
Commentationes Mathematicae Universitatis Carolinae

Jarosław Górnicki
Uniformly normal structure and fixed points of uniformly Lipschitzian mappings

Commentationes Mathematicae Universitatis Carolinae, Vol. 28 (1987), No. 3, 481--489

Persistent URL: http://dml.cz/dmlcz/106562

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106562
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

UNIFORMLY NORMAL STRUCTURE AND FIXED POINTS 
OF UNIFORMLY LIPSCHITZIAN MAPPINGS 

JarosXaw GtiRNICKI 

**• Abstract: Every Banach space E with the uniformly normal structure, 
i.e. N(E)<1, has the following property: if C is a nonempty ̂ bounded, closed 
and convex subset of E, AC N is a subset with.Banach measure ^(A)=l, and if 
T:C—>C has the property that its iterates T for ieA are Liptschitzian 

with the Lipschitz constant k^CN^E)]"1 , then T has a fixed point in C. 
This result generalizes fixed point theorems proved by E. Casini and * 

E. Maluta [43 and the result proved by M. Kruppel and the present author [9.1. 
Key words and phrases: Chebyshev center, uniformly normal structure, 

Banach measure, fx-uniformly k-Lipschitzian mappings, (*-center of -tx \with 
respect to C, James spaces, fixed points. 

Classification: 47H09, 47H10 

*• Introduction. Our aim is to study an open problem on normal type 

structures and the fixed point theory which follows from the known results by 

K. GoebeF, W.A. Kirk and R.L. Thele 173,18]. The question is whether, in 

a Banach space E, reflexivity and normal structure are sufficient to assure, 

for suitable k>l, the fixed point property (F.P.P. for short) for jc*-unif

ormly k-Lipschitzian self-mapping, i.e. to assure that for every nonempty, 

bounded, closed, convex subset C of E and every map T:C—>C, such that 

lH n x-T n y l l .&k»t lx-yS for any x,ycC and neA for some AcN with ft(AM, T 
has a fixed point in C 

2* Notation. In this paper, E will always denote an infinite dimensio

nal real or complex Banach space. For a subset C of E, we write diam(C) for 

the diameter of C, cl(C) for the closure of C and co(C) for the convex hull, 

of C. To simplify the notation we state the following rules: i%n\ will always 

denote a bounded sequence in E, and {*nq will denote the set of elements of 

•fx^ with i-*n-*j. Finally we denote by l" the n-dimensional space with p-norm. 

3. Uniformly normal structure, We recall the concept of a C.hebyshev 
center. Let B and C be subsets of a Banach space E and let B be bounded. 
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For each x c C define r(x)=-sup iiU-yl:y€.B\ and put rQ(C,B)=inf «{r(x):xec}. 

Then the possibly empty set 4xeC:r(x)=rQ(C,B)^is called the Chebyshev cen

ter of B with respect to C and r (C,B) the radius of B with respect to C. 

It is well known that if C is weakly compact and convex then Chebyshev cen

ters with respect to C are nonempty, weakly compact and convex. 

We now recall that a normed space (or a convex subset) E is said to have 

the normal structure if for every nonempty, bounded, convex, non-singleton 

subset C of E, the Chebyshev radius of C relative to C, r (C,C), is strictly 

smaller than the diameter of C, i.e. there exists at least one point x e C 

with sup {llx-yS:y« C}<diam(C). Such a point x is called non-diametral. This 

concept was introduced by M.S. Brodskij and D.P. Mil'man (1948). 

Let E be a Banach space and C a (nonempty) weakly compact, convex subset 

of E. A mapping T:C —*-C is said to be nonexpansive if 

||Tx-Tyl|.£llx-yft f o r a l l x , y e C . 

It is now known (see D.E. Alspach, A fixed point free nonexpansive map, Proc 
Amer. Math. Soc. 82(1981), 423-424) that, in the absence of further assump

tions, such a mapping need not have a fixed point. On the other hand, the 

classical result of W.A. Kirk (1965) say the following: let C be a nonempty, 

weakly compact, convex subset of a Banach space E, and suppose also that C 

has the normal structure. Then every nonexpansive mapping T:C—>-C has a fix

ed point. (For normal type structures and their applications to the fixed 

point theory, we refer to the exhaustive survey of W.A. Kirk [103 and S. Swa-

minathan 1153.) 

The concept of uniformly normal structure is due to A.A. Gillespie and 

B.B. Williams t63. A Banach space E is said to have the uniformly normal 

structure if there exists he(0,1) such that every bounded, closed, convex 

subset C of E contains a point z such that sup •? I z-x II:x £ C } *£ h«diam(C). It 

is known that every uniformly convex space has the uniformly normal structu

re, and it was shown in [63 that if C is a nonempty, bounded, closed and con

vex subset of a Banach space with the uniformly normal structure, then every 

nonexpansive self-mapping of C has a fixed point. This result is noteworthy 

in that it does not require any weak compactness assumption. E. Maluta in 

L143 showed that the uniformly normal structure implies reflexivity and de

fined the constant of the uniformity of normal structure in the following 

way: 

Definition 3.1. We set 

Nfm.-t o.H-, X ro ' C a nonempty, bounded, non-singleton, convex L 
nvt;. sup ^ diamtf) : subset of E J 
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Hence N(E)<1 characterizes the uniformly normal structure. Of course N(E)£L 

and N(E)= -j if E=(R2, II. il^), but N(E) ;> -j if the dimension of E is greater. 

In any Hilbert space and in any two-dimensional Banach space fl(E)= y O ( E ) , 

where J(E) is the 3ung constant of E. As a consequence we obtain N(!?,)= 

= (• H \ fnr* P i i r u r l a a n en .>^» .= . 1 ° ~r*A KlVl *>\n-\/2 

V 

-^1) for Euclidean spaces 12, and N(l*)=2~ 

We now define a class of James spaces which has recently been the object 

of a very intensive study. 

2 Definition 3.2. Let (i> 1 and let E* be the real Hilbert space 1 re-

normed according to |x|« =max «CHxlL,@-l.xl.00'£: where I • L denotes the 1 -
norm and I • lî  the sup-norm of 1* space. 

Since llxL^|xL -= (l+(3)- HxIL, the space Ep is not only reflexive but 

also superreflexive, and moreover it is known that for $z*L , E A fails to 
1/2 have a normal structure (E« has a normal structure iff ft < 2 ) . Indeed, 

consider the set 
C= 4 X = ( X 1 , X 2 , . . . ) € E A : X - > 0 for all je and ||xl2^l-j. 

For £ £ 21'2, diam(C)= £ . Now let eR be the n-th unit vector in L
2. Since 

lim |x-e U = (i for each x in C, we see that all points of C are diametral. 

3.B. Baillon and R. Schoneberg [21 proved that Oames spaces Eg for jt?^2 

have the F.P.P. for nonexpansive self-mapping. For fi > 2, this problem is 

still open. E. Casini and E. Maluta [41 proved 

1/2 *** -1/2 
Theorem 3.3. For 1 £ A £ 2 ' , N(Ej)= £ - 2 ' and, as a consequence, 

for (l< 2 the James space E@ has the uniformly normal structure. 

4. Short history of uniformly Lipschitz mappings 

Example 4.1. Let B=«fxcl : Itxl^l'i and k>l. The mapping T*.B —*-B de

fined by T(x,,x2,.. .)=(t(l - It xll),x1,x2,...), where t is a constant such that 

t*l and 0<t-£(k2-l)1/2, satisfies ITx-Ty II 6 k • IIx-y I for all x,ycB, but 

it is fixed point free. 

This example shows that the Kirk's theorem may fail to hold for the class 

of mappings T having a Lipschitz constant k>l, no matter how near to 1 we 

choose k. A class intermediate between these and the nonexpansive mappings, 

is provided by the following. A mapping T:C—»C, CcE, is said to be unif

ormly k-Lipschitz (k>l) if for each x,yeC 

HTnx-TnyUk.|lx-y», n=l,2,... . 

In 181, there is proved 
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Theorem 4.2. (Goebel, Kirk, Thale, 1974.) Let E be a Banach space with 

the characteristic of convexity of E, fc
Q
(E)=sup i 6 e 10,23: d*

E
(&)=0}* 1. 

Then there exists a constant *jf> 1 such that the uniformly, k-Lipschitz ma

ppings have the F.P.P. if k < *f* 

The constant y is derived from the modulus of convexity of E, that is, 
the function cT

E
.[o,23 -*-L0,23 defined as follows: 

d*L(6)-.inf U-^-ilx+yn x I x U l , HylUl, llx-yll> e } . 

It was shown in [83 that Theorem 4.2 holds if y is taken to be the solution 
1 

of the equation x«(l- dt(x~ ))=1. In a Hilbert space H this yields f^ 
= | * 5

1 / 2
 and in L

p
, p>2, j =(l+2~

p
)

1/p
. Recently, T.C. Lim [133 has defined 

the extended constant y in L
p
 spaces for p > 2 . Let oO be the unique soluti

on of the equation 

(p-2)x
p
""

1
+(p-1 )x

p
"

2
-l=0, 0 .* x & 1, 

n --, f 1+o.P"
1
 \

1 / p 

then the extended constant y in L
M
 is y - 1+

 n
 j 1 » P>2. For ex-

p M \ (1+ccr1/ 
1/2 1 

ample, for p=3 and 4, we have cc,=2 -1 and o6.= 4 and 

? 3 =(3-2 1 / 2 ) 1 / 3 > T3=(l+2"3)1 / 3, 

%< |>1/4
 > T^d^)

1
^. 

In a subsequent development, E.A. Lifschitz [121 initiated a more topological 

approach and considered uniformly Lipschitz mappings in metric spaces. Inste

ad of using the modulus of convexity Lifschitz associated, with each metric 

space (M,d), a constant at(M) defined as follows: 

эC(M)=sup «fb>0: S Л V W(x,y)>r 

, \/B(x,br)nB(y,ar)cB)z,r)3$, 
X€m 

where B(x,r) denotes the closed ball of radius r centered at x. 
In general, ae(M)2:l. If E is a Banach space, then 
ie0(E)-=inf *Ue(C):CcE is nonempty, bounded, closed, convex } > 1 

iff fc0(E)<l 153. In any Hilbert space 9eQ(H)>2
1/2, Lifschitz proved that: 

if (M,d) is a bounded, complete metric space and if T:M—>M is uniformly 
k-Lipschitz with k-c*(M), then T has a fixed point in M. Lifschitz theorem 
combined with Theorem 4.2 implies 

Theorem #.3. (Lifschitz, 1975.) Every Hilbert space has the F.P.P. for 

uniformly k-Lipschitz mappings with k < 2 ' . 
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The first example of a fixed point free uniformly Lipschitz mapping in l2 

(with k=2) was given in LS]. Lifschitz gave an example of a uniformly U -
Lipschitz self-mapping of the unit ball of 1 which is fixed point free 

(cf. til). 

Example 4.4. (Lifschitz, 1975.) Let E=l2 with the usual norm IIxI = 

=(-w?"1 lxil2)1/2 and B M x * l 2 : 8 x 1 ^ 1 } . Define T:B-» B by 

Tx = \ 

where P is the right shift: P(x1,x2,•••)=(0,x1,x2,...). 

For any two points x£y in B, consider the curve p(t)=T((l-t)y+tx), 

O^t-41. A computation shows that 1 p'(t)H < ̂ . Ix-yH for all t. Therefore 

i\Tx-Ty|.£/1Hp'(t)Hdt<f - Bx-yll. Since P is an isometry and T r V H l « V , T 

is uniformly Lipschitz with Lipschitz constant ̂ - But it is fixed point free: 

if x=Tx, then l\xH =1 and x=Px, which is im possible. 

5. A Banach measure and further results. Let AcN. A number of elem
ents of the set A will be denoted by |A| and N •.= -$l,2,...,n], s_: = 

|AoN | n n 

:= — » — for n=l,2,... . The sequence 4s } is bounded. 

Definition 5.1 [113. A Banach measure of a set ACN is a number 

^ A ) : = L I M V 

This measure has the following properties 19]: 
1) 0£^(A!)£1, 

2) <*(N)=1, 

3) ( A A B = 0 ) =-->(^(AuB)=^A)+,M<B), 

4) (KA)=l)^(ffc(AnB)=<u<B)), 

5) (U.(A+1)=.<4A), where A+l:=4 x+l:xe A5, 

6) ^(sA)= — • (tf,(A), where sA:- ̂ sx-.xeA}, s«N, 

7) (C= Kcvc2,...ic NAlim £- - r)==> (,<*(C)=r), where A,BcN., 

Definition 5.2. Let AcN and a Banach measure (4(A)*1. We shall say 

that T:C-»C is ^.-uniformly k-Lipschitz if there exists a constant k>l 

such that for all n€A we have 

RTn
x-T

ny IU k • flx--y II for each x,yt C. 

Recently M. Kruppel and the present author proved {9^i 
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Theorem 5.3. Let E be a uniformly convex Banach space. Then there ex

ists a constant <f > 1 satisfying fil-d^it" ^ = 1 sucn *hat ^~ u n i f o r m ly 

k-Lipschitz mappings have the F.P.P. if k < ^f • 

1/2 
If H is a Hilb ert space then Theorem 5.3 is true for k < 2TH=2 1113 . 

6. Main result on fixed point theory. Let ixn\ be a bounded sequence in 

a Banach space (E, \\*\\) and let C be a closed, convex subset of E. Consider 

the functional r̂ , :E — * C 0 , + O D ) defined by 

-^(x.tx^Mnf {SeR: A o <aln:lxn-x ft < S+s3=ll 

and call it the ^t-radius of 4.x \ in x. Let 

V ( C ^ x n ^ ) = i n f * r(u(x,ixn\):x€ C J, 

^(u,(C,ixn\)^xeC:r(a(x,{xn\)=r<U/(C^xn\) 

and call them: (JL-radius of ix^\ with respect to C, (U--center of ix \ with 

respect to C, respectively. 

Lemma 6.1. Let E be a Banach space with N(E)< 1. Then, for every bound

ed sequence {x \, there exists a point zeclco {x \y such that 

(i) r(tfc(z,<xn'i).4H(E).d(4xn\), 

( i i ) *£% ^-y»^^(y,{x n u, 
where ddxn\)=lim(sup y x -x Ibn,m2k}). 

Proof. For each p>l, set A =clco^x n^ and set A= 7 \ A . Since each 

A is weakly compact (because E is reflexive) then the set <Cu,(AD,J£xf.A), 

A, ̂ (Aj-ix \) is nonempty. For each p, choose z in ^^(A ,{x \) and consi

der a weakly convergent subsequence of £z_\, say 4z } . Call z its weak lim-
P Pn 

it. Taking into account the monotonicity of the sequence -{A \9 we obtain 

that zeA. TO prove that (i) holds for z, we observe that r/u.(--D,'{xnp is a 

monotone decreasing sequence which has r^(A,tx \) as an upper bound. Moreo

ver, since r ^ is weakly lower semicontinuous, we have 

lim r^(zD,4xnV=lim V ( z p ,*xn\)> r ^ z - f c ^ r r ^ A , ^ ) . 

Hence 3 

Since, for any p, 

^C^p.V)=V(zp^n^)-^(E)'d(^P)='R(E)-d(^)' 

we obtain r^z.ix^NCE)..^). 
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Observe that any point z€A satisfies (ii). In fact z belongs to A for each 
p, hence 

|\z-yUlim(supAHx-yll:xeApl)^r(!t4(y,4xnl). Q.E.D. 

Theorem 6.2. Every Banach space E which has the uniformly normal struc
ture has the F.P.P. for ^uniformly k-Lipschitz mappings with k<[W(E)3 . 

Proof. Let C be a nonempty, closed, convex, bounded subset of E. Let T: 
,v> I/O 

:C-> C be (a-uniformly k-Lipschitz with k<[N(E)3 . For any xeC, consi
der the sequence •^x'i and let z(x) be the point z of Lemma 6.1 corresponding 
to the sequence -iTnx}. Set p(x)=rf(C(x,«lT

nx^). By the condition (i) of the 
Lemma 6.1 we have 

(1) r^(z,lTnxl)6'N(E).d(iTnx\HN(E).sup-l)lTnx-Tnxll:n,m>0l & 

4N(E).k.sup4«Tix-xll:i>05 ^ 

£N(E).k.p(x). 

Moreover, for N>1 we have 

(2) r^(TNz,^Tnxi)=infiScR:^^Cn:llTnx-TNzll<S+&3=l5 £ 
^k-inf^ScR: /^0,u[n:HT

n""Nx-zil<S+e3 =1} = 
=k.r^(z,\Tnx'i). 

Condition (ii) of Lemma 6.1 yields, by (1) and (2), 

(3) p(zUk2.N(E).p(x)= §-p(x) with § < 1. 

Define a sequence {x \ in the following way: x, is any point of C, x n + 1=z(xn). 
Then ix \ is a Cauchy sequence. In fact, we have 

^tlx n + 1-T%8 +p(x n)^r f 4(x n + 1, H ^ ) + p ( x n ) £ 

6 k.N(E).p(xn)^(xn)=(l+k.N(E)).p(xn). 
Hence, by (3), 

llxn+1-xntl^(14<.N(E)).p(xn)^(l+k.N(E)) • |
n-P(x x). 

Let y=lim x_. Then Ty=y, because 

ftTy-yU fcy-xj + Hxn-Txnll + ilTxn-Ty II k 

k liy-xn | + Hxn-Txn 1 + k-lx-yUU+k). Hxn-y % +p(xn) £ 

A (1+k). Rxn-ylU ^n.p(x1)^->0 as n —»o>. Q.E.D. 

7. Remarks and consequences. 
I. It was proved in [31 that N(E)£ 1- efE(l), thus tBQ(E)< 1 implies 
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the uniformly normal structure, therefore Theorem 6.2 generalizes Theorem 5.3 

and Theorem 4.2. 

II. Combining Theorems 3.3 and 6.2, we have 

Corollary 7.1. For $<21/2
t E^ has the F.P.P. for ^-uniformly k-Lip-

schitz mappings with k< 2 1 / 4. p " 1 / 2 . 
111• Leroroa 7.2. Let E be a Banach space with the uniformly normal struc

ture, i.e. N(E)<1, and let ^ > 1 satisfy T d - 4 ^ " 1 ) ) s L If tf(R)-*5 

then<y< ^ 0 = tN(E)]"
1/2. 

Proof. Since f(x)=x«(l- cC(x )) is an increasing function in [1,2.1, it 

is enough to show that f(tN(E)]~1/2)>l for N(E)< -|. From the Nordlander ine
quality £fE(e,)£l-(l- ^ . e 2 ) 1 / 2 we obtain 

ta$tm~l/2)2ufc)yl- %>l/2>i *<* %)< £. Q-E.D. 

Corollary 7.3. For 1 4 ft < -|-21/2, the condition k<[N(E)J"1/2 is weaker 

than k < y , where qf is the unique solution of x(l- c(x~ ))=1. 

8. Open problems 

1/2> . . g 
1. Is the Lifschitz theorem true for 2x,£-£ k < ̂  ? 

2 . Do 3ames spaces E« have the F.P.P, for /S > 2 ? 

3. N(LP) = ? 
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