}$, then the edge e is incident with u and v and has the label n.

We shall write $e=u n v$ instead of $e=(\{u, v\}, n)$, and $e=v n v$ instead of $e=$ $=(\{v\}, n)$.

Let $G=(V, E)$ and $u, v \in V$. We denote by $E_{G}^{(1)}(v), E_{G}^{(2)}(v)$ and $E_{G}(u, v)$ the set of all loops incident with v, the set of all edges incident with v and different from loops, and the set of all edges incident both with u and with v - respectively.

The number $\operatorname{deg}_{G}(v)=2\left|E_{G}^{(1)}(v)\right|+\left|E_{G}^{(2)}(v)\right|$ is called the degree of v in G and the number $m_{G}(u, v)=\left|E_{G}(u, v)\right|$ is called the edge multiplicity of $\{u, v\}$ in G.

A graph $G=(V, E)$ is a multigraph if $E_{G}^{(1)}(v)=\emptyset$ for every $v \in V$ and G is a k-graph $\left(k \in Z^{+}\right)$if $m_{G}(u, v) \leqslant k$ for every $u, v \in V$. A k-multigraph is a multigraph being a k-graph. A l-multigraph is called a simple graph. A graph without any restrictions will be called sometimes a pseudograph. The class of pseudographs will be denoted by \mathcal{P}, the class of multigraphs - by \mathcal{M}, k-graphs - by \mathcal{P}_{k}, k-multigraphs - by \mathcal{M}_{k} and simple graphs - by $\mathscr{\mathscr { S }}$. If τ is a class of graphs and $G \in \tau$, then we say that G is of type τ.

Let $G=(V, E)$ be a graph where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. A sequence d_{G} of the form

$$
\begin{equation*}
d_{G}=\left(\operatorname{deg}_{G}\left(v_{1}\right), \operatorname{deg}_{G}\left(v_{2}\right), \ldots, \operatorname{deg}_{G}\left(v_{n}\right)\right) \tag{2}
\end{equation*}
$$

is called the degree sequence of G.
A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of non-negative integers is graphic if there exists a graph G such that $d=d_{G}$. Such a graph is called a realization of d.

Let $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ be a sequence of vertices of a graph $G=(V, E)$ satisfying the following conditions:
$1^{0} \quad w_{1} \neq w_{3}$ and $w_{2} \neq w_{4}$,
2^{0} there exist $n_{1}, n_{2}, n_{3}, n_{4} \in Z^{+}$such that $e_{1}=w_{1} n_{1} w_{2} \in E, e_{3}=w_{3} n_{3} w_{4} \in E$ and $e_{1} \neq e_{3}$, $e_{2}=w_{2} n_{2} w_{3} \& E, e_{4}=w_{4} n_{4} w_{1} \& E$ and $e_{2} \neq e_{4}$.
Let us denote:

$$
\begin{aligned}
& G_{\left(e_{1}, e_{2}, e_{3}, e_{4}\right)}=\left(V, E^{\prime}\right) \text { where } E^{\prime}=\left(E \backslash\left\{e_{1}, e_{3}\right\}\right) \cup\left\{e_{2}, e_{4}\right\} . \\
&-468-
\end{aligned}
$$

We say that $G\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ is obtained from G by a switching operation with respect to the edges e_{1}, e_{3} and e_{2}, e_{4}.

We shall write $G\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ instead of $G\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ if the switching operation has been done in the following way:
if $w_{1}=w_{2}$ and $w_{3}=w_{4}$, then $\begin{array}{r}n_{1}=m_{G}\left(w_{1}, w_{1}\right), n_{3}=m_{G}\left(w_{3}, w_{3}\right) ; \\ \\ n_{2}=m_{G}\left(w_{1}, w_{3}\right)+1, n_{4}=m_{G}\left(w_{3}, w_{1}\right)+2 ;\end{array}$
if $w_{1}=w_{4}$ and $w_{2}=w_{3}$, then $n_{1}=m_{G}\left(w_{1}, w_{2}\right), n_{3}=m_{G}\left(w_{2}, w_{1}\right)-1$,
$n_{2}=m_{G}\left(w_{2}, w_{2}\right)+1, n_{4}=m_{G}\left(w_{1}, w_{1}\right)+1 ;$$\quad \begin{aligned} & n_{1}=m_{G}\left(w_{1}, w_{2}\right), n_{3}=m_{G}\left(w_{3}, w_{4}\right), \\ & n_{2}=m_{G}\left(w_{2}, w_{3}\right)+1, n_{4}=m_{G}\left(w_{4}, w_{1}\right)+1,\end{aligned}$
If G^{\prime} is obtained from G by some switching operation, then we also write shortly $G^{\circ}=\operatorname{sw}(G)$.

Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a graphic sequence, $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an arbitrary n-element set and $G=(V, E)$ be a graph. Let $R_{V}(d)$ denote the set of all realizations of d on V, that is $G \in \mathbb{R}_{V}(d)$ if G is a realization of d and the following condition holds:
(4) if $m_{G}(u, v)=s$ then $E_{G}(u, v)=\{u l v, u 2 v, \ldots, u s v\}$ for every $u, v \in V$.

It is obvious that if $G \in \mathbb{R}_{V}(d)$ and $G^{\prime}=G\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$, then $G^{\prime} \in \mathbb{R}_{V}(d)$.
If the realizations of d are required to be graphs of a fixed type τ, then the set of all realizations of d will be denoted by $\mathbb{R}_{v}(d ; \tau)$.

The above definition of a switching operation is suitable for the class of pseudographs. If we consider classes of other types, then this definition must be modified if we want the graph $\operatorname{sw}(G)$ to stay in the same class as G. For example we do not like to get loops in the class of graphs without loops. Therefore we have the following definitions:

If $\tau=\mathcal{M}$, then we substitute 1^{0} by 3^{0} :
$3^{0} w_{1}, w_{2}, w_{3}, w_{4}$ are pairwise different.
If $\tau=\mathcal{P}_{k}$, then we add 4^{0} to the conditions 1^{0} and 2^{0} :
$4^{0} m_{G}\left(w_{2}, w_{3}\right)<k, m_{G}\left(w_{4}, w_{1}\right)<k$.
For $\tau=\mathcal{M}_{k}(k \geq 2)$ we require conditions $2^{0}, 3^{0}$ and 4^{0} to be satisfied.
If $\tau=\mathscr{9}$, then we require conditions $2^{\circ}, 3^{0}$ and 4° for $k=1$.
2. Operations on chains and cycles. Let $G=(V, E)$ be a graph. By a chain in G we shall mean a sequence $L=\left(u_{1} n_{1} u_{2}, u_{2} n_{2} u_{3}, \ldots, u_{m} n_{m} u_{m+1}\right)$ of pairwise different edges of G. If $u_{1}=u_{m+1}$, then we have a cycle. If the edge labels are immaterial, then we shall write $L=u_{1} u_{2} \ldots u_{m} u_{m+1}$ for a chain and $C=u_{1} u_{2} \ldots$ $\ldots u_{11} u_{1}$ for a cycle.

We shall denote by $V(L)$ and by $E(L)$ the set of all vertices of L and the set of all edges of L respectively. We say that a vertex v is in the k-th position in the chain $L=u_{1} u_{2} \ldots u_{m+1}$ if $u_{k}=v$. Positions k_{1} and k_{2}, where $k_{1} \neq k_{2}$, will be called compatible if the number $\left|k_{1}-k_{2}\right|$ is positive and even.

We define the following operations on chains and on cycles:
For $L=u_{1} u_{2} \ldots u_{m-1} u_{m}$ we define:

$$
\begin{equation*}
E=u_{m} u_{m-1} \ldots u_{2} u_{1} \tag{5}
\end{equation*}
$$

For $C=u_{1} u_{2} \ldots u_{i-1} u_{i} u_{i+1} \ldots u_{m} u_{1}$ we define:

$$
\vec{C}^{i}=u_{i} u_{i+1} \ldots u_{m} u_{1} u_{2} \ldots u_{i-1} .
$$

Let $L_{1}=u_{1} u_{2} \ldots u_{m}, L_{2}=w_{1} w_{2} \ldots w_{k}$ where $u_{m}=w_{1}$. We define:

$$
L_{1}+L_{2}=u_{1} u_{2} \ldots u_{m} w_{2} \ldots w_{k}
$$

For $L=u_{1} u_{2} \ldots u_{i-1} u_{i} u_{i+1} \ldots u_{m}$ and $C=w_{1} w_{2} \ldots w_{j} w_{1}$, where $u_{i}=w_{1}$, we define:

$$
L+{ }_{i} C=u_{1} u_{2} \cdots u_{i-1} w_{1} w_{2} \cdots w_{j} w_{1} u_{i+1} \cdots u_{m}
$$

Let $L=u_{1} u_{2} \ldots u_{i-1} u_{i} u_{i+1} \ldots u_{m}$. We define:

$$
L_{/ i}=\left(L_{1}, L_{2}\right) \text {, where } L_{1}=u_{1} \ldots u_{i-1} u_{i}, L_{2}=u_{i} u_{i+1} \ldots u_{m} \text {. }
$$

Let $L=u_{1} \ldots u_{i-1} u_{i} u_{i+1} \ldots u_{j-1} u_{j} u_{j+1} \ldots u_{m}$, where $u_{i}=u_{j}, i<j$. We define:

$$
\begin{aligned}
& L / i, j=\left(L_{1}, C\right) \text {, where } L_{1}=u_{1} \ldots u_{i-1} u_{i} u_{j+1} \cdots u_{m} \text { and } \\
& \qquad C=u_{i} u_{i+1} \cdots u_{j-1} u_{j} .
\end{aligned}
$$

In what follows, the last operation applied to cycles will play an essential role.

A pair $C_{/ i, j}=\left(C_{1}, C_{2}\right)$ will be called a decomposition of C into cycles C_{1} and C_{2} at positions i and j. A cycle $C=u_{1} \ldots u_{m} u_{1}$ is decomposable if there exist $i, j \in\{1,2, \ldots, m\}, i<j$ and C_{1}, C_{2} such that $\left(C_{1}, C_{2}\right)=C / i, j$.
3. Alternating cycles and their decomposition. For two graphs $G_{1}=\left(V, E_{1}\right)$, $G_{2}=\left(V, E_{2}\right)$, the graph $G_{1}-G_{2}=\left(V, E_{1}-E_{2}\right)$ is the symmetric difference of G_{1} and G_{2}. A cycle $C=\left(u_{1} n_{1} u_{2}, u_{2} n_{2} u_{3}, \ldots, u_{m} n_{m} u_{m+1}\right)$ of $G_{1}-G_{2}$ is called an alternating cycle or briefly a-cycle if the following condition is satisfied for every $i \in\{1,2, \ldots, m\}$:
(11) $u_{i} n_{i} u_{i+1} \in E_{1}$ if i is odd and $u_{i} n_{i} u_{i+1} \in E_{2}$ if i is even.

Now we shall study decompositions of an a-cycle into a-cycles.

Lemma 1. If $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right)$, then an a-cycle C of $G_{1}-G_{2}$ is decomposable into a-cycles iff there exists a vertex v which occurs in C at two
compatible positions. (Obviously, the first and the last vertex in a cycle is counted once.)

Proof. The necessity follows from the definition of an alternating cycle and from (10).

Sufficience. Let $\mathrm{C}=\mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{\mathrm{i}-1} \mathrm{vu}_{\mathrm{i}+1} \ldots \mathrm{u}_{\mathrm{j}-1} \mathrm{vu}_{j+1} \cdots \mathrm{u}_{2 m} \mathrm{u}_{1}$. Then there exists a decomposition $C_{/ i, j}=\left(C_{1}, C_{2}\right)$, where $C_{1}=u_{1} u_{2} \ldots u_{i-1} v u_{j+1} \ldots u_{2 m} u_{i}, C_{2}=$ $=v u_{i+1} \ldots u_{j-1} v$. If i and j are both odd, then C_{1} and C_{2} are a-cycles, if i and j are both even, then C_{1} and $\stackrel{E}{C}_{2}$ are a-cycles.

Note that if v occurs in C more than twice, then obviously C is decomposable into a-cycles, since C has always two compatible positions.

If an a-cycle C is decomposable into a-cycles, we shall write briefly C is DAC, otherwise C is NDAC.

Corollary 1. An a-cycle C of a graph $G_{1}-G_{2}$ is NDAC iff every $v \in V(C)$ occurs in C either exactly once or exactly twice and at non-compatible positions.

Let $\mathrm{C}=\mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{\mathrm{m}} \mathrm{u}_{1}$ be a cycle in which for some $\mathrm{i}, \mathrm{j}, \mathrm{k}, l \in\{1,2, \ldots, m\}$, where $i<j<k<l$, we have $u_{i}=u_{k}=u, u_{j}=u_{1}=v$ and $u \neq v$. Then we say that vertices u and v occur in C alternately.

Lemma 2. Let C be an a-cycle of a graph $G_{1}-G_{2}$ and C be NDAC. If there exist $u, v \in V(C)$ occurring in C alternately, then there exists an a-cycle C^{\prime} such that $V\left(C^{\prime}\right)=V(C), E\left(C^{\circ}\right)=E(C)$ and C^{\prime} is DAC.

Proof. Let $C=u_{1} \ldots u_{i} \ldots u_{j} \ldots u_{k} \ldots u_{1} \ldots u_{2 m} u_{1}$, where $u_{i}=u_{k}=u$ and $u_{j}=u_{1}=v$. Let $C / i, k=\left(C_{1}, C_{2}\right)$. We form an a-cycle $C^{\prime}=C_{1}+{ }_{i} \overleftarrow{C}_{2}$. Since C is NDAC, neither the positions i, k nor j, l are compatible. Therefore, C_{1} and C_{2} are not a-cycles, however C^{\prime} is an a-cycle. Let s be the position of u_{j} in C^{\prime}. By the definition of C^{\prime}, we have $s=i+(k-j)$, hence $s+j=i+k$. As $s+j$ is odd, s and j are noncompatible. Hence, s and 1 are compatible. Thus, by Lemma 1 , we can conclude that C^{\prime} is DAC.

An a-cycle C is essentially non-decomposable into a-cycles, or briefly ENDAC, if C is NDAC and there are no two vertices occurring in C alternately.

On the base of proofs of Lemmas 1 and 2 we can formulate an algorithm for the decomposition of an a-cycle into ENDAC cycles.

Algorithm 1.

INPUT: An a-cycle $\mathrm{C}=\mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{2 \mathrm{~m}} \mathrm{u}_{1}$ of a graph $\mathrm{G}_{1}-\mathrm{G}_{2}$.
OUTPUT: The set \mathbb{C} of ENDAC cycles such that $E(C)=\underset{D \in \mathbb{C}}{ } E(D)$.

METHOD:

$\mathbb{C}:=\emptyset ; x:=4 ; k:=0$
F : if there exist i, j such that $i<j-2, u_{i}=u_{j}$ and $j \geq x$

then

begin
$k:=k+1 ;$
$j_{k}:=$ the smallest j such that $j \geq x$ and there exists i such that $u_{i}=$
$=u_{j}$ and $i<j-2$;
$i_{k}:=$ the smallest i such that $u_{i}=u_{j_{k}}$ and $i<j-2$;
$\mathrm{x}:=\mathrm{j}_{\mathrm{k}}+1$
if $j_{k}-i_{k}$ is even
then
begin
$\left(C_{k}, D_{k}\right):=C / i_{k}, j_{k}$
go to $F$$; \mathbb{C}:=\mathbb{C} \cup\left\{D_{k}\right\} ; C:=C_{k} ;$
end
else
if there is no $y \in\{1,2, \ldots, k-1\}$ such that $i_{y}<i_{k}<j_{y}<j_{k}$
then go to F

else

begin
$s:=$ the smallest $y \in\{1,2, \ldots, k-1\}$ such that $i_{y}<i_{k}<j_{y}<j_{k}$; $L_{1}:=u_{1} \ldots u_{i_{s}} ; L_{2}:=u_{i}, \ldots u_{i_{k}} ; L_{3}:=u_{i_{k}} \ldots u_{j_{s}} ; L_{4}:=u_{j_{s}} \ldots u_{j_{k}} ;$
$L_{5}:=u_{j_{k}} \ldots u_{m} u_{1} ; D_{k}:=\overleftarrow{E}_{2}+L_{4} ; \mathbb{C}:=\mathbb{C} \cup\left\{D_{k}\right\} ; C:=L_{1}+\overleftarrow{L}_{3}+L_{5} ;$
go to F
end
end
else
begin
$\mathbb{C}:=\mathbb{C} \cup\{C\} ;$
STOP
end
Let us denote by $o c(v, C)$ the number of occurences of a vertex v in a cycle C.

Lemma 3. If $G_{1}, G_{2} \in \mathcal{M}$ and C is an ENDAC cycle of $G_{1} \div G_{2}$, then there exists $x \in V(C)$ such that $o c(x, C)=1$.

Proof. Assume that $\mathrm{oc}(\mathrm{v}, \mathrm{C})>1$ for every $\mathrm{v} \in V(C)$. Since C is NDAC, by Corollary 1 , we get $o c(v, C)=2$ for every $v \in V(C)$. Let i and $j(i<j)$ be the positions of v in C, and let $C^{\prime}=v \ldots v$ be the subcycle of C taken from the i-th position to the j-th position. We shall show that C^{\prime} contains a loop. Let $l\left(C^{\prime}\right)$ denote the length of C^{\prime}. We proceed by induction on $l\left(C^{\circ}\right)$.

If $l\left(C^{\circ}\right)=1$, then $C^{\prime}=v v$ is a loop.
Assume that the statement holds for each subcycle C^{\prime} of C with $1\left(C^{\circ}\right)<s$, $s>1$.

Let $l\left(C^{\prime}\right)=s$. Since $o c(w, C)=2$ for every $w \in V(C)$, there exists $u \in V\left(C^{\prime}\right)$ such that $u \neq v$. Since C is ENDAC, the vertices v and u do not occur alternately in C and consequently $l\left(C^{\prime}\right)>2$, oc $\left(u, C^{\prime}\right)=2$. Then, by inductive assumption, there exists a loop in the cycle $C^{\prime \prime}=u . . . \begin{aligned} & u \\ & \text { being a subcycle of } C^{\prime} \text {. }\end{aligned}$

Thus we get a contradiction with the assumption that $G_{1}, G_{2} \in \mathcal{M}$.
Lemma 4. Let $G_{i}, G_{2} \in \mathcal{P}$ and C be an ENDAC cycle of $G_{1}-G_{2}, 1(C) \geq 4$ and $o c(v, C)=2$ for every $v \in V(C)$. Then there exist $x, y \in V(C)$ such that $L_{1}=x x y y$ or $L_{2}=y x x y$ is a subchain of C.

Proof. Let u, v be consecutive vertices of C and $u \neq v$. Since C is ENDAC, so $C^{\prime}=u v . . . v . . . u$ is a subcycle of C. We shall prove, by induction on $k=1\left(C^{\circ}\right)$, that C^{\prime} contains a subchain $L_{1}=x x y y$ or $L_{2}=x y y x$.

If $k=3$, then $C^{\prime}=u v v u$.
Assume that the statement is true for every $k<s, s>3$.
Let $l\left(C^{\prime}\right)=s$. It must be: $1^{0} C^{\prime}=u v \ldots v \ldots u, 2^{0} C^{\prime}=u v v \ldots u$.
Case 1^{0}. Let w be the third vertex of C^{\prime}. Then C^{\prime} must be of the form $C^{\prime}=$ $=u v w . . . w . . . v . . . u$. Hence, by the inductive assumption, there exists in $C^{\prime \prime}=$ $=v w . . . w . . . v$ a subchain L_{1} or L_{2}.
Case 2°. If $l\left(C^{\circ}\right)=4$, then the proof is completed. Assume that $l\left(C^{\circ}\right)>4$ and w is the fourth vertex of C^{\prime}. Then $C^{\prime}=u v v w . . . w . . . u$. Let z be the fifth vertex in C^{\prime}. If $z=w$, then we have a subchain $L=v v w w$ of C^{\prime}. If $z \neq w$, then $C^{\prime}=u v v w z \ldots$ $\ldots . . . w . . . u$, and the cycle $C^{\prime \prime}=w z . . . z . . . w$ is contained in C°. Thus the cycle $C^{\prime \prime}$ contains the chain of the form xxyy or $x y y x$, by the inductive assumption.

Theorem 1. If $\mathrm{C}=\mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{2 m} \mathrm{u}_{1}$ is an ENDAC cycle of $\mathrm{G}_{1}-\mathrm{G}_{2}$, then there exists an a-cycle $C^{\prime}=w_{1} w_{2} \ldots w_{2 m} w_{1}$ such that $V\left(C^{\prime}\right)=V(C), E\left(C^{\prime}\right)=E(C), C^{\prime}$ is ENDAC and C^{\prime} is one of the forms $I-V$:

I $w_{i} \notin w_{1}$ for every $i \in\{2,3, \ldots, 2 m\}$,
II $w_{1}=w_{2}$ and $w_{3}=w_{2 m}$, oc($\left.v, C^{\prime}\right)=2$ for every $v \in V\left(C^{\prime}\right)$,
III $w_{1}=w_{2 m}$ and $w_{2}=w_{2 m-1}$, oc $\left(v, C^{\prime}\right)=2$ for every $v \in V\left(C^{\prime}\right)$,
IV $w_{1}=w_{2 m}$ and $w_{2}=w_{3}, o c\left(v, C^{\prime}\right)=2$ for every $v \in V\left(C^{\prime}\right)$,
$\checkmark \quad w_{1}=w_{2}$ and $w_{2 m-1}=w_{2 m}, o c\left(v, C^{\prime}\right)=2$ for every $v \in V\left(C^{\prime}\right)$.
Proof. Assume that there exists a vertex v in C such that $o c(v, C)=1$ and i is its position in C. Then $C^{\circ}=\vec{C}^{i}$ for odd i or $C^{\prime}=\left(\overleftrightarrow{C}^{i}\right)$ for even i satisfies condition I.

Assume that $o c(v, C)=2$ for every $v \in V(C)$. Then, by Lemma 4, there exists a subchain $L=u_{i} u_{i+1} u_{i+2} u_{i+3}$ of the form yxxy or xxyy. In case 1 , if i is $e-$ ven, then $C^{\prime}=\vec{C}^{i+1}$ satisfies II, if i is odd, then $C^{\prime}=\vec{C}^{i+2}$ satisfies III, in case 2 , if i is even, then $C^{\prime}=\vec{C}^{i+1}$ satisfies IV, if i is odd, then $C^{\prime}=$ $=\overrightarrow{C^{i+2}}$ satisfies V.

Obviously C^{\prime} is ENDAC in each of the cases.
Remark 1. Theorem 1 provides an easy one-pass method for transforming an ENDAC cycle into an a-cycle which is of type I - V.

4. A-cycles and realizations of a degree sequence

Lemma 5. Let d be a graphic sequence, $G_{1}, G_{2} \in \mathbb{R}_{V}(d)$ and $G_{1}=\left(V, E_{1}\right), G_{2}=$ $=\left(V, E_{2}\right)$. Then every non-trivial component of $G_{1}-G_{2}$ is an Eulerian graph with at least 4 edges and each component has an alternating Euler cycle.

Proof. Since for every $v \in V$ we have
$\mid\left\{e \in E_{1} \backslash E_{2}: e\right.$ inc $\left.v\right\}|=|\left\{e \in E_{2} \backslash E_{1}: e\right.$ inc $\left.v\right\} \mid$,
so every non-trivial component of $G_{1} \curvearrowleft G_{2}$ has an alternating Euler cycle.
From (4) it follows:
$m_{G_{1}}-G_{2}(u, v)=\left|m_{G_{1}}(u, v)-m_{G_{2}}(u, v)\right|$ for every $u, v \in V\left(G_{1}-G_{2}\right)$.
Thus none of the a-cycles of the graph $G_{1}-G_{2}$ is of the form $C=u v u$ or $C=v v v$.
Lemma 6. Let $G_{1}, G_{2} \in \mathbb{R}_{V}(d), G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right)$ and C be an a-cycle of the graph $G_{1}-G_{2}$. Then the following conditions hold:

1. If $e_{1}=u n_{1} v, e_{2}=w n_{2} z, e_{1} \in E_{1} \backslash E_{2}, e_{2} \in E_{2} \backslash E_{1}$, then $\{u, v\} \neq\{w, z\}$.
2. If u, v, w are consecutive vertices of C, then $u \neq w$.
3. If $G_{1}, G_{2} \in \mathbb{R}_{V}(d ; \tau)$, where $\tau \in\left\{\mathcal{M}, \mathcal{M}_{k}, \mathscr{S}\right\}$, then every three consecutive vertices of C are different.
4. $|V(C)| \geq 2$.

Proof. The first condition follows from the fact that edges are labelled both in G_{1} and in G_{2} starting from 1. Conditions $2-4$ follow from condition 1.

Let \mathbb{C} be a set of a-cycles of the graph $G_{1} \div G_{2}$ such that $\underset{C \in \mathbb{C}}{\bigcup} E(C)=$
$=E\left(G_{1}-G_{2}\right)$. We shall say that \mathbb{C} is an a-cyclic partition of $G_{1}-G_{2}$ if each edge of $E\left(G_{1}-G_{2}\right)$ belongs to exactly one of the a-cycles in \mathbb{C}.

If $\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$ is an a-cyclic partition of $G_{1}-G_{2}$, then we can form a sequence $\left(C_{1}, C_{2}, \ldots, C_{r}\right)$. We say that an a-cycle $C_{k}=u_{1} u_{2} \ldots u_{2 m} u_{1}(k=1,2, \ldots, r)$ is closed the most quickly in the sequence $\left(C_{1}, \ldots, C_{r}\right)$ if for every $s \in$ $\in\{2,3, \ldots, m-1\}$ and $n \in Z^{+}$the following condition holds:

$$
u_{2 s}{ }^{n u_{1}} \in E\left(G_{2}\right) \backslash E\left(G_{1}\right) \Rightarrow u_{2 s}{ }^{n u} u_{1} \in \bigcup_{i \in\{1, \ldots, k-1\}} E\left(C_{i}\right)
$$

A sequence $C=\left(C_{1}, C_{2}, \ldots, C_{r}\right)$ is called a proper a-cyclic partition of $G_{1} \doteq G_{2}$ if for every $k \in\{1,2, \ldots, r\}, C_{k}$ is closed the most quickly.

Example. Let
$E\left(G_{1}\right) \backslash E\left(G_{2}\right)=\left\{v_{1} l v_{2}, v_{1} l v_{3}, v_{2} 3 v_{7}, v_{3} 2 v_{4}, v_{5} l v_{6}, v_{5} 2 v_{6}, v_{5} l v_{8}, v_{7} l v_{8}\right\}$, $E\left(G_{2}\right) \backslash E\left(G_{1}\right)=\left\{v_{1} 3 v_{6}, v_{1} l v_{8}, v_{2} l v_{3}, v_{2} 2 v_{8}, v_{3} l v_{5}, v_{4} l v_{5}, v_{5} l v_{7}, v_{6} l v_{7}\right\}$.

Put $C_{1}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{1}, C_{2}=v_{2} v_{7} v_{5} v_{6} v_{1} v_{3} v_{5} v_{8} v_{2}, D_{1}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$, $D_{2}=v_{2} v_{7} v_{5} v_{6} v_{7} v_{8} v_{1} v_{3} v_{5} v_{8} v_{2}$.

Then the partitions $C=\left(C_{1} C_{2}\right)$ and $C^{\circ}=\left(C_{2}, C_{1}\right)$ are not proper, because $v_{6} 3 v_{1} \in E\left(G_{2}\right) \backslash E\left(G_{1}\right)$ and $v_{6} 3 v_{1} \in E\left(C_{2}\right)$, and similarly $v_{3} l v_{2} \in E\left(G_{2}\right) \backslash E\left(G_{1}\right)$ and $v_{3} l v_{2} \in E\left(C_{1}\right)$. The partition $C^{\prime \prime}=\left(D_{1}, D_{2}\right)$ is a proper a-cyclic partition of $\mathrm{G}_{1}-\mathrm{G}_{2}$.

Remark 2. An a-cyclic partition of $G_{1}-G_{2}$ for $G_{1}, G_{2} \in R_{V}(d)$ can be constructed using an arbitrary algorithm for finding an Eulerian a-cycle in an Eulerian graph, where the edges should be chosen from G_{1} and G_{2} in an alternating way. To find a proper a-cyclic partition of $G_{1}-G_{2}$ we can use such an algorithm requiring additionally every cycle to be closed the most quickly.

Let $G, H \in \mathbb{R}_{V}(d ; \tau)$ and $G \neq H$. A sequence $G=G^{0}, G^{1}, \ldots, G^{k}=H$ will be called a sequence of intermediate graphs for (G, H) if $G^{i} \in \mathbb{R}_{V}(d ; \tau)$ and $G^{i}=S W\left(G^{i-1}\right)$ for $i \in\{1,2, \ldots, k\}$.

Theorem 2. Let $G, H \in \mathbb{R}_{V}(d)$ and let $\mathbb{C}=\left(C_{1}, C_{2}, \ldots, C_{r}\right)$ be a proper a-cyclic partition of $G \dot{-H}$. If $C_{1}=u_{1} u_{2} \cdots u_{2 m} u_{1}$, then there exists a graph $G^{m-1} \epsilon$ $\in \mathbb{R}_{V}(d)$ and a sequence of intermediate graphs $G=G^{0}, G^{1}, \ldots, G^{m-1}$ for (G, G^{m-1}) such that $\mathbb{C}^{\prime}=\left(C_{2}, \ldots, C_{r}\right)$ is a proper a-cyclic partition of $G^{m-1}=H$.

Proof. We shall prove the theorem by induction on m.
For $m=2$ we have $C_{1}=u_{1} u_{2} u_{3} u_{4} u_{1}$. From Lemma $6, u_{1} \neq u_{3}$ and $u_{2} \neq u_{4}$. Let $e_{1}=$ $=u_{1} n_{1} u_{2}, e_{2}=u_{2} n_{2} u_{3}, e_{3}=u_{3} n_{3} u_{4}, e_{4}=u_{4} n_{4} u_{1}$, where $n_{1}, n_{2}, n_{3}, n_{4}$ satisfy conditions (3) of Section 1. Then we have:

$$
\begin{equation*}
e_{1}, e_{3} \in E(G), e_{2}, e_{4} \notin E(G) \tag{12}
\end{equation*}
$$

Hence, we can take $G^{1}=6\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$.
We can assume that $C_{1}=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$, hence $E\left(G^{1}-H\right)=E\left(\mathbb{C}^{\prime}\right)$, where $\mathbb{C}^{\prime}=$ $=\left(C_{2}, \ldots, C_{r}\right)$. Therefore \mathbb{C}^{\prime} is a proper a-cyclic partition of $G^{1}-H$.

Assume that the theorem holds for a cycle C_{1} of the length $1=2(\mathrm{~m}-1)$.
Let $C_{1}=u_{1} u_{2} \cdots u_{2 m} u_{1}$ and $e_{1}, e_{2}, e_{3}, e_{4}$ satisfy condition (12). From the definition of an a-cycle it follows that $e_{1}, e_{3} \in E(G) \backslash E(H), e_{2} \in E(H) \backslash E(G)$. Since $n_{4}>m_{G}\left(u_{4}, u_{1}\right)$, so $e_{4} \notin E(G)$. Put $G^{1}=G\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$. Since C_{1} is closed the most quickly and $l\left(C_{1}\right)>4$, so $e_{4} \neq E(H)$. Thus $E\left(G^{1} \dot{-} H\right) x\left(E(G \dot{-}-H) \backslash\left\{e_{1}, e_{2}, e_{3}\right\}\right) \cup$ $\cup\left\{e_{4}\right\}$.

We have $\mathbb{C}^{1}=\left(C^{0}, C_{2}, \ldots, C_{r}\right)$, where $C^{\prime}=u_{1} u_{4} \cdots u_{2 m} u_{1}$ and \mathbb{C}^{1} is a proper a-cyclic partition of $\mathrm{G}^{1}-\mathrm{H}$. Now we can use the inductive assumption.

Remark 3. On the base of the proof of Theorem 2 one can easily formulate an algorithm for the reducing of the first a-cycle in a proper a-cyclic partition of $G-H$, where $G, H \in \mathbb{R}_{V}(d ; \Im)$.

The next theorem concerns the sequences of intermediate graphs in the famill $\mathbb{R}_{v}(d ; \tau)$, where $\tau=P_{k}$ for $k \geq 2$ or $\tau=\mathcal{M}_{k}$ for $k \geq 1$. We assume that $\mathcal{M}=\mathcal{M}_{\mathrm{k}}$ for $\mathrm{k}=\infty$. Note that the assumption $\mathrm{k} \geq 2$ is essential, since for two graphs of type \mathcal{P}_{1} there need not exist a sequence of intermediate graphs of type \mathfrak{P}_{1} (see Fig. 1).

Fig. 1
H:

Theorem 3. Let $G, H \in \mathbb{R}_{V}(d ; \tau)$, where $\tau=\mathcal{P}_{k}$ for $k \geq 2$ or $\tau=\mathcal{M}_{k}$ for $k z 1$, and $\mathbb{C}=\left(C_{1}, C_{2}, \ldots, C_{n}\right)$ be an a-cyclic partition of the graph $G-H$ such that every cycle is of the form $I-V$ (see Th. 1). Assume that $C_{1}=u_{1} U_{2} \ldots$ $\ldots u_{2 m} u_{1}$ and ($s_{0}, s_{1}, \ldots, s_{p}$) is a sequence of all positive integers such that:

$$
\left\{\begin{array}{l}
l=s_{0}<s_{1}<\ldots<s_{p}=m, \tag{13}\\
m_{G}\left(u_{1}, u_{2 i}\right)<k \text { for } i \in\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}, \\
m_{G}\left(u_{1}, u_{2 i}\right)=k \text { for } i \in\left(\{2,3, \ldots, m\} \backslash\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}\right) .
\end{array}\right.
$$

Then there exists a graph G ' $\in \mathbb{R}_{V}(d ; \tau)$ and there exists a sequence
(14) $G=G_{0}^{S_{0}}, G_{1}^{1}, \ldots, G_{1}^{S_{1}^{-s}}, G_{2}^{1}, \ldots, G_{2}^{S_{2}^{-s}}, \ldots, G_{p}^{1}, \ldots G_{p}^{S_{p}^{-s}}{ }_{p-1}=G^{.}$
of intermediate graphs for (G, G°) such that $\mathbb{C}^{\prime}=\left(C_{2}, C_{3}, \ldots, C_{n}\right)$ is an acyclic partition of the graph $\mathrm{G}^{\prime}-\mathrm{H}$.

Proof. We shall consider C_{1} as a sequence ($e_{1}, e_{2}, \ldots, e_{2 m}$) of edges from $E(G \cup H)$, where e_{i} is incident with u_{i} and u_{i+1} for $i=1,2, \ldots, 2 m-1$, and the edge $e_{2 m}$ is incident with $u_{2 m}$ and u_{1}.

Denote:
(15)

$$
k(r)=\left\{\begin{array}{l}
s_{0} \text { for } r=0, \tag{16}\\
s_{r}-s_{r-1} \text { for } r=1,2, \ldots, p .
\end{array}\right.
$$

For $r \in\{1,2, \ldots, p\}$ and $i \in\{1,2, \ldots, k(r)\}$ we define:

$$
\begin{equation*}
\left.G_{r}^{i}=G_{a\left(u_{1}, u_{2 q}\right.}^{b}, u_{2 q+1}, u_{2 q+2}\right)=G_{a\left(f_{q}, e_{2 q}, e_{2 q+1}, f_{q+1}\right)} \tag{17}
\end{equation*}
$$

where $q=s_{r}-i$ and $a=r-1, b=k(r-1)$ if $i=1$, $a=r, b=i-1$ if $i \neq 1$.

Fig. 2 shows how to construct initial elements of the sequence (14). By means of thick continuous lines we draw these edges of C_{1} which belong to $E(G) \backslash E(H)$, by a dashed line we draw edges of C_{1} which belong to $E(H) \backslash E(G)$.

Fig. 2
First let us observe that $f_{1}=e_{1}, f_{m}=f_{s_{p}}=e_{2 m}$. We prove that the remaining edges are pairwise distinct. In fact, $e_{i} \neq e_{j}^{p}$ for $i \neq j$ as being edges of C_{1}; $f_{i} \neq e_{j}$ for $i \in\{2,3, \ldots, m-1\}, j \in\{2,3, \ldots, 2 m-1\}$ since f_{i} is incident witr u_{1} and e_{j} is not $\left(C_{1}\right.$ is of the form $\left.I-V\right) ; f_{i} \neq f_{j}$ for $i \neq j$ since $u_{2 i}+u_{2 j}$ as being vertices of an NDAC cycle.

We shall show that the switching operations defined hy (17) can be reali-
zed, that is, the following conditions are satisfied:

1) $u_{1}, u_{2 q}, u_{2 q+1}, u_{2 q+2}$ are pairwise different,
2) $f_{q} \neq e_{2 q+1}, e_{2 q} \neq f_{q+1}$,
3) $f_{q}, e_{2 q+1} \in E\left(G_{a}^{b}\right), e_{2 q}, f_{q+1}$ 申 $E\left(G_{a}^{b}\right)$,
\left. 4) ${\underset{G}{a}}_{b^{b}}\left(u_{2 q}, u_{2 q+1}\right)<k, m_{G}^{b}{ }^{\left(u_{2 q+2}\right.}, u_{1}\right)<k$.
Condition 1) follows from Lemma 6 and from the assumption that C_{1} is of the form I - V; condition 2) follows from the above considerations.

Let $r \in\{1,2, \ldots, p\}, i \in\{2,3, \ldots, k(r)\}$ and $q=s_{r}-i$. From (13) and (15) it follows that $f_{q}, f_{q+1} \in E(G)$, however, from the definition of an a-cycle of $G-H$ we have $e_{2 q+1} \in E(G) \backslash E(H)$ and $e_{2 q} \in E(H) \backslash E(G)$. Let us note that the edges $f_{q}, e_{2 q+1}, e_{2 q}$ have not taken part in the earlier switching operations, so $f_{q}, e_{2 q+1} \in E\left(G_{r}^{i-1}\right)$ and $e_{2 q} \notin E\left(G^{i-1}\right)$, whereas the edge f_{q+1} has been removed from the graph G_{r}^{i-1} in the preceding switching operation, hence $f_{q+1} \notin E\left(G_{r}^{i-1}\right)$. Thus condition 3) is satisfied.

Since $e_{2 q} E E(H) \backslash E(G)$ and $e_{2 q} \notin E\left(G_{r}^{i-1}\right)$, so $m_{G_{r}^{i-1}}\left(u_{2 q}, u_{2 q+1}\right)<k$. Further, since $f_{q+1} \in E\left(G_{r}^{i-2}\right) \backslash E\left(G_{r}^{i-1}\right)$, so $m_{G_{r}^{i-1}}\left(u_{2 q+2}, u_{1}\right)<k$. From that it follows that
condition 4) is satisfied.

Similarly we prove that conditions 3) and 4) hold if $i=1$.
From (17) it follows that for $r=1,2, \ldots, p-1$ we have:
$E\left(G_{r}^{k(r)}\right)=\left(E(G) \backslash\left\{e_{1}, e_{3}, \ldots, e_{2 s_{r}-1}\right\}\right) \cup\left\{f_{s_{r}}\right\} \cup\left\{e_{2}, e_{4}, \ldots, e_{2 s_{r}-2}\right\}$,
whereas for $r=p$
$E\left(G_{p}^{k(p)}\right)=\left(E(G) \backslash\left\{e_{1}, e_{3}, \ldots, e_{2 s_{p}-1}\right\}\right) \cup\left\{e_{2}, e_{4}, \ldots, e_{2 s_{p}-2}, e_{2 s_{p}}\right\}$
since, by $s_{p}=m$, we have $f_{s_{p}}=e_{2 s_{p}}$.
Thus we can conclude that $E\left(G^{\prime}-H\right)=E(G-H) \backslash E\left(C_{1}\right)$, and consequently, the sequence $C^{\circ}=\left(C_{2}, \ldots, C_{n}\right)$ is an a-cyclic partition of the graph $G^{\circ}-H$.

Remark 4. On the base of the proof of Theorem 3 one can formulate an algorithm for the reducing of the first a-cycle of the form $I-V$ in a-cyclic partition of $G \perp H$, where $G, H \in \mathbb{R}_{V}(d ; \tau)$ for $\tau \in\left\{\mathcal{\rho}_{k}, \mathcal{M}_{k}, \mathcal{S}\right\}, k \geq 2$.

Now we give a procedure of finding a sequence of intermediate graphs for (G, H), where $G, H \in \mathbb{R}_{V}(d ; \tau)$.

Algorithm 2.

1. Find a proper a-cyclic partition $\mathbb{C}=\left(C_{1}, C_{2}, \ldots, C_{n}\right)$ of the graph $G-H$,
here $G, H \in \mathbb{R}_{V}(d ; \tau)$. If $\tau=\mathcal{S}$, go to 3 .
2. Decompose each cycle C_{i} of C onto ENDAC cycles and transform each of them to a-cycle of type I - V. Denote also by \mathbb{C} the resulting a-cyclic partition of G-H.
3. For every cycle of \mathbb{C} use Remark 3 if $\tau \in\{\mathcal{P}, \mathcal{M}\}$ and use Remark 4 if $\tau \in\left\{\Im_{k}, \mathcal{M}_{k}, \mathscr{S}\right\}$ for $k \geq 2$.

Finally we look for the shortest sequence of intermediate graphs for (G, H). Let $G=G^{0}, G^{1}, \ldots, G^{k}=H$ be a sequence of intermediate graphs for (G, H). The number k will be called the length of this sequence. The least number k for which there exists a sequence of intermediate graphs for (G, H) will be denoted by $k_{0}(G, H)$. Therefore $k_{0}(G, H)$ is the least number of switching operations which must be done to reach H starting from G. In this process we have to take only such switching operations which decrease the number of edges of the graph G-H. Note that a switching operation applied once to an a-cycle C decreases the number of edges by 2 if $|E(C)|>4$ and by 4 if $|E(C)|=4$. Hence

$$
\begin{equation*}
\frac{s}{2} \leqslant k_{0}(G, H) \leqslant s-1, \text { where } s=|E(G \cup H)| . \tag{18}
\end{equation*}
$$

The equality $k_{0}(G, H)=\frac{S}{2}$ holds if each of the edges of $G \div H$ occurs in a 4-edge a-cycle, and $k_{0}(G, H)=s-1$ if all edges of $G-H$ occur in a given one 2s-edge a-cycle.

Thus we obtain a shortest sequence for (G, H) if the a-cyclic partition of $G \div H$ which we apply in Step 2 of the last procedure has the greatest number of a-cycles. However, Algorithm 1 does not assure that we deal with an optimal a-cyclic partition of G -H .

Thus, we pose the following
Problem. Give an algorithm for finding a decomposition of an a-cycle into the greatest number of a-cycles.

Let us notice that (18) can be improved using Lemma 1. Then we get $\frac{s}{2} \leqslant k_{0}(G, H)<s-\frac{4}{4}$, where $\Delta=\max \left\{\operatorname{deg}_{G \bullet H}(v)\right\}_{v \in V(G \cdot H)}$.

References

[1] D. BILLINGTON: Connected subgraphs of the graph of multigraphic realizations of a degree sequence, Combinatorial Math. VIII, Proc. 8th Australian Conf. on Combinatorial Math., Geelong, 1980 (Springer-Verlag; L.N.M. 884, 1981), 125-135.
[2] R.B. EGGLETON: Graphic sequences and graphic polynomials: a report, in: Infinite and Finite Sets, Vol. 1, Colloq. Math. Soc.J. Bolyai 10(North-Holland, Amsterdam, 1975), 385-392.
[3] R.B. EGGLETON, D.A. HOLTON: The graph of type ($0, \infty, \infty$) realizations of a graphic sequence, Combinatorial Math. VI, Proc. 6th Australian Conf. on Combinatorial Math., Armidale, 1978 (SpringerVerlag, L.N.M. 748, 1979), 41-54.
[4] R.B. EGGLETON, D.A. HOLTON: Simple and multigraphic realizations of degree sequences, Combinatorial Math. VIII, Proc. 8th Australian Conf. on Combinatorial Math., Geelong, 1980 (Springer-Verlag, L.N.M. 884, 1981), 155-172.
[5] Z. MAJCHER: Graphic matrices (in print).
[6] R. TAYLOR: Constrained switchings in graphs, Combinatorial Math. VIII, Proc. 8th Australian Conf. on Combinatorial Math., Geelong, 1980 (Springer-Verlag, L.N.M. 884, 1981), 314-336.

Institute of Mathematics of Pedagogical University, Oleska 48, 45-052 Opole, Poland
(Oblatum 12.12. 1986, revisum 11.5. 1987)

